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Abstract: We introduce a long wave scaling for the Vlasov-Poisson equation
and derive, in the cold ions limit, the Korteweg-De Vries equation (in 1D) and
the Zakharov-Kuznetsov equation (in higher dimensions, in the presence of an
external magnetic field). The proofs are based on the relative entropy method.

1. The long wave scaling of the Vlasov-Poisson equation

1.1. The Vlasov-Poisson system for ions with small mass electrons. We consider
the Vlasov-Poisson system which describes the evolution of ions in a plasma. We
assume that due to their small mass, electrons in the plasma instantaneously
reach their thermodynamic equilibrium, so that their density ne follows the
Maxwell-Boltzmann law:

ne = eφ/Te , (1.1)

denoting by φ the electric potential and Te > 0 the scaled temperature of elec-
trons, taken equal to 1 in the following. We then obtain the Vlasov-Poisson
system for ions (where t ≥ 0, x ∈ Td or Rd, v ∈ Rd, d = 1, 2, 3):

∂tf + v · ∇xf + (E + v ∧ b) · ∇vf = 0,

E = −∇xφ,

−∆xφ+ eφ =

∫
Rd

f dv,

f|t=0 = f0.

(1.2)

We refer to [26] for a more complete discussion on this system. In these equations,
f(t, x, v) stands for the distribution function of the ions, which allows to describe
their statistical distribution: this means that f(t, x, v) dx dv expresses the density
of ions, at time t, whose position is close to x and whose velocity is close to v.
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Furthermore, with usual notations, E is the electric field (generated by electrons
and ions themselves), while b is a constant external magnetic field. We assume
that b = e1, and consider (e1, e2, e3) an orthonormal basis of R3 .

It is interesting to notice that for a very particular class of (singular) data,
namely Dirac functions in velocity, which we shall call monokinetic data,

f(t, x, v) = ρ(t, x)δv=u(t,x), (1.3)

where δ denotes the Dirac delta function, we get that f is a solution in the
sense of distributions to (1.2) (with some relevant electric field) if and only if
(ρ, u) satisfies the following hydrodynamic system, which corresponds to the
pressureless Euler-Poisson system:

∂tρ+∇x · (ρu) = 0,

∂tu+ u · ∇xu = E + u ∧ b, u = (u1, u2, u3),

E = −∇xφ,
−∆xφ+ eφ = ρ.

(1.4)

From the physical point of view, this corresponds to the cold ions assumption,
that corresponds to the situation where ions have zero (kinetic) temperature:
any function of the form (1.3) indeed satisfies∫

f(t, x, v)|v − u(t, x)|2 dv = 0. (1.5)

We also mention that a standard model in plasma physics is obtained after
linearizing the Maxwell-Boltzmann law, which yields from (1.2) the following
system: 

∂tf + v · ∇xf + E · ∇vf = 0,

E = −∇xφ,

−∆xφ+ φ =

∫
Rd

f dv − 1,

f|t=0 = f0.

(1.6)

This linearization produces some considerable simplifications in the analysis.

1.2. The long wave scaling. In some recent independent works, Lannes, Linares
and Saut [29] in the first hand, and Guo and Pu [22,38] in the other hand, have
rigorously studied the long wave limit of the pressureless Euler-Poisson system.
Precisely, one looks for solutions to (1.4) under the form:

ρ = 1 + ερ1(ε
1/2(x1 − t), ε1/2x2, ε1/2x3, ε3/2t) + ε2ρ2 + ...,

φ = εφ1(ε
1/2(x1 − t), ε1/2x2, ε1/2x3, ε3/2t) + ε2φ2 + ...,

u1 = εu
(1)
1 (ε1/2(x1 − t), ε1/2x2, ε1/2x3, ε3/2t) + ε2u

(2)
1 + ...,

u2 = ε3/2u
(1)
2 (ε1/2(x1 − t), ε1/2x2, ε1/2x3, ε3/2t) + ε2u

(2)
2 + ...,

u3 = ε3/2u
(1)
3 (ε1/2(x1 − t), ε1/2x2, ε1/2x3, ε3/2t) + ε2u

(2)
3 + ....

(1.7)
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This leads to the study of the behaviour, as the parameter ε goes to 0, of the
solutions to the rescaled system:

ε∂tρ− ∂x1
ρ+∇x · ((1 + ερ)u) = 0,

ε∂tu− ∂x1
u+ εu · ∇xu = E + ε−1/2u ∧ b, u = (u1, u2, u3),

E = −∇xφ,
− ε2∆xφ+ eεφ = 1 + ερ.

(1.8)

In the limit, one expects to obtain some (non-linear) dispersive equations, as
explained in the papers by Zakharov-Kuznetsov [45] and Laedke-Spatschek [28].
Indeed, in 1D, both [29] and [22] establish the convergence to the Korteweg-de
Vries (KdV) equation, which we recall below:

∂tφ1 + φ1∂xφ1 + ∂3xxxφ1 = 0. (1.9)

In 2D and 3D, which corresponds to the setting of (1.8), [29] and [38] give the
derivation of a higher dimensional generalization of the KdV equation, which is
referred to as the Zakharov-Kuznetsov (in short ZK) equation:

∂tφ1 + φ1∂xφ1 + ∂x1∆φ1 = 0. (1.10)

With another kind of anisotropic (in space) scaling, Pu has also derived in
2D the Kadomstev-Petviashvili II (in short KP-II) equation [38]:

∂x1

(
∂tφ1 + φ1∂x1φ1 + ∂3x1x1x1

φ1
)
+ ∂2x2x2

φ1 = 0. (1.11)

Over the past years, there have been many mathematical studies of long wave
limits towards KdV (and higher dimensional generalizations). Let us cite some
works (this list is not meant to be exhaustive) concerning the following PDEs:

– Nonlinear Schrödinger (including Gross-Pitaevskii) equations: Chiron and
Rousset [14], and Béthuel, Gravejat, Saut and Smets [6,7] (with different
methods),

– General Hyperbolic systems: Ben-Youssef and Colin [4], Ben-Youssef and
Lannes [5],

– Water Waves: Craig [16], Schneider and Wayne [43], Bona, Colin and Lannes
[8], Alvarez-Samaniego and Lannes [2] , Duchene [17,18],

and many others.
The fact that there exist very singular solutions to the Vlasov-Poisson system

(1.2) which precisely yield the pressureless Euler-Poisson system (1.4) suggests
that is should also be possible to study (1.2) in a long wave regime. Following
this idea, we would like to look for solutions of the form:{

fε(t, x, v) = εdf̃ε(ε
3/2t, ε1/2(x1 − t), ε1/2x2, ε1/2x3, ε−1v),

φε(x, v) = εφ̃ε(ε
3/2t, ε1/2(x1 − t), ε1/2x2, ε1/2x3).

(1.12)

The normalization is chosen in order that the scaling of the two first moments
ρε :=

∫
fε dv and uε :=

∫
fεv dv∫
fε dv

matches with the Ansatz in (1.7).

At some point, we will also have to somehow impose that the function f̃ε is
“close” to a Dirac function, in order to reach the Euler-Poisson dynamics.
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Therefore, we propose a long wave scaling for the Vlasov-Poisson equation
(in dimension d = 3), which we introduce now:

t̃ = ε3/2t, x̃ = ε1/2x, ṽ = ε−1v,

f̃(t̃, x̃, ṽ) = ε−3f(t, x, v),

φ̃(t̃, x̃) = ε−1φ(t, x),

Ẽ(t̃, x̃) = ε−3/2E(t, x).

(1.13)

With a slight abuse of notation (we forget the tildes), we obtain the rescaled
equations:

ε3/2∂tf + ε3/2v · ∇xf + ε−1
(
ε3/2E + ε v ∧ b

)
· ∇vf = 0,

E = −∇xφ,

− ε2∆xφ+ eεφ =

∫
R3

f dv,

f|t=0 = f0.

(1.14)

Finally, there only remains to perform the shift with respect to the first spatial
variable: 

x1 = x1 − t/ε,
f(t, x1, x2, x3, v) = f(t, x, v),

φ(t, x1, x2, x3) = φ(t, x1, x2, x3),

E(t, x1, x2, x3) = E(t, x1, x2, x3).

(1.15)

With another abuse of notation, we end up with the rescaled Vlasov-Poisson
system: 

ε ∂tfε − ∂x1
fε + ε v · ∇xfε +

(
Eε +

v ∧ b√
ε

)
· ∇vfε = 0,

Eε = −∇xφε,

− ε2∆xφε + eεφε =

∫
R3

fε dv,

fε,|t=0 = fε,0.

(1.16)

To the best of our knowledge, although this scaling seems very natural, it has
never been introduced yet, even in the physics literature. Our goal in this work
is to study the behaviour, as ε → 0, of solutions to (1.16), that also get close
(in some sense that we shall precise later) at initial time to monokinetic data.
According to the previous discussion, it is natural to expect to obtain the ZK
equation in the limit.

The relations between the different systems are summarized in the following
diagram:
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Vlasov-Poisson
Cold ions limit

Pressureless Euler-Poisson

Combined
cold ions and long wave limit

Long wave limit

KdV or ZK

Let us briefly comment on this picture. As already explained, the link between
Vlasov-Poisson and Pressureless Euler-Poisson is given by monokinetic type of
data. Unfortunately, these data are way too singular to fit in the known Cauchy
theories (although some results for measure data are actually available in 1D,
we refer to the work of Zheng and Majda [46]). As a matter of fact, we are not
even aware of any result proving rigorously the convergence to the pressureless
Euler-Poisson system for data that would converge in some sense to monokinetic
data; the stability estimates that would be needed are indeed missing.

As already said, the long wave limit from the Pressureless Euler-Poisson sys-
tem has been performed in [29,22,38]. One important step is to build a solution
in an interval of time which is independent of ε. In order to study the long wave
limit of the Vlasov-Poisson equation, instead of trying to derive the Pressureless
Euler-Poisson system, the idea is to perform simultaneously the cold ions and
long wave limits. We shall start from global weak solutions to the Vlasov-Poisson
equation, and therefore we will not have to face the difficulty of finding uniform
lifespans.

To prove such a result, we shall rely on a classical energy method, namely
the relative entropy method. The idea originates in the work of Yau [44] on the
hydrodynamic limit of some Ginzburg-Landau equation. It was independently
brought in kinetic theory by Golse in [10] (in the context of the incompressible
Euler limit of the Boltzmann equation) and by Brenier in [13] (in the context of
the quasineutral limit of the Vlasov-Poisson equation).

The basic principle of the relative entropy strategy consists in modulating
some well-chosen functional that has to be conserved or dissipated by the physi-
cal system (for instance, the good choice is the entropy for the Boltzmann equa-
tion). The modulation is obtained in terms of the solution to the target equation.
One has to ensure that this new functional allows to “measure” in a certain sense
the distance between the solution to the original system and that to the target
equation. Then one has to prove that the functional that has been constructed
is a Lyapunov function for the system: this follows from exact computations and
algebraic identities. The computations can be more or less lengthy and tedious.
It can be also very technical to justify these.

The estimates which can be obtained have to be understood as stability es-
timates: for instance, the results proved in this work can be interpreted as the
stability of monokinetic data, in the long wave regime, with a dynamics dictated
by some the KdV or ZK equations. This also strongly suggests that for our long
wave limit, there are stability phenomena (a la Penrose) at stake, exactly like for
the case of the quasineutral limit (the effects of instabilities for the latter limit
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are briefly discussed for instance in [21]); more precisely, two stream instabilities
are bound to destabilize the system and make the long wave limit fail (but these
are avoided when one considers monokinetic data). On the topic of instabilities
for the Vlasov-Poisson system, we refer to [24,23,25,30,31,37,32,33].

For the Vlasov equation, this method is remarkably well adapted to handle
the cold ions limit, in other words the “convergence” to monokinetic data, as it
will be clear later. This was observed for the study of the quasineutral limit of
the Vlasov-Poisson system for electrons with fixed ions, as done by Brenier [13]
(this was completed later by Masmoudi [36], see also [20]). More recently, in [26],
we have studied the quasineutral limit of the Vlasov-Poisson equation for ions
with small mass electrons (which corresponds to (1.2)). In that work, we have
observed that this equation displays a L logL structure that is reminiscent of
that of the Boltzmann equation (we refer to the works of Saint-Raymond [40,
42], [41] for the incompressible Euler limit, see also the recent paper of Allemand
[1]); this will also play a crucial role in this work.

It is worth noticing that the method provided in this paper can also be applied
to study the KdV limit of the Euler-Poisson system, for data with only low
uniform regularity. Indeed we can start from the global weak solutions built by
Cordier and Peng [15] and use similar computations as in the present paper.

To conclude this introduction, let us mention that Haragus, Nicholls and
Sattinger in [27] relied on the KdV approximation of the Euler-Poisson system
to study (formally and numerically) the interaction of solitary waves. It would be
very interesting to start an analogous program for the Vlasov-Poisson equation.

1.3. Organization of the paper. The paper is organized as follows: in Section
2, we provide the derivation of the KdV equation (see Theorem 3), starting
from the 1D Vlasov-Poisson equation with a linearized Maxwell-Boltzmann law.
The exposure of this relatively simple case will allow us to lay down the basic
principles of the relative entropy method applied to the long wave limit. In
addition to this pedagogical interest, the existence of global solutions to the
KdV equation allows to give stability estimates which are valid for all times. In
Section 3, we present the main result of this paper, which is the derivation of
the ZK equation, in Theorem 6, starting from the 3D Vlasov-Poisson equation
with the full Maxwell-Boltzmann law. The proof will be much more technical,
in particular due to the fact that only a L logL type of control is available
for the electric potential (instead of a L2 bound which can be obtained with
a linearized Maxwell-Boltzmann law). We will need an unusually large number
of correctors in the relative entropy. Finally, we give in two appendices some
variants of our results (which can still be obtained with the relative entropy
method): in particular we present another scaling for the 2D Vlasov-Poisson
system which yields the KP-II equation in the long wave limit.
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2. From the Vlasov-Poisson equation to the Korteweg-de Vries
equation

In this section, we shall study the long wave limit of the 1D Vlasov-Poisson
system with a linearized Maxwell-Boltzmann law, that is (here (x, v) ∈ T× R):

ε ∂tfε − ∂xfε + ε v∂xfε + Eε∂vfε = 0,

Eε = −∂xφε,

− ε2∂2xxφε + εφε =

∫
R
fε dv − 1,

fε,|t=0 = fε,0.

(2.1)

2.1. Preliminaries. This system possesses an energy, which is conserved, at least
formally:

Eε(t) :=
1

2

∫
fε|v|2 dv dx+

1

2
ε

∫
|∂xφε|2 dx+

1

2

∫
|φε|2 dx. (2.2)

Using this energy, as well as the conservation of Lpx,v norms that can be ob-
tained using the hamiltonian structure of the Vlasov equation, one can prove,
following the work of Arsenev [3], the following theorem, which states the exis-
tence of global weak solutions to (2.1):

Theorem 1. Let ε > 0. Let fε,0 ∈ L1 ∩ L∞(T × R) be a non-negative function
such that the initial energy is bounded:

Eε(0) :=
1

2

∫
fε,0|v|2 dv dx+

1

2
ε

∫
|∂xφε,0|2 dx+

1

2

∫
|φε,0|2 dx < +∞, (2.3)

where the initial electric potential φε,0 is given by the elliptic equation:

−ε2∂2xxφε,0 + εφε,0 =

∫
R
fε,0 dv − 1.

We also assume that: ∫
fε,0 dv dx = 1.

Then there exists a non-negative global weak solution fε ∈ L∞t (L1 ∩L∞(T×R))
to (2.1), such that the energy is non-increasing:

∀t ≥ t′, Eε(t) ≤ Eε(t′), (2.4)

and such that the following local conservation laws for (ρε :=
∫
fε dv, Jε :=∫

fεv dv) are satisfied:

∂tρε −
1

ε
∂xρε + ∂xJε = 0, (2.5)

∂tJε −
1

ε
∂xJε + ∂x

(∫
|v|2fε dv

)
= −1

2
∂x(φε + 1)2 +

ε

2
∂x|∂xVε|2. (2.6)
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For the KdV equation, that we recall below,

∂tφ1 + φ1∂xφ1 + ∂3xxxφ1 = 0, (2.7)

we have in hand a famous global existence result which was proved in the seminal
paper of Bourgain [11]:

Theorem 2. The KdV equation is globally well-posed in Hs(T) for s ≥ 0.

We will use this result only for large values of s.

2.2. Formal derivation. It is quite enlightening to perform a formal analysis in
this simple one-dimensional case, to understand how the KdV equation arises.
Formally, one directly considers monokinetic data:

fε(t, x, v) = ρε(t, x)δv=uε(t,x). (2.8)

Then, as already explained, we obtain the following pressureless Euler-Poisson
equation in a long wave scaling:

∂tρε −
1

ε
∂xρε + ∂x(ρεuε) = 0,

∂tuε −
1

ε
∂xuε + uε∂xuε =

1

ε
Eε,

E = −∂xφε,
− ε2∂2xxφε + εφε = ρε − 1,

(2.9)

We look for an approximate solution satisfying the Ansatz:
ρε = 1 + ερ1 +O(ε2),
φε = φ1 + εφ2 +O(ε2),
uε = u1 + εu2 +O(ε2).

(2.10)

Plugging this Ansatz in the equations, and matching the different powers of ε,
we obtain a cascade of equations.

– Conservation of charge equation:

O(1) : −∂xρ1 + ∂xu1 = 0. (2.11)
O(ε) : ∂tρ1 − ∂xρ2 + ∂x(ρ1u1) + ∂xu2 = 0. (2.12)

– Momentum equation:

O(ε−1) : −∂xu1 + ∂xφ1 = 0, (2.13)
O(1) : ∂tu1 − ∂xu2 + u1∂xu1 + ∂xφ2 = 0. (2.14)

– Poisson equation

O(ε) : φ1 = ρ1, (2.15)

O(ε2) : −∂2xxφ1 + φ2 = ρ2. (2.16)
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We clearly get from (2.11) and (2.13):

φ1 = ρ1 = u1 (2.17)

and in the other hand from (2.14) and (2.16):

∂x(φ2 − u2) = ∂x(φ2 − ρ2) + ∂x(ρ2 − u2)
= ∂2xxxφ1 + ∂tu1 + 2u1∂xu1.

(2.18)

Hence, from (2.12) and (2.18), we conclude that φ1 satisfies the KdV equation:

2∂tφ1 + 3φ1∂xφ1 + ∂3xxxφ1 = 0. (2.19)

2.3. Rigorous derivation. We now state the theorem which rigorously proves the
convergence to KdV.

Theorem 3. Let (fε,0)ε∈(0,1) be a family of non-negative initial data satisfying
the assumptions of Theorem 1 and such that there exists C > 0 with:

Eε(0) ≤ C, ∀ε ∈ (0, 1). (2.20)

We denote by (fε)ε∈(0,1) a family of non-negative global weak solutions to (2.1)
given by Theorem 1. Let Hε be the relative entropy defined by the functional:

Hε(t) :=
1

2

∫
fε|v − u1 − εu2|2 dv dx+

1

2
ε

∫
|∂xφε − ∂xφ1 − ε∂xφ2|2 dx

+
1

2

∫
(φε − φ1 − εφ2)2 dx,

(2.21)
where (u1, φ1, u2, φ2) ∈ [C([0,+∞[, Hs+2(T))]4 (with s > 3/2) satisfy the fol-
lowing system: 

2∂tφ1 + 3φ1∂xφ1 + ∂3xxxφ1 = 0,

u1 = φ1,

∂x(u2 − φ2) = ∂tφ1 + φ1∂xφ1.

(2.22)

Then there exist C1, C2 > 0, such that for all ε ∈ (0, 1),

∀t ≥ 0, Hε(t) ≤ Hε(0) +
∫ t

0

(C1Hε(s) + C2

√
ε) ds. (2.23)

Assuming in addition that there exists C3 such that for any ε ∈ (0, 1):

Hε(0) ≤ C3

√
ε, (2.24)

then we obtain for any ε ∈ (0, 1):

∀t ≥ 0, Hε(t) ≤ C3e
C1t
√
ε+ C2

eC1t − 1

C1

√
ε. (2.25)

In order to get functions satisfying (2.22), we can proceed as follows:

– The existence of φ1 is ensured by Theorem 2.
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– We accordingly set φ1 = u1.
– The functions φ2 and u2 can be seen as correctors. The last equation of (2.22)

allows to define them. Only the value of the function u2 − φ2 is important.

Remark 1. The estimate (2.25) clearly implies that

1

2

∫
fε|v − u1 − εu2|2 dv dx ≤ C3e

C1t
√
ε+ C2

eC1t − 1

C1

√
ε, (2.26)

and
1

2

∫
(φε − φ1 − εφ2)2 dx ≤ C3e

C1t
√
ε+ C2

eC1t − 1

C1

√
ε. (2.27)

From (2.26), denoting by f a weak limit of fε, we deduce that necessarily∫
f |v − u1|2 dv dx = 0, (2.28)

which means that the limit temperature is zero (cold ions limit).

Remark 2. The estimate (2.25) is valid for all times, but it is useful for times of
order o(| log ε|) (in other words, logarithmically growing times). This is slightly
better than the times of validity obtained in the long wave limit of Euler-Poisson
in [29], which are (translated in our framework) of order O(1).

From this theorem, we can deduce the following corollary:

Corollary 1. Making the same assumptions as in the previous theorem, we ob-
tain the weak convergences:

ρε ⇀ε→0 1 in L∞t M1 weak-*,

Jε ⇀ε→0 φ1 in L∞t M1 weak-*,

φε ⇀ε→0 φ1 in L∞t M1 weak-*.

(2.29)

Proof (Proof of Corollary 1).
By conservation of the L1 norm, we deduce that

‖ρε‖L1 ≤ C.

Using this bound and the one coming from the energy inequality:∫
fε|v|2 dv dx ≤ C,

and by non-negativity of fε, it is standard to deduce a L1 control on Jε:

‖ρε‖L1 ≤ C.

Therefore, there exist two non-negative measures ρ, J such that up to some
extraction, we have: {

ρε ⇀ ρ,

Jε ⇀ J,
(2.30)

in the vague sense of measures. We have to show that ρ = 1 and J = φ1.
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We pass to the limit ε → 0 (in the sense of distributions) in the Poisson
equation:

−ε2∂2xxφε + εφε = ρε − 1,

using the uniform L2 bound on
√
ε∂xφε and φε (coming from the energy inequal-

ity), we deduce that we necessarily have ρ = 1, which proves the first claim.
In the other hand, using the Cauchy-Schwarz inequality, we have

|Jε − ρε(u1 + εu2)|2

ρε
=

(∫
fε(v − u1 − εu2)dv

)2∫
fεdv

≤
∫
fε|v − u1 − εu2|2 dv,

(2.31)
The functional (ρ, J)→

∫ |J−ρ(u1+εu2)|2
ρ dx is convex and lower semi-continuous

with respect to the weak convergence of measures (see [13]). As a consequence,
the weak convergences in the vague sense of measures ρε ⇀ 1 and Jε ⇀ J lead
to: ∫

|J − u1|2dx ≤ lim inf
ε→0

∫
|Jε − ρεu|2

ρε
dx. (2.32)

By (2.25), we deduce that J = u1(= φ1).
To conclude, the uniqueness of the limit allows us to say that the weak con-

vergences actually hold without any extraction.

Remark 3. We can actually state strong convergence results. Indeed, in view of
the preceeding proof, it is clear that (2.26) implies the “strong” convergence:∥∥∥∥Jε − ρε(u1 + εu2)√

ρ
ε

∥∥∥∥2
L2

≤ C3e
C1t
√
ε+ C2

eC1t − 1

C1

√
ε. (2.33)

In the other hand, the control (2.27) means that φε converges strongly in L2

to φ1, as ε goes to 0.

2.4. Proof of Theorem 3. Relying on the fact the energy is non-increasing (and
that Hε is built as a modulation of the energy), we have for all t ≥ 0 and all
ε ∈ (0, 1):

Hε(t) = Eε(t) + (Hε(t)− Eε(t)) ≤ Eε(0) + (Hε(t)− Eε(t)),

which yields:

Hε(t) ≤ Hε(0) +
∫ t

0

∫
∂t

[
fε

(
1

2
|u1 + εu2|2 − v(u1 + εu2)

)]
dv dx

+ ε

∫
∂t

[
1

2
|∂xφ1 + ε∂xφ2|2 − ∂xφε(∂xφ1 + ε∂xφ2)

]
dx

+

∫
∂t

[
1

2
|φ1 + εφ2|2 − φε(φ1 + εφ2)

]
dx ds

:= Hε(0) +
∫ t

0

(I1 + I2 + I3) ds.
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We are now going to study I1, I2 and I3. The computations can be justified
using only the local conservation laws (2.5) and (2.6).

Study of I1.
Using the fact that fε satisfies the Vlasov-Poisson equation, we obtain the

identity:∫
∂tfε

(
1

2
|u1 + εu2|2 − v(u1 + εu2)

)
dv dx

=

∫
fε(u1 + εu2 − v)

[
− 1

ε
∂xu1 + v∂xu1 − ∂xu2 + εv∂xu2

]
dv dx

−
∫

1

ε
ρεEεu1 dx−

∫
ρεEεu2 dx.

In order to obtain an hydrodynamic equation inside [...], we write:∫
fε(u1 + εu2 − v)(v∂xu1) =

∫
fε(u1 + εu2 − v)(u1∂xu1)

−
∫
fε|u1 + εu2 − v|2∂xu1 +

∫
εfε(u1 + εu2 − v)u2∂xu1.

After deriving with respect to time the term 1
2 |u1 + εu2|2 − v(u1 + εu2), we

get the following contribution in I1:∫
fε(u1 + εu2 − v)

[
∂tu1 + ε∂tu2

]
dv dx.

We now focus on the terms of order O(1/ε), for which we can write

−
∫
fε(u1 + εu2 − v)

1

ε
∂xu1 dv dx

=

∫
fε(u1 + εu2 − v)

1

ε
(−∂xu1 + ∂xφ1) dv dx

−
∫

1

ε
ρεu1∂xφ1 dx−

∫
ρεu2∂xφ1 dx+

∫
1

ε
Jε∂xφ1 dx,

and

−
∫

1

ε
ρεEεu1 dx−

∫
1

ε
ρεu1∂xφ1 dx−

∫
ρεu1∂xφ2 dx

= −1

ε

∫
ρεu1(∂xφ1 + ε∂xφ2 − ∂xφ) dx.

In the other hand, we observe that we can write:∫
fε(u1 + εu2 − v)

[
∂tu1 + u1∂xu1 − ∂xu2

]
dv dx

=

∫
fε(u1 + εu2 − v)

[
∂tu1 + u1∂xu1 − ∂xu2 + ∂xφ2

]
dv dx

+

∫
Jε∂xφ2 dx−

∫
ρεu1∂xφ2 dx− ε

∫
ρεu2∂xφ2 dx.
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Using the L1 uniform bounds for ρε and Jε, as well as the various Lipschitz
bounds on (u1, u2), it is clear that∣∣∣∣ε∫ ρεu2∂xφ2 dx

∣∣∣∣+ ∣∣∣∣ε∫ fε(u1 + εu2 − v)∂tu2 dv dx
∣∣∣∣ ≤ Cε.

In the end, we have:

I1 =
1

ε

∫
fε(u1 + εu2 − v)

[
− ∂xu1 + ∂xφ1

]
dv dx

+

∫
fε(u1 + εu2 − v)

[
∂tu1 + v∂xu1 − ∂xu2 + ∂xφ2

]
dv dx

+

∫
Jε

(
1

ε
∂xφ1 + ∂xφ2

)
dx

− 1

ε

∫
ρεu1(∂xφ1 + ε∂xφ2 − ∂xφ) dx

− 1

ε

∫
ρεu2∂x(φ1 + εφ2) dx−

∫
ρεEεu2 dx

−
∫
fε|u1 + εu2 − v|2∂xu1 +O(ε),

(2.34)

where O(ε) is a notation for all the terms which can be bounded by Cε, with
C > 0 independent of ε.

Study of I2.
We have:

I2 = ε

∫
∂t(∂xφ1 + ε∂xφ2)(−∂xφε + ∂xφ1 + ε∂xφ2) dx

− ε
∫
∂t∂xφε(∂xφ1 + ε∂xφ2) dx.

We get the easy bound (using |ab| ≤ 1
2 (a

2 + b2)):

ε

∣∣∣∣∫ (∂xφ1 + ε∂xφ2)(−∂xφε + ∂xφ1 + ε∂xφ2) dx

∣∣∣∣
≤ C

[
ε

∫
(∂t(∂xφ1 + ε∂xφ2))

2 dx+ ε

∫
(−∂xφε + ∂xφ1 + ε∂xφ2)

2 dx

]
≤ O(ε) + CHε(t).

Study of I3.
We get:

I3 =

∫
∂t(φ1 + εφ2)(−φε + φ1 + εφ2) dx

−
∫
∂tφε(φ1 + εφ2) dx := I13 + I23 .
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Let us start with I13 , that we can rewrite as:

I13 =

∫
(φ1 − φε)∂tφ1 + ε

∫
∂tφ2(−φε + φ1 + εφ2) dx + ε

∫
∂tφ1φ2 dx.

If we differentiate with respect to time the Poisson equation, we obtain:

−∂tφε = −ε∂2xx∂tφε −
1

ε
∂tρε.

Then, using the local conservation of charge (in shifted variables) that we recall
below,

−1

ε
∂tρε = −

1

ε2
∂xρε +

1

ε
∂xJε,

we obtain that:

I23 = − 1

ε2

∫
∂xρε(φ1 + εφ2) dx

+
1

ε

∫
∂xJεφ1 dx+

∫
∂xJεφ2 dx

− ε
∫
∂t∂

2
xxφε(φ1 + εφ2).

Of course, by integration by parts, we can rewrite the last three terms as
follows:

1

ε

∫
∂xJεφ1 dx+

∫
∂xJεφ2 dx+ ε

∫
∂t∂

2
xxφε(φ1 + εφ2)

= −1

ε

∫
Jε∂xφ1 dx−

∫
Jε∂xφ2 dx+ ε

∫
∂t∂xφε(∂xφ1 + ε∂xφ2),

which get simplified using some terms coming from the computations of I1 and
I2.

Study of the remaining significant terms.
We now have to study the following terms (coming from the computation of

I1 + I2 + I3):

K1 := −
∫
ρεu2∂x(φ1 + εφ2) dx, K2 := −

∫
ρεEεu2 dx,

K3 := −1

ε

∫
ρεu1(∂xφ1 + ε∂xφ2 − ∂xφε) dx,

K4 := − 1

ε2

∫
∂xρε(φ1 + εφ2) dx,

K5 :=

∫
(φ1 − φε)∂tφ1 dx.
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We start with K1 and K2. Using the Poisson equation, we have:

K1 = −
∫
u2∂x(φ1 + εφ2) dx− ε

∫
φεu2∂x(φ1 + εφ2) dx

+ ε2
∫
∂2xxφεu2∂x(φ1 + εφ2) dx

=

∫
∂xu2φ1 dx− ε

∫
φεu2∂xφ1 dx+ ε2

∫
∂2xxφεu2∂x(φ1 + εφ2) dx

+O(ε).

We have (after integration by parts),

ε2
∣∣∣∣∫ ∂2xxφεu2∂x(φ1 + εφ2) dx

∣∣∣∣ ≤ Cε.
Similarly, we compute

K2 =

∫
u2∂xφε dx+ ε

∫
φεu2∂xφε dx− ε2

∫
∂2xxφεu2∂xφε dx

= −
∫
∂xu2φε dx− ε

∫
φ2ε
2
∂xu2 dx+ ε2

∫
(∂xφε)

2

2
∂xu2 dx.

As a result, one gets

K1 +K2 =

∫
(φ1 − φε)∂xu2 dx+O(ε).

Concerning K3, we have (once again using the Poisson equation):

K3 = −1

ε

∫
u1(∂xφ1 + ε∂xφ2 − ∂xφε) dx

−
∫
φεu1(∂xφ1 + ε∂xφ2 − ∂xφε) dx

+

∫
ε∂2xxφεu1(∂xφ1 + ε∂xφ2 − ∂xφε) dx

:= K1
3 +K2

3 +K3
3 .

For K1
3 , we have:

K1
3 = −1

ε

∫
u1∂xφ1 dx−

∫
u1∂xφ2 dx+

1

ε

∫
u1∂xφε dx.

Concerning K2
3 , we write:

K2
3 = −

∫
φεu1∂xu1 dx+

∫
φε∂xφε u1 dx+ ε

∫
φεu1∂xφ2 dx

and
−
∫
φεu1∂xu1 dx =

∫
(φ1 − φε)u1∂xu1 dx−

∫
φ1u1∂xu1 dx.
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The contribution coming from
∫
φε∂xφε u1 dx could be harmful (a priori it is

of order O(1/ε)), but we can rely on the following identities in order to make
the relative entropy appear:∫

φε∂xφε u1 dx = −1

2

∫
φ2ε∂xu1 dx

= −1

2

∫
(φε − φ1 − εφ2)2∂xu1 dx−

∫
φεφ1∂xu1 dx+ ε

∫
φεφ2∂xu1 dx

+
1

2

∫
(φ1 + εφ2)

2∂xu1 dx

= −1

2

∫
(φε − φ1 − εφ2)2∂xu1 dx+

∫
(φ1 − φε)φ1∂xu1 dx+ ε

∫
φεφ2∂xu1 dx

− 1

2

∫
φ21∂xu1 dx+ ε

∫ (
φ1φ2∂xu1 +

1

2
εφ22∂xu1

)
dx.

We note that ε
∫
φεφ2∂xu1 dx is of order ε, using the L2 uniform bound on φε

granted by the energy.
Finally, for K3

3 , we have

K3
3 = −

∫
∂2xxφεu1∂xφε dx+ ε

∫
∂2xxφεu1(∂xφ1 + ε∂xφ2) dx.

As before, the most significant term can be rewritten as follows:

−
∫
∂2xxφεu1∂xφε dx = ε

∫
(∂xφε)

2

2
∂xu1 dx

=
1

2

∫
ε(∂xφε − ∂xφ1 − ε∂xφ2)2∂xu1 + ε

∫
∂xφε(∂xφ1 + ε∂xφ2)∂xu1 dx

− 1

2

∫
ε(∂xφ1 + ε∂xφ2)

2∂xu1 dx.

We have the bound:

ε

∣∣∣∣∫ ∂xφε(∂xφ1 + ε∂xφ2)∂xu1 dx

∣∣∣∣ ≤ C√ε.
We treat K4 exactly as K3.

K4 =
1

ε2

∫
ρε(∂xφ1 + ε∂xφ2) dx

=
1

ε2

∫
(∂xφ1 + ε∂xφ2) dx+

1

ε

∫
φε(∂xφ1 + ε∂xφ2) dx

−
∫
∂2xxφε(∂xφ1 + ε∂xφ2) dx

:= K1
4 +K2

4 +K3
4 .

Clearly, we have K1
4 = 0 and

K2
4 =

1

ε

∫
φε∂xφ1 dx+

∫
φε∂xφ2 dx,
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and since
∫
φ1∂

3
xxxφ1 dx = 0, we have:

K3
4 =

∫
(φ1 − φε)∂3xxxφ1 dx− ε

∫
∂2xxφε∂xφ2 dx.

By integration by parts, it is clear that the second term of K3
4 is of order

√
ε.

Conclusion.
Gathering all pieces together, we obtain that:

Hε(t) ≤ Hε(t) +
∫ t

0

[ ∫
fε(u1 + εu2 − v)

1

ε
(−∂xu1 + ∂xφ1) dv dx

+

∫
fε(u1 + εu2 − v)

[
∂tu1 + u1∂xu1 − ∂xu2 + ∂xφ2

]
dv dx

+
1

ε

∫
(u1 − φ1)∂xφε dx

+

∫
(φ1 − φε)

(
∂tφ1 + φ1∂xu1 + u1∂xu1 + ∂3xxxφ1 + ∂xu2 − ∂xφ2)

)
dx

−
∫
(u1 − φ1)∂xφ2 −

∫
φ1u1∂xu1 dx−

1

2

∫
φ21∂xu1

−
∫
fε|v − u1 − εu2|2∂xu1 dv dx−

1

2
ε

∫
|∂xφε − ∂xφ1 − ε∂xφ2|2∂xu1 dx

− 1

2

∫
(φε − φ1 − εφ2)2∂xu1 dx

+O(
√
ε)
]
ds.

We impose the following cancellations (to kill all singular terms):
u1 − φ1 = 0,

∂tu1 + u1∂xu1 − ∂xu2 + ∂xφ2 = 0,

∂tφ1 + φ1∂xu1 + u1∂xu1 + ∂3xxxφ1 + ∂xu2 − ∂xφ2 = 0.

(2.35)

These are consequences of the identity (2.22). Using the Lipschitz bound on u1
we end up with:

Hε(t) ≤ Hε(0) +
∫ t

0

(C1Hε(t) + C2

√
ε) ds, (2.36)

which then yields the claimed Gronwall type bound (2.25). The proof is conse-
quently complete.

3. From the Vlasov-Poisson equation to the Zakharov-Kuznetsov
equation

We perform the analysis in 3D, but this can also be done in 2D, in an almost
similar way.



18 D. Han-Kwan

We study the behaviour, as ε→ 0, of the solutions to the following equation
(for (x, v) ∈ T3 × R3):

ε ∂tfε − ∂x1
fε + ε v · ∇xfε +

(
Eε +

v ∧ e1√
ε

)
· ∇vfε = 0,

Eε = −∇xφε,

− ε2∆xφε + eεφε =

∫
R3

fε dv,

fε,|t=0 = fε,0.

(3.1)

3.1. Preliminaries. This system possesses an energy, which is conserved, at least
formally:

Eε(t) :=
1

2

∫
fε|v|2 dv dx

+
1

2
ε

∫
|∇xφε|2 dx+

1

ε2

∫
(eεφε (εφε − 1) + 1) dx,

(3.2)

Note that the third term of this energy has a L logL structure:

1

ε2

∫
(eεφε (εφε − 1) + 1) dx =

1

ε2

∫
(eεφε log(eεφε/e0)− eεφε + e0) dx.

We have the following global existence theorem, which can be adapted from
the work of Bouchut [9]:

Theorem 4. Let ε > 0. Let fε,0 ∈ L1 ∩L∞(T3×R3) be a non-negative function
such that:

Eε(0) :=
1

2

∫
fε,0|v|2 dv dx

+
1

2
ε

∫
|∇xφε,0|2 dx+

1

ε2

∫
(eεφε,0 (εφε,0 − 1) + 1) dx < +∞,

(3.3)

where the initial electric potential φε,0 is given by the elliptic equation:

−ε2∆xφε,0 + eεφε,0 =

∫
R3

fε,0 dv.

We also assume that: ∫
fε,0 dv dx = 1.

Then there exists a non-negative global weak solution fε ∈ L∞t (L1∩L∞(T3×R3))
to (3.1), such that:

∀t ≥ t′, Eε(t) ≤ Eε(t′), (3.4)

and such that the following conservation laws for (ρε :=
∫
fε dv, Jε :=

∫
fεv dv)

are satisfied:

∂tρε −
1

ε
∂x1

ρε +∇x · Jε = 0, (3.5)
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∂tJε −
1

ε
∂x1Jε +∇x :

(∫
v ⊗ vfε dv

)
=

1

ε3/2
Jε ∧ e1

− 1

ε
∇x(eεφε) + ε∇x : (∇xVε ⊗∇xVε)−

ε

2
∇x|∇xVε|2. (3.6)

Let us now turn to the Cauchy problem for the ZK equation, that we recall
now:

∂tφ1 + φ1∂xφ1 + ∂x1
∆φ1 = 0. (3.7)

The only result in 3D we are aware of for this equation concerns the case of the
whole space R3 (for results in 2D, we refer to [19,34]): in [35], Linares and Saut
proved that ZK is locally well-posed in Hs(R3), for s > 9/8, and more recently
in [39], Ribaud and Vento showed that it is well-posed for s > 1. Their proofs
are based on dispersive effects and can not be directly applied to the case of the
torus T3. Using standard methods, we can nevertheless prove the easy theorem:

Theorem 5. The ZK equation is locally well-posed in Hs(T3) for s > 5/2.

This will be sufficient for our needs.

3.2. Rigorous convergence result. Contrary to the 1D case, we will not present
the formal analysis allowing to guess that the limit equation is ZK. The principle
is indeed identical, but the computations become quite lengthy. Let us refer to
[29] for that point.

We state directly the theorem asserting the convergence to ZK:

Theorem 6. Let (fε,0)ε∈(0,1) be a family of non-negative initial data satisfying
the assumptions of Theorem 4 and such that there exists C > 0 with:

Eε(0) ≤ C, ∀ε ∈ (0, 1). (3.8)

We denote by (fε)ε∈(0,1) a sequence of global weak solutions to (3.1) given by
Theorem 4. Let Hε be the relative entropy defined by the functional:

Hε(t) :=
1

2

∫
fε

[
|v1 − u(1)1 − εu

(2)
1 |2

+ |v2 −
√
εu

(1)
2 − εu

(2)
2 |2 + |v3 −

√
εu

(1)
3 − εu

(2)
3 |2

]
dv dx

+
1

2
ε

∫
|∇xφε −∇xφ1 − ε∇xφ2 − ε2∇xφ3|2 dx

+
1

ε2

∫ (
eεφε log(eε(φε)/eε(φ1+εφ2+ε

2φ3))− eεφε + eε(φ1+εφ2+ε
2φ3)

)
dx,

(3.9)
where

(φ1, u
(1)
1 , u

(1)
2 , u

(1)
3 , u

(2)
1 , u

(2)
2 , u

(2)
3 , φ2, φ3)

∈ [C([0, T0[, H
s+2(T3))]2 × [C([0, T0[, H

s+1(T3))]2 × [C([0, T0[, H
s(T3))]5
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(with s > 3/2 + 1, T0 > 0) satisfy the following system on [0, T0[:

2∂tφ1 + 2φ1∂xφ1 + ∂x1
(∆+∆⊥)φ1 = 0,

u
(1)
1 = φ1, u

(1)
2 = −∂x3φ1, u

(1)
3 = ∂x2φ1,

φ2 = ∂2x1x1
φ1,

u
(2)
2 = ∂2x2x2

φ1, u
(2)
3 = ∂2x3x3

φ1,

∂x1
u
(2)
1 = ∂tu1 + u1∂xu1 + ∂3x1x1x1

φ1,

∂x1φ3 = −∂tφ2 − ∂x1(u
(2)
1 φ1)− u(1)1 ∂x1φ2 − u

(1)
2 ∂x2φ2 + u

(1)
3 ∂x3φ2.

(3.10)

Then there exist C1, C2 > 0, such that for all ε ∈ (0, 1),

∀t ∈ [0, T0[, Hε(t) ≤
∫ t

0

(C1Hε(s) ds+ C2

√
ε) ds. (3.11)

Assuming in addition that there exists C3 such that for any ε ∈ (0, 1):

Hε(0) ≤ C3

√
ε, (3.12)

then we obtain for any ε ∈ (0, 1):

∀t ∈ [0, T0[, Hε(t) ≤ C3e
C1t
√
ε+ C2

eC1t − 1

C1

√
ε. (3.13)

In this theorem, we need a large number of correctors in the relative entropy,
precisely because of the nonlinear exponential term in the Poisson equation
(compare with the case of Theorem 3, where this term is linearized). In order to
get functions satisfying (3.10), we can proceed as follows:

– The existence of φ1 is ensured by Theorem 5 (actually the first equation of
(3.10) is slightly different from (3.7), but we can come down to (3.7) by using
some standard change of variables, see for instance [35]).

– We observe that the six correctors (u
(1)
2 , u

(1)
3 , u

(2)
1 , u

(2)
2 , u

(2)
3 , φ2) have their

value which is uniquely determined (contrary to the 1D case). We accordingly
set: 

u
(1)
1 = φ1, u

(1)
2 = −∂x3

φ1, u
(1)
3 = ∂x2

φ1,

φ2 = ∂2x1x1
φ1,

u
(2)
2 = ∂2x2x2

φ1, u
(2)
3 = ∂2x3x3

φ1,

∂x1u
(2)
1 = ∂tu1 + u1∂xu1 + ∂3x1x1x1

φ1, .

– Finally, φ3 is a high order corrector whose value is imposed by the last equa-
tion of (3.10).

Remark 4. Note that a global well-posedness result for ZK in T3 would yield
global in time estimates (that is T0 = +∞) in this theorem, which would be
significant for logarithmically growing times, as for Theorem 3.
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Remark 5. From (3.13), we deduce that:

1

ε2

∫ (
eεφε log(eε(φε)/eε(φ1+εφ2+ε

2φ3))− eεφε + eε(φ1+εφ2+ε
2φ3)

)
dx

≤ C3e
C1t
√
ε+ C2

eC1t − 1

C1

√
ε. (3.14)

Following the terminology in the Boltzmann literature (see for instance the book
[41]), this roughly means that eεφε “converges entropically” to eε(φ1+εφ2+ε

2φ3).
From the elementary inequality (3.17) (which will be given later), we can also

deduce the control:

1

ε2

∫ (
e

1
2 εφε − e 1

2 ε(φ1+εφ2+ε
2φ3)

)2
dx ≤ C3e

C1t
√
ε+ C2

eC1t − 1

C1

√
ε. (3.15)

We have as before the corollary:

Corollary 2. Making the same assumptions as in the previous theorem, we ob-
tain the weak convergences:{

ρε ⇀ε→0 1 in L∞t M1 weak-*,

Jε ⇀ε→0 (φ1, 0, 0) in L∞t M1 weak-*.
(3.16)

Up to some obvious modifications, the proof of Corollary 2 is similar to that
of Corollary 1, and therefore we omit it.

3.3. Proof of Theorem 6. Relying on the fact the energy Eε(t) is a non-increasing
function of time (and that Hε is built as a modulation of the energy), we have
for all t ∈ [0, T0[ and all ε ∈ (0, 1):

Hε(t) ≤ Hε(0) +
∫ t

0

∫
∂t

[
fε

(
1

2
|u(1)1 + εu

(2)
1 |2 − v1 (u

(1)
1 + εu

(2)
1 )

)]
dv dx ds

+

∫ t

0

∫
∂t

[
fε

(
1

2
|
√
εu

(1)
2 + εu

(2)
2 |2 − v2 (

√
εu

(1)
2 + εu

(2)
2 )

)]
dv dx ds

+

∫ t

0

∫
∂t

[
fε

(
1

2
|
√
εu

(1)
3 + εu

(2)
3 |2 − v3 (

√
εu

(1)
3 + εu

(2)
3 )

)]
dv dx ds

+ ε

∫ t

0

∫
∂t

[
1

2
|∇xφ1 + ε∇xφ2|2 −∇xφε · (∇xφ1 + ε∇xφ2)

]
dx ds

+
1

ε2

∫ t

0

∫
∂t

[
eεφε log(1/eε(φ1+εφ2+ε

2φ3)) + eε(φ1+εφ2+ε
2φ3)

]
dx ds

:= Hε(0) +
∫ t

0

(I11 + I21 + I31 + I2 + I3) ds.
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The general strategy in the proof will be to keep (without making approxi-
mation) all dangerous modulated terms of the form

εα
∫
fε

 u
(1)
1 + εu

(2)
1 − v1√

εu
(1)
2 + εu

(2)
2 − v2√

εu
(1)
3 + εu

(2)
3 − v3

 [...] dv dx

and

εα
∫

(−eεφε + eε(φ1+εφ2+ε
2φ3))[...] dx,

where [...] contains some expression independent of ε, as soon as α ≤ 0. Then
(3.10) is precisely designed so that all terms exactly vanish in the end.

On the contrary, for α > 0, these terms will be of order εα (and thus small).
For the first type of terms, this can be seen with the same argument as in the
proof of theorem 3, namely the uniform (in ε) bounds on the L1 norm of ρε and
Jε. For the second type of terms, one has to use the Poisson equation satisfied by
φε and use the bound on the electric energy. Indeed, given some smooth function
Ψ , we can write:

εα
∫
eεφεΨ dx = εα

∫
ε2∆φεΨ dx+ εα

∫
ρεΨ dx.

The second term is clearly of order εα, using the uniform L1 bound on ρε. On
the other hand, by integration by parts, we have for the first term

εα
∫
ε2∆φεΨ dx = εα+2

∫
∇φε · ∇Ψ dx,

which is of order εα+1 using the uniform bound obtained thanks to the conser-
vation of energy:

ε

∫
|∇φε|2 dx ≤ Eε(0) ≤ C.

Finally any term like εα
∫
eε(φ1+εφ2+ε

2φ3)[...] dx is clearly of order εα.
We start by studying separately I11 + I21 + I31 , I2 and I3. All computations are

justified using only the local conservation laws (3.5) and (3.6).

Study of I11 + I21 + I31 .



From Vlasov-Poisson to KdV and ZK 23

With similar computations as in the proof of Theorem 3, we obtain the iden-
tity

I11 + I21 + I31 =

1

ε

∫
fε

 u
(1)
1 + εu

(2)
1 − v1√

εu
(1)
2 + εu

(2)
2 − v2√

εu
(1)
3 + εu

(2)
3 − v3

 ·
−∂x1

u
(1)
1 + ∂x1

φ1
−u(1)3 + ∂x2φ1
u
(1)
2 + ∂x3

φ1

 dv dx

−
∫

1

ε
ρεu

(1) · ∇xφ1 dx−
∫
ρεu

(2) · ∇xφ1 dx+

∫
1

ε
Jε · ∇xφ1 dx

+
1√
ε

∫
fε

(√
εu

(1)
2 + εu

(2)
2 − v2√

εu
(1)
3 + εu

(2)
3 − v3

)
·

(
−u(2)3 − ∂x1u

(1)
2

u
(2)
2 − ∂x1

u
(1)
3

)
dv dx

+

∫
fε

 u
(1)
1 + εu

(2)
1 − v1√

εu
(1)
2 + εu

(2)
2 − v2√

εu
(1)
3 + εu

(2)
3 − v3

 ·
∂tu

(1)
1 + u

(1)
1 ∂x1

u
(1)
1 − ∂x1

u
(1)
2 + ∂x1

φ2
−∂x1

u
(2)
2 + ∂x2

φ2
−∂x1u

(2)
3 + ∂x3φ2

 dv dx

+

∫
Jε · ∇xφ2 dx−

∫
ρεu

(1) · ∇xφ2 dx− ε
∫
ρεu

(2) · ∇xφ2 dx

−
∫
fε(u

(1)
1 + εu

(2)
1 − v1)2∂xu

(1)
1 dx

−
∫

1

ε
ρεEε · u(1) dx−

∫
ρεEε · u(2) dx

+O(ε).

In this equation, O(ε) is as usual a notation for all terms that can bounded by
Cε, where C is a positive constant. We also denote here:

u(1) := (u
(1)
1 ,
√
εu

(1)
2 ,
√
εu

(1)
2 ) and u(2) := (u

(2)
1 , u

(2)
2 , u

(2)
2 ).

We observe that we can write:

−
∫

1

ε
ρεEε · u(1) dx−

∫
1

ε
ρεu

(1) · ∇xφ1 dx−
∫
ρεu

(1) · ∇xφ2 dx

= −1

ε

∫
ρεu1 · (∇xφ1 + ε∇xφ2 −∇xφε).

Study of I2.
We obtain:

I2 = ε

∫
∂t(∇xφ1+ε∇xφ2+ε2∇xφ3) · (−∇xφε+∇xφ1+ε∇xφ2+ε2∇xφ3) dx

− ε
∫
∂t∇xφε · (∇xφ1 + ε∇xφ2 + ε2∇xφ3) dx.
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We have the easy bound:

ε

∣∣∣∣∫ ∂t(∇xφ1 + ε∇xφ2 + ε2∇xφ3) · (−∇xφε +∇xφ1 + ε∇xφ2 + ε2∇xφ3) dx
∣∣∣∣

≤ C
[
ε

∫
(∂t(∇xφ1 + ε∇xφ2 + ε2∇xφ3))2 dx+ ε

∫
(−∂xφε + ∂xφ1 + ε∂xφ2)

2 dx

]
≤ O(ε) + CHε(t).

Study of I3.
We can compute:

I3 =
1

ε

∫
(−eεφε + eε(φ1+εφ2+ε

2φ3))∂t(φ1 + εφ2 + ε2φ3) dx

− 1

ε

∫
∂t(e

εφε)(φ1 + εφ2 + ε2φ3) dx

= I13 + I23 .

The first term can be recast as follows:

I13 =
1

ε

∫
(−eεφε + eε(φ1+εφ2+ε

2φ3))∂tφ1 dx+

∫
(−eεφε + eε(φ1+εφ2+ε

2φ3))∂tφ2 dx

+ε

∫
(−eεφε + eε(φ1+εφ2+ε

2φ3))∂tφ3.

For the second one, we use the Poisson equation (with a time derivative) and
the conservation of charge in shifted variables, that we recall below: ∂t(e

εφε) = ε2∆∂tφε + ∂tρε,

1

ε
∂tρε =

1

ε2
∂x1

ρε −
1

ε
∇x · Jε,

to obtain:

I23 = − 1

ε2

∫
∂x1

ρε(φ1 + εφ2 + ε2φ3) dx

+
1

ε

∫
∇x · Jεφ1 dx+

∫
∇x · Jεφ2 dx+ ε

∫
∇x · Jε φ3 dx

− ε
∫
∂t∆φε(φ1 + εφ2 + ε2φ3).

As in the proof of Theorem 3, every term in I23 but the first one gets simplified
with some other ones obtained in I1 and I2.

Study of the remaining significant terms.
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There remain to study the following potentially harmful terms:

K1 := −
∫
ρεu

(2) · ∇x(φ1 + εφ2) dx, K2 := −
∫
ρεEε · u(2) dx,

K3 := −1

ε

∫
ρεu

(1) · (∇xφ1 + ε∇xφ2 −∇xφε) dx,

K4 := − 1

ε2

∫
∂x1

ρε(φ1 + εφ2 + ε2φ3) dx,

K5 :=
1

ε

∫
(−eεφε + eε(φ1+εφ2+ε

2φ3))∂tφ1 dx.

K6 :=

∫
(−eεφε + eε(φ1+εφ2+ε

2φ3))∂tφ2 dx.

We start with K1 +K2, using the Poisson equation:

K1 +K2 = −
∫
eεφεu(2) · ∇x(φ1 + εφ2 − φε) dx

+ ε2
∫
∆φεu

(2) · (∇xφ1 + ε∇xφ2 −∇xφε) dx.

= L1 + L2.

We have:

L1 = −
∫
eεφεu(2) · ∇xφ1 dx− ε

∫
eεφεu(2) · ∇xφ2 dx

−1

ε

∫
eεφε∇x · u(2) dx.

For L2, we have

L2 = ε2
∫
∆φεu

(2) · (∇xφ1 + ε∇xφ2) dx− ε2
∫
∆φεu

(2) · ∇xφε dx

:= L1
2 + L2

2.

By integration by parts, we get:

|L1
2| =

∣∣∣∣ε2 ∫ ∇φε · u(2)(∆φ1 + ε∆φ2) dx

∣∣∣∣
≤ C

(
ε2
∫
|∇φε|2 dx+ Cε

)
≤ C(εEε(t) + Cε) ≤ Cε.

Note here that we have used the Lipschitz bound on the second derivative of φ1
and φ2.

For L2
2, we rely on the usual trick to write:

L2
2 = −1

2
ε2
∫
∇x|∇xφε|2 · u(2) dx

=
1

2
ε2
∫
|∇xφε|2∇x · u(2) dx,
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from which we deduce that
|L2

2| ≤ Cε.
Using the Poisson equation for K3:

K3 = −1

ε

∫
eεφεu(1) · (∇xφ1 + ε∇xφ2 −∇xφε) dx

+

∫
ε∆φεu

(1) · (∇xφ1 + ε∇xφ2 −∇xφε) dx

:= K1
3 +K2

3 .

Concerning the first term, we write the decomposition:

K1
3 = −1

ε

∫
eεφεu(1) · ∇xφ1 dx

−
∫
eεφεu(1) · ∇xφ2 dx+

1

ε

∫
eεφεu(1) · ∇xφε dx

:= J1 + J2 + J3.

We start by the study of J1:

J1 =
1

ε

∫ (
eε(φ1+εφ2+ε

2φ3) − eεφε

)
u
(1)
1 ∂x1

φ1 dx

− 1

ε

∫
eε(φ1−εφ2)u

(1)
1 ∂x1

φ1 dx−
1

ε

∫
eεφε(u(1) − u(1)1 e1) · ∇xφ1 dx.

Clearly, we have (for instance using a Taylor inequality):

−1

ε

∫
eε(φ1−εφ2)u

(1)
1 ∂x1

φ1 dx = −1

ε

∫
u
(1)
1 ∂x1

φ1 dx+

∫
φ1u

(1)
1 ∂x1

φ1 dx+O(ε).

In the end, we will take u(1)1 = φ1, so the terms of this latest expression which
are of order O(1/ε) and O(1) are exactly equal to 0.

For J2, it is sufficient to write:

J2 = −
∫
eεφεu

(1)
1 ∂x1

φ2 dx−
∫
eεφε(u(1) − u(1)1 e1) · ∇xφ2 dx.

We decompose the last term in the following way

J3 =
1

ε

∫
eεφεφ1∂x1φε

+
1

ε

∫
eεφε(u

(1)
1 − φ1)∂x1

φε

+
1

ε

∫
eεφε(u(1) − u(1)1 e1) · ∇xφε.

The first term could be dangerous, but will disappear using a term coming
from a term of K4 (first term of K1

4 below). The second one will be equal to 0

since we take u(1)1 = φ1.
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Gathering the pieces together, we finally obtain:

1

ε

∫
eεφε(u(1) − u(1)1 e1) · ∇x(φε − φ1 − εφ2) =

− 1

ε3/2

∫
eεφε(∂x2

u
(1)
2 + ∂x3

u
(1)
3 ) dx

− 1√
ε

∫
eεφε

(
u
(1)
2 ∂x2

φ1 + u
(1)
3 ∂x3

φ1

)
dx

−
√
ε

∫
eεφε

(
u
(1)
2 ∂x2

φ2 + u
(1)
3 ∂x3

φ2

)
dx.

Let us now turn to the treatment of K2
3 :

K2
3 =

∫
ε∆φεu

(1) · (∇xφ1 + ε∇xφ2) dx− ε/2
∫
∇x|∇xφε|2 · u(1) dx.

This term is treated exactly as L2, but we have to be careful since it is singular
in ε. Here, rather than bounding by the energy, we shall rely on a bound by the
modulated energy. We have

ε/2

∫
∇x|∇xφε|2 · u(1) dx

= −ε/2
∫
|∇xφε|2∇x · u(1) dx

− ε/2
∫
|∇xφε −∇xφ1 − ε∇xφ2 − ε2∇xφ3|2∇x · u(1) dx

+ ε/2

∫
|∇xφ1 + ε∇xφ2 + ε2∇xφ3|2∇x · u(1) dx

− ε
∫
∇xφε · (∇xφ1 + ε∇xφ2 + ε2∇xφ3)∇x · u(1) dx.

We shall bound the very last term using the Cauchy-Schwarz inequality and
the various Lipschitz bounds:∣∣∣∣ε∫ ∇xφε · (∇xφ1 + ε∇xφ2 + ε2∇xφ3)∇x · u(1) dx

∣∣∣∣
≤ C
√
ε

√
ε

∫
|∇xφε|2 dx ≤ C

√
εEε(t) ≤ C

√
ε.

Therefore we obtain:

|K2
3 | ≤ CHε(t) + C

√
ε.
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Finally, concerning K4 we get:

K4 =
1

ε2

∫
ρε(∂x1φ1 + ε∂x1φ2 + ε2∂x1φ3) dx

=
1

ε2

∫
eεφε(∂x1

φ1 + ε∂x1
φ2 + ε2∂x1

φ3) dx

−
∫
∆φε(∂x1φ1 + ε∂x1φ2 + ε2∂x1φ3) dx

:= K1
4 +K2

4 .

The first term can be decomposed as:

K1
4 = −1

ε

∫
∂x1

φεe
εφεφ1 dx

+
1

ε

∫
eεφε∂x1

φ2 dx

+

∫
eεφε∂x1

φ3 dx.

The second one can be recast as:

K2
4 = −

∫
φε∆∂x1

φ1 dx+O(
√
ε).

We shall focus our attention on the important term:

L := −
∫
φε∆∂x1

φ1 dx

= −1

ε

∫
eεφε∆∂x1

φ1 dx+
1

ε

∫
(eεφε − εφε)∆∂x1

φ1 dx.

We have the following technical result, allowing to consider the second term
above as an error term:

Lemma 1. There exists C > 0 such that for any ε ∈ (0, 1):

1

ε

∣∣∣∣∫ (eεφε − εφε)∆∂x1
φ1 dx

∣∣∣∣ ≤ C√ε.
Proof (Proof of Lemma 1).

The naive idea would be to use the Taylor expansion

ex ∼0 1 + x+
1

2
x2.

but we cannot say that ε‖φε‖∞ � 1. (Even worse, we do not have any L2 control
on φε.) Instead, we will only rely on the bounds given by the conservation of
energy. The classical inequality (valid for x, y > 0) will be very useful:

(
√
x−√y)2 ≤ x log(x/y)− x+ y. (3.17)

We shall write the decomposition
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1

ε

∫
(eεφε − εφε)∆∂x1

φ1 dx =

1

ε

∫
(eεφε − 2e

1
2 εφε)∆∂x1φ1 dx

+
1

ε

∫
(e

1
2 εφε − 1

2
εφε)2∆∂x1

φ1 dx.

We first recast the fist term as follows:

1

ε

∫
(eεφε − 2e

1
2 εφε)∆∂x1

φ1 dx =
1

ε

∫
(eεφε − 2e

1
2 εφε + 1)∆∂x1

φ1 dx

=
1

ε

∫
(e

1
2 εφε − 1)2∆∂x1

φ1 dx.

Using (3.17) and the Lipschitz bound on the second order derivative of φ1,
we obtain:

1

ε

∫
(e

1
2 εφε − 1)2∆∂x1φ1 dx ≤ Cε

∫
1

ε2
(eεφε(εφε − 1)− 1) dx

≤ εEε(t)
≤ εEε(0)
≤ Cε.

For the second term, we have by integration by parts:

1

ε

∫
(e

1
2 εφε − 1

2
εφε)2∆∂x1

φ1 dx = −
∫
∇xφε(e

1
2 εφε − 1) · ∇x∂x1

φ1 dx.

Then we write, using |ab| ≤ 1
2 (λa

2 + 1
λb

2), with α a parameter to be fixed:

∣∣∣∣∫ ∇xφε(e 1
2 εφε − 1) · ∇∂x1

φ1 dx

∣∣∣∣
≤ Cεα−1ε

∫
|∇xφε|2 + Cε−α+2

∫
1

ε2
(eεφε(εφε − 1) + 1) dx.

To optimize, it is clear that we should take α = 3/2. Thus, relying on the uniform
bound given by the energy, we get:∣∣∣∣1ε

∫ (
e

1
2 εφε − 1

2
φε

)
2∆∂x1

φ1 dx

∣∣∣∣ ≤ C√ε.
The proof is therefore complete.
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Conclusion.
Finally, we impose all cancellations for the terms

εα
∫
fε

 u
(1)
1 + εu

(2)
1 − v1√

εu
(1)
2 + εu

(2)
2 − v2√

εu
(1)
3 + εu

(2)
3 − v3

 [...] dvdx

for α = −1,−1/2, 0 and

εβ
∫
(−eεφε + eε(φ1+εφ2+ε

2φ3))[...] dx

for β = −3/2,−1,−1/2, 0, which precisely means that we impose:

− ∂x1
u
(1)
1 + ∂x1

φ1 = 0,

− u(1)3 + ∂x2φ1 = 0,

u
(1)
2 + ∂x3

φ1 = 0,

− u(2)3 − ∂x1
u
(1)
2 = 0,

u
(2)
2 − ∂x1u

(1)
3 = 0,

∂tu
(1)
1 + u

(1)
1 ∂x1

u
(1)
1 − ∂x1

u
(1)
2 + ∂x1

φ2 = 0,

− ∂x1
u
(2)
2 + ∂x2

φ2 = 0,

− ∂x1u
(2)
3 + ∂x3φ2 = 0,

∂x2
u
(1)
2 + ∂x3

u
(1)
3 = 0,

∂tφ1 +∇x · u(2) + φ1∂x1
φ1 +∆∂x1

φ1 − ∂x1
φ2 = 0,

u
(1)
2 ∂x2

φ1 + u
(1)
3 ∂x3

φ1 = 0,

∂tφ2 + φ1∂x1φ2 + u
(2)
1 ∂x1φ1 + u

(2)
2 ∂x2φ1 + u

(2)
3 ∂x3

φ1 − ∂x1
φ3 = 0.

(3.18)

All these identities are exactly obtained as a consequence of (3.10).
We end up with:

Hε(t) ≤ Hε(0) +
∫ t

0

(C1Hε(t) + C2

√
ε) ds, (3.19)

and arguing as in the proof of Theorem 3, this is over.

4. Appendix A: From the Vlasov-Poisson equation to the
Kadomstev-Petviashvili II equation

Assuming a slow variation in the x2 direction, one may end up with the following
anisotropic long wave scaling for the Vlasov-Poisson system for ions. For simplic-
ity, we restrict here to the linearized Maxwell-Boltzmann law, but the same study
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can be performed for the full equations. The variables are t ≥ 0, x ∈ T2, v ∈ R2:

ε ∂tfε − ∂x1fε + ε v1∂x1fε + ε3/2v2∂x2fε + Eε · ∇vfε = 0,

E = (−∂x1
φε,−

√
ε∂x2

φε),

− ε2∂2x1x1
φε − ε3∂2x2x2

φε + εφε =

∫
R2

fε dv − 1,

f|t=0 = f0.

(4.1)

The scaled energy of this system is the following functional:

Eε(t) :=
1

2

∫
fε|v|2 dv dx

+
1

2
ε

∫
|∂x1

φε|2 dx+
1

2
ε2
∫
|∂x2

φε|2 dx+
1

2

∫
φ2ε dx.

(4.2)

We have the existence of global weak solutions, sharing the same properties
with those given in Theorem 1.

For the KP-II equation, that is

∂x1

(
∂tφ1 + φ1∂x1

φ1 + ∂3x1x1x1
φ1
)
+ ∂2x2x2

φ1 = 0, (4.3)

our reference is an article by Bourgain [12], in which is proved the following
theorem:

Theorem 7. The KP-II equation is globally well-posed in Hs(T2) for s ≥ 0.

Once again, we will only use this theorem for large values of s.
As for the other cases, we obtain the rigorous convergence to KP-II, which is

summarized in the following theorem:

Theorem 8. Let (fε,0)ε∈(0,1) be a family of non-negative initial data such that

‖fε,0‖L1∩L∞ < +∞,
∫
fε,0 dv dx = 1, (4.4)

and such that there exists C > 0 with:

Eε(0) ≤ C, ∀ε ∈ (0, 1). (4.5)

We denote by (fε)ε∈(0,1) a sequence of global weak solutions to (4.1). Let Hε
be the relative entropy defined by the functional:

Hε(t) :=
1

2

∫
fε

[
|v1 − u(1)1 − εu

(2)
1 |2 + |v2 −

√
εu

(1)
2 − ε3/2u

(2)
2 |2

]
dv dx

+
1

2
ε

∫
|∂x1

φε − ∂x1
φ1 − ε∂x1

φ2|2 dx+
1

2
ε2
∫
|∂x2

φε − ∂x2
φ1 − ε∂x2

φ2|2 dx

+
1

2

∫
(φε − φ1 − εφ2)2 dx,

(4.6)
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where (u1, u2, φ1, φ2) ∈ [C([0,+∞[, Hs+2(T2))]4 (with s > 2) satisfy the follow-
ing system: 

∂x1

(
2∂tφ1 + 3φ1∂x1

φ1 + ∂3x1x1x1
φ1
)
+ ∂2x2x2

φ1 = 0,

u
(1)
1 = φ1,

∂x1
u
(1)
2 = ∂x2

φ1,

∂x1
(u

(2)
1 − φ2) = ∂tφ1 + φ1∂x1

φ1.

(4.7)

Then there exist C1, C2 > 0, such that for all ε ∈ (0, 1),

Hε(t) ≤ Hε(0) +
∫ t

0

(C1Hε(s) ds+ C2

√
ε) ds. (4.8)

Assuming in addition that there exists C3 > 0 such that for any ε ∈ (0, 1),

Hε(0) ≤ C3

√
ε. (4.9)

Then we obtain for all ε ∈ (0, 1):

∀t ∈ [0,+∞[, Hε(t) ≤ C3e
C1t
√
ε+ C2

eC1t − 1

C1

√
ε, (4.10)

as well as the weak convergences:{
ρε ⇀ε→0 1 in L∞t M1 weak-*,

Jε ⇀ε→0 (φ1, 0) in L∞t M1 weak-*.
(4.11)

The proof of Theorem 8 follows from computations in the same spirit as the
previous ones, and therefore we leave it to the reader.

5. Appendix B: A KdV limit in the whole space R

All results stated in this paper are restricted to PDEs set in the torus for the
space variable. The reason is that in all cases, in the end, the first moment
ρε (charge density) has to weakly converge to the constant 1. This function is
obviously not integrable in the whole space, and the assumptions needed for our
results to hold are actually not consistent in the whole space case.

It is nevertheless possible to slightly adapt the KdV limit of Section 2 to
handle that case. Keeping the same notations, we shall rely on the fact that the
electric potential can be defined up to a constant, and use the following version
of the energy

Fε(t) :=
1

2

∫
R×R

fε|v|2 dv dx+
1

2
ε

∫
R
|∇xφε|2 dx+

1

2

∫
R×R

(
φε −

1

ε

)2

dx dx,

(5.1)
This means that φε ∈ 1

ε + L2(R) (instead of the more usual φε ∈ L2(R)).
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The Ansatz in that case for the formal computations now corresponds to the
following one: 

ρε = ερ1 +O(ε2),

φε =
1

ε
+ φ1 + εφ2 +O(ε2),

uε = u1 + εu2 +O(ε2).

(5.2)

In particular this means that we expect that ρε weakly converges to 0 (which is
of course integrable on R). The formal computations then remain the same. In
the end, we may obtain the same result as Theorem 3 except that we consider
the following relative entropy instead of (2.21):

Hε(t) :=
1

2

∫
R×R

fε|v − u1 − εu2|2 dv dx+
1

2
ε

∫
R
|∂xφε − ∂xφ1 − ε∂xφ2|2 dx

+
1

2

∫
R×R

(
φε −

1

ε
− φ1 − εφ2

)2

dx.

(5.3)
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