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Abstract
We study the large time behavior of small data solutions to the Vlasov-Navier-Stokes system on

R3 × R3. We prove that the kinetic distribution function concentrates in velocity to a Dirac mass
supported at 0, while the fluid velocity homogenizes to 0, both at a polynomial rate. The proof is
based on two steps, following the general strategy laid out in [20]: (1) the energy of the system decays
with polynomial rate, assuming a uniform control of the kinetic density, (2) a bootstrap argument
allows to obtain such a control. This last step requires a fine understanding of the structure of the
so-called Brinkman force, which follows from a family of new identities for the dissipation (and higher
versions of it) associated to the Vlasov-Navier-Stokes system.

1 Introduction
Consider the Vlasov-Navier-Stokes system set in R3 × R3:

∂tf + v · ∇xf + divv[f(u− v)] = 0, (1.1)
∂tu+ u · ∇u−∆u+∇p = jf − ρfu, (1.2)

divu = 0, (1.3)

where

ρf (t, x) :=
∫
R3
f(t, x, v) dv,

jf (t, x) :=
∫
R3
vf(t, x, v) dv.

This system aims at describing the dynamics of an aerosol, that is, loosely speaking, a cloud of fine
particles immersed in a (homogeneous, incompressible) fluid (e.g. the air); the kinetic distribution
function f(t, ·, ·) describes the density of the particles in phase space R3×R3, while the fluid is described
by its velocity field u(t, ·) and pressure scalar field p(t, ·). For the sake of readability, the equations are
written in dimensionless form; for a version with explicit physical parameters, we refer e.g. to [17]. The
forcing term in the Navier-Stokes equations, which accounts for the exchange of momentum between the
particles and the fluid is referred to as the Brinkman force. Several variants of the model are possible (to
account for more complex physics) but the Vlasov-Navier-Stokes system stands as an important prototype
to build on. Let us in particular emphasize that (1.1)–(1.2)–(1.3) can be (at least formally) derived from
first principle equations: in [5], Bernard, Desvillettes, Golse and Ricci proposed a program (similar to that
of Bardos, Golse and Levermore [4] for the derivation of incompressible Navier-Stokes from Boltzmann)
to derive the Vlasov-Navier-Stokes system from a system of multiphase Boltzmann equations describing
a biphase gas mixture. For another approach (based on fluid homogenization) leading to the derivation
of the Brinkman force, see [1, 12, 21, 22, 9, 14], see also [23, 25] in the inertialess regime. We also refer
to [7] or the introduction of [20] (and references therein) for other details on modelling issues and on the
mathematical context.
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We define the energy and the dissipation of the Vlasov-Navier-Stokes system as

E(t) := 1
2

∫
R3
|u(t, x)|2 dx+ 1

2

∫
R3×R3

f(t, x, v)|v|2 dv dx, (1.4)

D(t) :=
∫
R3×R3

f(t, x, v)|u(t, x)− v|2 dv dx+
∫
R3
|∇u(t, x)|2 dx. (1.5)

Formally, the following energy–dissipation identity holds:

d
dtE(t) + D(t) = 0. (1.6)

We consider global weak solutions to the Vlasov-Navier-Stokes system that satisfy an energy–dissipation
inequality as built in [6]1 (see also [8, 19] for more recent developments). Let us recall precisely this
notion.

Definition 1.1. We shall say that (f0, u0) is an admissible initial condition if

u0 ∈ L2
div(R3) = {U ∈ L2(R3), divU = 0}, (1.7)

0 ≤ f0 ∈ L1 ∩ L∞(R3 × R3), (1.8)
(x, v) 7→ f0(x, v)|v|2 ∈ L1(R3 × R3), (1.9)∫

R3×R3
f0 dv dx = 1. (1.10)

Definition 1.2. Consider an admissible initial data (u0, f0) in the sense of Definition 1.1. A global
weak solution of the Vlasov-Navier-Stokes system with initial condition (u0, f0) is a pair (u, f) with the
regularity

u ∈ L∞loc(R+; L2(R3)) ∩ L2
loc(R+; H1

div(R3)),
0 ≤ f ∈ L∞loc(R+; L1 ∩ L∞(R3 × R3)),

jf − ρfu ∈ L2
loc(R+; H−1(R3)),∫

R3×R3
f dv dx =

∫
R3×R3

f0 dv dx = 1,

with u being a Leray solution of (1.2) – (1.3) (with initial condition u|t=0 = u0) and f a renormalized
solution of (1.1) (with initial condition f |t=0 = f0), and such that the following energy–dissipation
inequality holds for almost all s ≥ 0 (including s = 0) and all t ≥ s,

E(t) +
∫ t

s

D(σ) dσ ≤ E(s). (1.11)

We aim in this paper at describing the long time behavior of small data solutions to the Vlasov-Navier-
Stokes system. This work can be seen as another part in the series of papers [15], [20]. In [15] long time
behavior is studied for the system set in a 2D rectangle with partly absorbing boundary conditions.
It is shown that under a geometric control condition (the so-called exit geometric condition), there
exist non-trivial smooth equilibria, and these equilibria are asymptotically stable under small localized
perturbations. In [20], long time behavior is studied for the system set on T3 ×R3 (i.e. periodic data in
the space variable). Let us discuss the later in more details in the next subsection.

1.1 The case of T3

In the paper [20], the question of long time behavior was tackled for the system set on T3 ×R3. On the
torus, a key object is the so-called modulated energy, as introduced by Choi and Kwon [11]:

E (t) := 1
2

∫
T3×R3

f(t, x, v)|v−〈jf (t, x)〉|2 dv dx+ 1
2

∫
T3
|u(t, x)−〈u(t)〉|2 dx+ 1

4 |〈jf (t)〉−〈u(t)〉|2, (1.12)

1As a matter of fact, [6] builds such a solution on T3 × R3, but the proof can be adapted to R3 × R3, following the
arguments explained in [19, Appendix A].
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where 〈·〉 stands for the spatial mean on T3.
Loosely speaking, the main result of [20] proves that under the condition

E (0) + ‖u0‖Ḣ1/2(T3) � 1,

the fluid velocity u homogenizes as t → +∞ to the constant value U0 := 〈u0+jf0 〉
2 , while the kinetic

distribution function f(t) concentrates in velocity to a Dirac distribution supported at U0. Moreover the
convergences are exponentially fast.

Two main ingredients are at work in the proof of this result.

1. Choi and Kwon proved in [11] that E decays exponentially fast provided that one ensures the global
control ‖ρf‖L∞(0,+∞;L∞(T3)) < +∞. This is based on the (formal) modulated energy–dissipation
law

d
dtE (t) + D(t) = 0. (1.13)

and the fact that the bound ‖ρf‖L∞(0,+∞;L∞(T3)) < +∞ provides the control

E (t) . D(t), ∀t ≥ 0,

yielding
E (t) . e−λtE (0), ∀t ≥ 0, (1.14)

for some λ > 0.

2. The second ingredient is a bootstrap analysis. Thanks to a straightening change of variables in
velocity inspired by Bardos and Degond [3], the global bound ‖ρf‖L∞(0,+∞;L∞(T3)) < +∞ follows
from an estimate bearing on the Lipschitz semi-norm of u, namely∫ +∞

0
‖∇xu‖L∞ dt� 1. (1.15)

In [20], it is shown that this control can be ensured for a class of data close to equilibrium, precisely
in the sense that E (0) + ‖u0‖Ḣ1/2(T3) � 1.

The main idea is that higher order parabolic regularity estimates for the Navier-Stokes equations
(possibly with some mild polynomial growth in time) can be interpolated with the modulated
energy decay estimate (1.14) to produce the estimate (1.15). Indeed, the exponential decay of E
yields the required integrability in time, while the smallness of E (0) yields the required smallness.

1.2 Main result
We focus in this paper on the case of R3 × R3. We shall work in a small data regime, namely we
loosely speaking require that the initial kinetic distribution and fluid velocity are small in the sense that
‖u0‖Ḣ1/2(R3) + ‖f0‖L1

v(R3;L∞x (R3)) � 1, and that the initial energy is small as well, that is E(0)� 1.
Let us start by recalling some notations for moments from [20].

Definition 1.3. We say that an initial condition satisfies the pointwise decay assumption of order q > 0
if

(x, v) 7−→ (1 + |v|q)f0(x, v) ∈ L∞(R3 × R3),

and in that case we denote
Nq(f0) := sup

x∈R3,v∈R3
(1 + |v|q)f0(x, v).

Definition 1.4. For all α ≥ 0 and any measurable non-negative function f : R3 × R3 → R+, we set

mαf(t, x) :=
∫
R3

f|v|α dv,

Mαf(t) :=
∫
R3×R3

f|v|α dv dx.
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The main result of this paper is stated in the following theorem.

Theorem 1.1. There exists p0 > 3 such that, for all p ∈ (3, p0] and all α ∈ (0, 3/2), there exist δ > 0
and an onto nondecreasing function Ψ such that the following holds. Let (u0, f0) be an admissible initial
condition satisfying

u0 ∈ Z ∩B1
3,2(R3) ∩Bsr3,r(R3), Z := L1(R3) ∩H1(R3) ∩Bspp,p(R3), sp = 2− 2

p
, sr = 2− 2

r,
, r > 5/2,

Mαf0 +Nq(f0) < +∞, for α > 3, q > p+ 3.
(1.16)

If
Ψ(‖u0‖Z +Mαf0 +Nq(f0) + 1)E(0) ≤ 1, ‖f0‖L1

v(R3;L∞x (R3)) ≤ δ, (1.17)
then there exists a continuous function ϕα cancelling at 0, such that the global weak solution (u, f) with
initial condition (u0, f0) satisfies

E(t) ≤
ϕα(E(0) + ‖u0‖2

L1(R3))
(1 + t)α , ∀t ≥ 0. (1.18)

The notation Bsp,q(R3) stands for Besov spaces, for which we refer e.g. to [2, Chapter 3].

Remark 1.1. The uniqueness of the global weak solution follows from [18].

Remark 1.2. Note that as opposed to the torus case [20], a supplementary smallness condition on the
initial kinetic distribution function is required.

Remark 1.3. It is likely that as in [20], by relying on some instantaneous parabolic smoothing mechanism
for the Navier-Stokes equations, the higher regularity assumption on u0 in (1.16) can be partly dispensed
with; note that this would nevertheless at least still require u0 ∈ Ḣ1/2(R3) (with small norm). We have
made the choice to not dwell on this possible development, as we think it is not essential.

Remark 1.4. The decay in (1.18) does not imply that
√
E ∈ L1(0,+∞), which means that this does not

enter the abstract framework of [24, Theorem 1].

According to the next lemma (see e.g. [20, Lemma 1.1]), the energy E(t) allows to control the
Wasserstein distance W1 of f to the Dirac mass in velocity supported at 0 with density ρf (t).

Lemma 1.2. For all t ≥ 0,

W1 (f(t), ρf (t)⊗ δv=0) + ‖u(t)‖L2(R3) . (E(t))1/2. (1.19)

We therefore deduce

Corollary 1.3. With the same assumptions and notations as in Theorem 1.1, for all α ∈ (0, 3/4), for
all t ≥ 0,

W1 (f(t), ρf (t)⊗ δv=0) + ‖u(t)‖L2(R3) ≤

√
ϕ2α(E(0) + ‖u0‖2

L1(R3))

(1 + t)α . (1.20)

In other words, this result proves that the kinetic distribution function concentrates in velocity to a
Dirac mass supported at 0, while the fluid velocity homogenizes to 0. In particular this entails that the
trivial solution (0, 0) is Lyapunov unstable. This is in sharp contrast with the case of other Vlasov type
equations such as the Vlasov-Poisson (see e.g. [3]) or Vlasov-Maxwell (see e.g. [16]) systems.

Remark 1.5. By weak compactness, there exist a sequence of times (tn) going to infinity and an asymp-
totic profile ρ∞(x) as the weak limit of ρf (tn) as n → +∞. However, because of the slow polynomial
decay obtained in (1.18), we cannot apply [20, Proposition 3.5] which would prove the uniqueness of the
asymptotic profile and the convergence without requiring to take a subsequence.

Remark 1.6. Corollary 1.3 loosely speaking means that both the cloud and the fluid become asymptoti-
cally at rest. Obtaining a non-trivial dynamics, if possible, would require drastically different assumptions
on the initial conditions. Indeed, as soon as the initial energy E(0) is finite, the energy–dissipation in-
equality (1.11) implies that

∫ +∞
0 D(s) ds ≤ E(0), which formally implies that the fluid asymptotics must

be trivial.

4



Let (u, f) be a global weak solution associated to an initial condition (u0, f0) satisfying the assump-
tions of Theorem 1.1. We will follow the strategy outlined in the study of the torus case [20]. However
several important differences appear.

The first step of the proof will be to obtain the conditional large time decay of the energy, which is
the analog of the aforementioned result of Choi and Kwon [11] for the torus case. However, in R3, in the
absence of a Poincaré inequality (for the Lebesgue measure), we cannot expect exponential decay. At
best, we can hope for a polynomial decay similar to that obtained for solutions to the Stokes (or heat)
equation. We will show that we can indeed almost reach such an optimal rate, despite of the presence
of a forcing (the Brinkman force) in the Navier-Stokes equations.

To this end, we will adapt Wiegner’s method [30] for proving large time decay for the Navier-Stokes
equation with source, but with a specific analysis of the influence of the source in the precise context of
the Vlasov-Navier-Stokes system (indeed the forcing is far from decaying fast enough to apply directly
the abstract results of [30]). This takes into account the fine structure of the system. Loosely speaking,
we will take advantage of the tight links between the Brinkman force and the dissipation D(t). As in the
torus case, (polynomial) decay is achieved up to an a priori control on the moment ρf . As a byproduct
of this analysis, we obtain that the dissipation somehow decays faster than the energy itself (roughly
speaking, a factor 1/t is gained). This latest observation will serve as a guiding line for the upcoming
analysis.

The second step is the bootstrap analysis, allowing to obtain the required control on ρf . As in the
torus case, a change of variables in velocity allows to reduce the problem to proving∫ +∞

0
‖∇xu‖L∞(R3) dt� 1.

As the decay of the energy is only polynomial, we cannot hope to give the exact same argument as in
the torus case, where exponential decay of the (modulated) energy, after interpolation, virtually allows
to provide any integrability in time. This interpolation will however still be useful to obtain smallness.

The idea is as follows. Recall that for the heat equation, it is well-known that derivatives of the
solution enjoy a better decay in time than the solution itself. With this perspective in mind, we shall
also prove that better decay estimates hold for derivatives in space of the solution to Navier-Stokes,
despite the forcing. This requires a fine understanding of the structure of the Brinkman force, in relation
with an appropriate notion of dissipation. This will lead to a family of new identities that account for
the better integrability of the dissipation and of higher order versions of it. We expect these identities
to prove useful as well in other contexts.

The paper is organized as follows. In Section 2, we show the polynomial decay of the energy, up
to a conditional bound on the density ρf . The remainder is dedicated to the proof of this bound with
the assumptions of Theorem 1.1. Section 3 provides preliminaries (mostly directly taken from [20]) for
a bootstrap analysis. In Section 4, the aforementioned key identities explaining higher decay of higher
dissipations are provided, which finally allow to carry out the bootstrap argument in Section 5.

Notation 1.1. In this paper we shall use at multiple times the notation A . B, which stands for the
statement: there exists a universal constant C > 0 such that A ≤ CB.

2 Conditional large time behavior on the whole space
The goal of this section is to show the following conditional result.

Theorem 2.1. Let T > 0 and assume that ‖ρf‖L∞(0,T ;L∞(R3)) < +∞. Then for all α ∈ (0, 3/2), there
exists a continuous function ϕ cancelling at 0 depending on ‖ρf‖L∞(0,T ;L∞(R3)) but independent of T such
that

E(t) ≤
ϕ(E(0) + ‖u0‖2

L1(R3))
(1 + t)α . (2.1)

We therefore obtain, up to the control of ρf , almost the same decay as for the Navier-Stokes without
source, that is loosely speaking the same as that of the heat equation on R3 (see [30]).
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Notation 2.1. In this section, abusing notations, ϕ will always stand for a function satisfying the same
properties as in the statement of Theorem 2.1, but may change from one line to another.

We shall rely on the Fourier-splitting method of Schonbeck [27, 28], developed by Wiegner [30] and
Schonbeck and Wiegner [29]. Note however that we cannot apply directly their abstract results bearing
on Navier-Stokes with a source, since this would require a strong decay on this source that we cannot
expect to ensure. As already mentioned in the introduction, we will rather rely on the fine algebraic
structure of the full Vlasov-Navier-Stokes system.

The Fourier-splitting method is a way to control from below the fluid dissipation by the fluid energy,
modulo several corrections, using a well-chosen (time dependent) splitting of the Fourier space.

Proof. Following [30], given a time-dependent cut-off function g(t), by Plancherel2, we can write∫
R3
|∇xu|2 dx =

∫
R3
|ξ|2|û|2 dξ

≥
∫
|ξ|≥g(t)

|ξ|2|û|2 dξ

≥ g2(t)‖u‖2
L2(R3) − g

2(t)
∫
|ξ|≤g(t)

|û|2 dξ.

On the other hand, we have∫
R3×R3

f |v − u|2 dv dx ≥ 1
2

∫
R3×R3

f |v|2 dv dx−
∫
R3
ρf |u|2 dx

≥ 1
2

∫
R3×R3

f |v|2 dv dx− ‖ρf‖L∞(0,T ;L∞(R3))‖u‖2
L2(R3).

Choose now C0 > 0 large enough so that
‖ρf‖L∞(0,T ;L∞(R3))

1 + C0
≤ 1/2. (2.2)

We will also ensure that for all t ∈ [0, T ],
g2(t)

1 + C0
≤ 1/2. (2.3)

A part of the fluid-kinetic dissipation term is then used in the following way:
g2(t)

1 + C0

∫
R3×R3

f |v − u|2 dv dx ≥ 1
2
g2(t)

1 + C0

∫
R3×R3

f |v|2 dv dx− g2(t)
‖ρf‖L∞(0,T ;L∞(R3))

1 + C0
‖u‖2

L2(R3).

We deduce the following bound from below for the dissipation:∫
R3
|∇xu|2 dx+

∫
R3×R3

f |v − u|2 dv dx

≥
(

1− g2(t)
1 + C0

)∫
R3×R3

f |v − u|2

+ 1
2
g2(t)

1 + C0

∫
R3×R3

f |v|2 dv dx+ g2(t)
[
1−
‖ρf‖L∞(0,T ;L∞(R3))

1 + C0

]
‖u‖2

L2(R3)

− g2(t)
∫
|ξ|≤g(t)

|û|2 dξ.

Thanks to (2.2)–(2.3), we get∫
R3
|∇xu|2 dx+

∫
R3×R3

f |v − u|2 dv dx ≥ 1
2

∫
R3×R3

f |v − u|2 + 1
2
g2(t)

1 + C0

[∫
R3×R3

f |v|2 dv dx+ ‖u‖2
L2(R3)

]
− g2(t)

∫
|ξ|≤g(t)

|û|2 dξ.

2Throughout the paper, we use the normalized version of the Fourier transform such that ‖û‖L2(R3) = ‖u‖L2(R3) for all
u ∈ L2(R3).
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We set g̃2(t) := 1
2
g2(t)
1+C0

. By the energy–dissipation inequality (1.11), we end up with the following key
inequality: for almost all s ≥ 0 and all s ≤ t ≤ T ,

E(t) +
∫ t

s

g̃2(τ)E(τ) dτ + 1
2

∫ t

s

∫
R3×R3

f |v − u|2 dv dxdτ

≤ E(s) +
∫ t

s

g2(τ)
∫
|ξ|≤g(τ)

|û|2 dξdτ.
(2.4)

We need to control the last term of the right-hand side of (2.4). To this end, as in [30] we use the fact
that u solves the Navier-Stokes equation with a source term. Let U0(t, x) be the solution to the heat
equation in R3 starting from u0 at t = 0, i.e.

∂tU0 −∆U0 = 0, U0|t=0 = u0.

(For later use, recall that since u0 ∈ L1(R3), U0 decays in L2(R3) like 1/t3/4.) Taking the Fourier
transform in (1.2), we obtain

∂tû+ |ξ|2û = −û · ∇u+ F̂ + ∇̂P , û|t=0 = û0

where F = jf − ρfu. By the Duhamel formula, this yields

û = Û0 +
∫ t

0

(
−û · ∇u+ F̂

)
e(s−t)|ξ|2 ds+

∫ t

0
∇̂Pe(s−t)|ξ|2 ds. (2.5)

Thanks to the incompressibility of u, we must have

∇̂P =
ξ ·
(
−û · ∇u+ F̂

)
|ξ|2

ξ,

so that for all ξ ∈ R3,
|∇̂P (ξ)| ≤ |(−û · ∇u+ F̂ )(ξ)|.

Integrating (2.5) with respect to ξ on the ball {|ξ| ≤ g(τ)}, the outcome is∫
|ξ|≤g(τ)

|û(τ)|2 dξ . ‖U0(τ)‖2
L2(R3) +

∫
|ξ|≤g(τ)

(∫ t

0

∣∣∣û · ∇u∣∣∣+
∣∣∣F̂ ∣∣∣ dτ

)2

dξ.

Thanks to the incompressibility of u, we recall that we can write u · ∇u = div(u⊗ u), so that∫
|ξ|≤g(τ)

(∫ t

0

∣∣∣û · ∇u∣∣∣ dτ
)2

dξ .
∫
|ξ|≤g(τ)

|ξ|2
(∫ t

0

∣∣∣û⊗ u∣∣∣ (τ, ξ) dτ
)2

dξ

. g(τ)2+3
(∫ t

0
‖u⊗ u‖L1(R3) (τ) dτ

)2

.

Likewise, we obtain∫
|ξ|≤g(τ)

(∫ t

0

∣∣∣F̂ (τ, ξ)
∣∣∣ dτ

)2

dξ . g(τ)3
(∫ t

0
‖F‖L1(R3) (τ) dτ

)2

.

Therefore we have proved the estimate∫
|ξ|≤g(τ)

|û(τ)|2 dξ ≤ C
(
‖U0(τ)‖2

L2(R3) + g5(τ)
(∫ τ

0
‖u(s)‖2

L2(R3) ds
)2

+ g3(τ)
(∫ τ

0
‖(jf − ρfu)(s)‖L1(R3) ds

)2
)
.

(2.6)
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The first two terms in the right-hand side of (2.6) will be treated exactly as in Wiegner [30, pp. 307-308].
Only the last one is new. We write, thanks to Cauchy-Schwarz,∫ τ

0
‖(jf − ρfu)(s)‖L1(R3) ds ≤

∫ τ

0

(∫
R3×R3

f |v − u|2 dv dx
)1/2

ds, (2.7)

where we have used the normalization∫
R3×R3

f(t) dv dx =
∫
R3×R3

f0 dv dx = 1.

Now, we can use (2.4), (2.6) and (2.7) with a Gronwall-like argument (see [30]) that is summarized in
the following statement.

Lemma 2.2. Let y(t) satisfy the following differential inequality. For almost all s ≥ 0 and all s ≤ t ≤ T ,

y(t) +
∫ t

s

g̃2(τ)y(τ) dτ ≤ y(s) +
∫ t

s

β(τ) dτ.

Then for almost all t ∈ [0, T ],

y(t) ≤ y(0) exp
(
−
∫ t

0
g̃2(τ) dτ

)
+
∫ t

0
exp

(
−
∫ t

τ

g̃2(r) dr
)
β(τ) dτ.

Applying Lemma 2.2 with

y(t) = E(t),

β(τ) = −1
4

∫
R3×R3

f |v − u|2 dv dx+ Cg2(τ)‖U0(τ)‖2
L2(R3)

+ Cg7(τ)
(∫ τ

0
‖u(s)‖2

L2(R3) ds
)2

+ Cg5(τ)
(∫ τ

0
‖(jf − ρfu)(s)‖L1(R3) ds

)2
,

we end up with the key inequality

E(t) exp
(∫ t

0
g̃2(s) ds

)
+ 1

2

∫ t

0

(∫
R3×R3

f |v − u|2 dv dx
)

exp
(∫ τ

0
g̃2(r) dr

)
dτ

≤ E(0) + C
∫ t

0
g2(τ)‖U0(τ)‖2

L2(R3) exp
(∫ τ

0
g̃2(r) dr

)
dτ

+ C
∫ t

0
g7(τ)

(∫ τ

0
‖u(r)‖2

L2(R3) dr
)2

exp
(∫ τ

0
g̃2(r) dr

)
dτ

+ C
∫ t

0
g5(τ)

(∫ τ

0

(∫
R3×R3

f |v − u|2 dv dx
)1/2

dr
)2

exp
(∫ τ

0
g̃2(r) dr

)
dτ.

(2.8)

We are finally in position to choose an appropriate function g(t). We pick up, still following [30],

g̃2(t) = α

10 + t
⇐⇒ g2(t) = 2α(1 + C0)

10 + t
,

with α > 0 to be carefully determined. Unlike [30], we will always consider 1 < α < 3/2, so that (2.3) is
satisfied. One remarks that (2.2) can thus indeed be ensured, picking C0 large enough. By construction,
we have

exp
(∫ t

0
g̃2(s) ds

)
= (10 + t)α.
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Note that we have, as α < 3/2 (to ease readability, we shall not explicitly track down the dependence
with respect to E(0) + ‖u0‖2

L1(R3) in the rest of the proof),

E(0) +
∫ t

0
g2(τ)‖U0(τ)‖2

L2(R3) exp
(∫ τ

0
g̃2(r) dr

)
dτ . E(0) +

∫ t

0

‖u0‖2
L1(R3) + ‖u0‖2

L2(R3)

(1 + τ)1+3/2−α dτ

. 1.
(2.9)

We now explain the iteration procedure that allows to obtain (2.1) for values of α that are less than but
arbitrarily close to 3/2. Assume that on [0, T ],

E(t) . 1
(1 + t)β , (2.10)

with 0 ≤ β < 3/2. As by the energy–dissipation inequality, E(t) is bounded, we will be able to start
later with β = 0. For β < 1, we have∫ t

0
g7(τ)

(∫ τ

0
‖u(r)‖2

L2(R3) dr
)2

exp
(∫ τ

0
g̃2(r) dr

)
dτ .

∫ t

0
(1 + τ)α−2(β−1)−7/2dτ.

This is bounded by (1 + t)α−2β−1/2 if α− 2β− 3/2 > −1, or directly by a constant if α− 2β− 3/2 < −1.
For β > 1, a similar computation yields directly a bound by a constant (since α < 3/2). To summarize,
assuming (2.10), we have∫ t

0
g7(τ)

(∫ τ

0
‖u(r)‖2

L2(R3) dr
)2

exp
(∫ τ

0
g̃2(r) dr

)
dτ

. (1 + t)α−2β−1/2 if β < 1, α− 2β − 3/2 > −1,

. 1 if β < 1, α− 2β − 3/2 < −1,

. 1 if β > 1.

(2.11)

Let us assume as well that on [0, T ],∫ t

0

(∫
R3×R3

f |v − u|2 dv dx
)

(10 + τ)αdτ .
(10 + t)α
(1 + t)β . (2.12)

Remark that if (2.12) holds for some α, then it also holds for all α̃ ≥ α. If 2α − β − 3/2 > 0, by
Cauchy-Schwarz, there holds∫ t

0
g5(τ)

(∫ τ

0

(∫
R3×R3

f |v − u|2 dv dx
)1/2

dr
)2

exp
(∫ τ

0
g̃2(r) dr

)
dτ

.
∫ t

0
g5(τ)

(∫ τ

0

(∫
R3×R3

f |v − u|2 dv dx
)

(10 + r)α dr
)

×
(∫ τ

0

1
(10 + r)α dr

)
exp

(∫ τ

0
g̃2(r) dr

)
dτ

.
∫ t

0
(1 + τ)2α−β−5/2 dτ . (1 + t)2α−β−3/2.

Else, if 2α− β − 3/2 < 0, we have a bound by a constant. To summarize, assuming (2.12) we have∫ t

0
g5(τ)

(∫ τ

0

(∫
R3×R3

f |v − u|2 dv dx
)1/2

dr
)2

exp
(∫ τ

0
g̃2(r) dr

)
dτ

. (1 + t)2α−β−3/2 if 2α− β − 3/2 > 0,

. 1 if 2α− β − 3/2 < 0.

(2.13)

Now we argue by induction in order to increase the admissible values of β.
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Start with β = 0, and take α = 1. The a priori estimates (2.10) and (2.12) are indeed satisfied since
by the energy–dissipation inequality

E(t) +
∫ t

0

(∫
R3×R3

f |v − u|2 dv dx
)

dτ . 1,

so that ∫ t

0

(∫
R3×R3

f |v − u|2(10 + τ) dv dx
)

dτ . (10 + t).

Using (2.8) together with (2.9), (2.11) and (2.13), we obtain

(10 + t)E(t) +
∫ t

0

(∫
R3×R3

f |v − u|2 dv dx
)

(10 + τ)dτ . 1 + (1 + t)1−1/2 + (1 + t)2−3/2,

so that
E(t) + 1

(10 + t)

∫ t

0

(∫
R3×R3

f |v − u|2 dv dx
)

(10 + τ)dτ

.
1

(1 + t) + 1
(1 + t)1/2

.
1

(1 + t)1/2 ,

which means that (2.10) and (2.12) are satisfied for β = 1/2, α = 1.

Now we start again with β1 = 1/2 and α2 > 1 to be fixed later. We obtain (again thanks to (2.8)
together with (2.9), (2.11) and (2.13)) that

E(t) + 1
(10 + t)α1

∫ t

0

(∫
R3×R3

f |v − u|2 dv dx
)

(10 + τ)α2dτ .
1

(1 + t)α2
+ 1

(1 + t)β1+3/2−α2
.

As α2 can be taken arbitrarily close to 1, this yields the decay 1
(1+t)1− . For all ε� 1, we can thus find

α2 > 1 such that, denoting
β2 = 1− ε,

the controls (2.10) and (2.12) are satisfied for α = α2 and β = β2. Applying again the same procedure,
we deduce that for all α3 ≥ α2,

E(t) + 1
(10 + t)α2

∫ t

0

(∫
R3×R3

f |v − u|2 dv dx
)

(10 + τ)α3dτ .
1

(1 + t)α3
+ 1

(1 + t)β2+3/2−α3
,

which gives, taking α3 = β2+3/2
2 (1 + ε), a decay in 1

(1+t)β3 , for β3 = β2+3/2
2 (1 − ε), and thus (2.10)

and (2.12) are satisfied for β = β3 and α = α3.

Remark 2.1. The choice α3 = β2+3/2
2 may look better, but this yields some logarithmic factors in the

estimates; this is why we made this small modification with the factor (1+ε) (which can be anyway taken
arbitrarily close to 1).

This invites to define by induction, given βn for n ≥ 2,

αn+1 = βn + 3/2
2 (1 + ε) βn+1 = βn + 3/2

2 (1− ε),

and we get for all n ≥ 2, on [0, T ],

E(t) + 1
(10 + t)αn

∫ t

0

(∫
R3×R3

f |v − u|2 dv dx
)

(10 + τ)αndτ .
1

(1 + t)βn .
(2.14)
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Clearly, (βn)n≥2 is an increasing and bounded sequence. Therefore it converges and the limit is given
by

lim
n→+∞

βn = 3
2

1− ε
1 + ε

.

We deduce that (αn)n≥2 is converging as well, with

lim
n→+∞

αn = 3
2 .

As ε > 0 is arbitrary, from (2.14) for n large enough, this yields the claimed decay estimate (2.1).

We have actually also obtained in the course of the proof (see (2.14)) the following higher decay
estimate for the fluid-kinetic dissipation.

Lemma 2.3. Under the same assumptions and notations as Theorem 2.1, on [0, T ], for all α ∈ (0, 3/2)
and all δ ∈ (0, 1),∫ t

0

(∫
R3×R3

f |v − u|2 dv dx
)

(1 + τ)αdτ . ϕ(E(0) + ‖u0‖2
L1(R3))(1 + t)δ. (2.15)

This decay in time is better than expected in the sense that the decay of the energy of Theorem 2.1
is not sufficient to yield (2.15): loosely speaking there seems to be a gain of 1/τ , up to an arbitrarily
small polynomial growth in tδ in the estimate.

We can also remark that by a small modification of the above proof, we can obtain a similar higher
decay for the fluid dissipation.

Lemma 2.4. Under the same assumptions and notations as Theorem 2.1, on [0, T ], for all α ∈ (0, 3/2)
and all δ ∈ (0, 1), ∫ t

0

(∫
R3
|∇xu|2 dx

)
(1 + τ)αdτ . ϕ(E(0) + ‖u0‖2

L1(R3))(1 + t)δ. (2.16)

Sketch of proof. This follows from a small variant of (2.4):

E(t) +
∫ t

s

g2(τ)E(τ) dτ + 1
2

∫ t

s

(∫
R3×R3

f |v − u|2 dv dx+
∫
R3
|∇u|2 dx

)
dτ

≤ E(s) + 1
2

∫ t

s

g2(τ)
∫
|ξ|≤g(τ)

|û|2 dξdτ.
(2.17)

where g2(τ) := 1
4
g2(τ)
1+C0

. Then the remaining of the proof is the same.

Lemmas 2.3 and 2.4 inspire two ideas that will serve as guiding lines for the upcoming analysis:

• The derivatives in space of the solution to the Navier-Stokes equation with the Brinkman force
should decay faster than the solution itself, as it should be for parabolic equations.

• How come the fluid-kinetic dissipation seems to decay faster than the energy? This will lead to the
key identities of the upcoming Lemma 4.2.

Note however that due to the arbitrarily small polynomial growth in the estimates, we will not be
able to directly use Lemmas 2.3 and 2.4 in the following.
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3 Preliminaries for the bootstrap
We shall prove by a bootstrap argument that there is C0 > 0 such that

‖ρf‖L∞(0,+∞;L∞(R3)) ≤ C0.

Then Theorem 2.1 applies for T = +∞ and implies Theorem 1.1. As the early stages of the analysis
are very similar to the torus case, the content of this section is mainly taken directly from [20]. Let us
start by defining the characteristics curves associated to the Vlasov equation (1.1), that are the solutions
(X,V) to the system

Ẋ(s; t, x, v) = V(s; t, x, v),
V̇(s; t, x, v) = u(s,X(s; t, x, v))−V(s; t, x, v),

(3.1)

with (X(t; t, x, v),V(t; t, x, v)) = (x, v). This system can be solved using the DiPerna-Lions theory [13],
exactly as in [20]. Eventually we will see that u ∈ L1(0,+∞;W1,∞(R3)), so that the classical Cauchy-
Lipschitz theory actually applies.

By the method of characteristics, we can write solutions to the Vlasov equation as

f(t, x, v) = e3tf0(X(0; t, x, v),V(0; t, x, v)). (3.2)

We deduce that

ρf (t, x) = e3t
∫
R3
f0(t,X(0; t, x, v),V(0; t, x, v)) dv, (3.3)

jf (t, x) = e3t
∫
R3
vf0(t,X(0; t, x, v),V(0; t, x, v)) dv. (3.4)

3.1 Change of variables in velocity and bounds on moments
The first reduction in the analysis consists in relying on a change of variables in velocity (inspired by [3])
which directly allows to get global bounds on moments; however, such a procedure requires a control of
‖∇u(s)‖L1(0,+∞;L∞(R3)), in the sense that this quantity has to be small enough. Such a control will be
the main goal of the upcoming analysis.

The precise statement is provided in the following lemma, whose proof can be found in [20, Lemma
4.4].
Lemma 3.1. There exists δ0 ∈ (0, 1] such that the following holds. For any t ≥ 0 satisfying∫ t

0
‖∇u(s)‖L∞(R3) ds ≤ δ0, (3.5)

and any x ∈ R3, the map
Γt,x : v 7→ V(0; t, x, v),

is a C 1-diffeomorphism from R3 to itself satisfying furthermore

∀v ∈ R3, |detDvΓt,x(v)| ≥ e3t

2 . (3.6)

As a consequence, we deduce
Lemma 3.2. If Assumption (3.5) of Lemma 3.1 is satisfied, we have

‖ρf‖L∞(0,t;L∞(R3)) ≤ 2‖f0‖L1
v(R3;L∞x (R3)), (3.7)

Note that the estimate (3.7) does not depend on the time parameter t, which in particular paves the
way for a global application of Theorem 2.1.

Proof. By (3.3), the change of variables v 7→ Γs,x(v) and (3.6), we have for almost all s ∈ [0, t]

|ρf (s, x)| ≤ 2
∫
R3
f0(X(0; s, x,Γ−1

s,x(w), w) dw

≤ 2‖f0‖L1
v(R3;L∞x (R3)),

which entails (3.7).
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3.2 Higher order energy estimates and strong existence times

As we need to propagate regularity for the fluid velocity, we shall need higher (i.e. Ḣ1) energy estimates
for the Navier-Stokes equations. The following proposition can be found in [20, Proposition 5.3].
Proposition 3.3. There exists a universal constant C? > 0 such that the following holds. Assume that
for some T > 0 there holds

‖u0‖2
Ḣ1/2(R3)

+ C?
∫ T

0
‖jf − ρfu‖2

Ḣ−1/2(R3)
ds < 1

C2
?

. (3.8)

Then one has for all 0 ≤ t ≤ T the estimate

‖∇u(t)‖2
L2(R3) +

∫ t

0
‖∆u(s)‖2

L2(R3) ds ≤ ψ
(
E(0) + ‖u0‖H1(R3) + sup

[0,t]
‖ρf (s)‖L∞(R3)

)
, (3.9)

for some nondecreasing function ψ.

Note first that choosing Ψ appropriately, by (1.17) and an interpolation argument, we can ensure

‖u0‖Ḣ1/2(R3) ≤
1

2C2
?

. (3.10)

In order to use the regularization offered by Proposition 3.3, we will need to ensure that the smallness
condition (3.8) is satisfied for all times. As in [20], it is convenient to introduce the following terminology.
Definition 3.1 (Strong existence times). A real number T ≥ 0 will be said to be a strong existence time
whenever (3.8) holds.

3.3 Local in time estimates
Using rough estimates, it is possible to obtain local in time estimates for moments and the velocity field.
This is the purpose of this subsection. We introduce another useful notation from [20].
Notation 3.1. The inequality A .0 B means

A ≤ ψ (‖u0‖Z +Mαf0 +Nq(f0) + E(0) + 1)B,

for a function ψ : R+ → R+ is onto, continuous and nondecreasing (and may change from one line to
another), where we recall Z = L1(R3)∩H1(R3)∩Bspp,p(R3), q > p+ 3 and α > 3 are the exponents given
in the statement of Theorem 1.1.

Proposition 3.4. We have u ∈ L1
loc(R+; L∞(R3)) and ρf , jf ∈ L∞loc(R+; L∞(R3)). Moreover there exists

a continuous nondecreasing function η : R+ → R+ such that

‖u‖L1(0,t;L∞(R3)) .0 η(t), (3.11)
‖ρf‖L∞(0,t;L1∩L∞(R3)) + ‖jf‖L∞(0,t;L3/2∩L∞(R3)) .0 η(t). (3.12)

Finally, for all strong existence times t > 0,

∇u ∈ L1(0, t; L∞(R3)). (3.13)

We refer to the proofs of [20, Lemma 4.3, Proposition 5.1 and Corollary 6.4]3, which although written
for the torus case, apply mutatis mutandis to the whole space case.

Note that even if we were able to ensure that all t are strong existence times, Proposition 3.4 would
not yet be sufficient to obtain (3.5), as the estimates, in particular (3.13), are not uniform with respect
to t, and thus certainly do not imply the required smallness condition of (3.5).

Proposition 3.4 yields
3We take the opportunity to complete two arguments in [20]:
• In the proof of [20, Proposition 5.1], the treatment of the convection term −u · ∇xu is missing: to this purpose [10,

Lemme 3.2] can be applied.
• In the proof of [20, Corollary 6.4], the final argument to reach the Lipschitz regularity is missing: one must perform

the same analysis as in the proof of [20, Lemma 7.3] but without requiring uniform in time estimates.
We thank Lucas Ertzbischoff for pointing out these inaccuracies.
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Lemma 3.5. For all T > 0, ∫ T

0
‖jf − ρfu‖2

Ḣ−1/2(R3)
dt < +∞. (3.14)

Furthermore, the smallness condition of Theorem 1.1 ensures that T = 1 is a strong existence time in
the sense of Definition 3.1.

Proof. Let T > 0. Note that by the Sobolev embedding and the Hölder inequality, for all s ∈ [0, T ],

‖(jf − ρfu)(s)‖2
Ḣ−1/2(R3)

. ‖(jf − ρfu)(s)‖2
L3/2(R3)

. D(s)‖ρf‖L3(R3),

where D is the dissipation introduced in (1.5). Using the energy–dissipation inequality and (3.12), that
yields

sup
[0,T ]
‖ρf‖L3(R3) .0 η(T )2/3 < +∞,

we obtain ∫ T

0
‖jf − ρfu‖2

Ḣ−1/2(R3)
dt < +∞,

which concludes the proof of the first part of the lemma.
Similarly, for T = 1, we have∫ 1

0
‖jf − ρfu‖2

Ḣ−1/2(R3)
dt .0 η(1)2/3

∫ 1

0
D(t) dt .0 E(0) ≤ 1

3C3
?

,

by (1.17), choosing Ψ appropriately. Recalling (3.10), this yields that T = 1 is a strong existence time.

We are finally in position to set up the bootstrap argument. To this end, introduce

t? := sup
{
strong existence times t such that

∫ t

0
‖∇u(s)‖L∞(R3) ds < δ0

}
. (3.15)

By Lemma 3.5 and (3.13), we must have t? > 0. The goal is to prove that t? = +∞, which will allow,
applying Lemma 3.1 and Theorem 2.1, to conclude the proof of Theorem 1.1.

By contradiction, we shall assume from now on that t? < +∞.

4 Higher decay of higher dissipation
We fix T ∈ (0, t?). In particular, by definition of t?, we note that the characteristics (3.1) are classically
defined.

We shall study in the section what we call the higher fluid-kinetic dissipation.

Definition 4.1. Let p ≥ 2. The higher fluid-kinetic dissipation (of order p) is the functional

Dp(t) :=
∫
R3×R3

f(t, x, v)|v − u(t, x)|p dv dx. (4.1)

(Note that p = 2 corresponds to the usual fluid-kinetic dissipation term in D, see (1.5).)

This quantity is useful to estimate the Brinkman force because of the following elementary estimate.

Lemma 4.1. Let p ≥ 2. On [0, T ],

‖(jf − ρfu)(t)‖Lp(R3) ≤ ‖ρf‖
p−1
p

L∞(0,T ;L∞(R3))D
1/p
p (t). (4.2)
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Proof. By the Hölder inequality, we have

‖jf − ρfu‖pLp(R3) ≤ ‖ρf‖
p−1
L∞(0,T ;L∞(R3))

(∫
R3×R3

f |v − u|p dv dx
)
,

and the lemma follows.

Remark 4.1. On the torus [20], it turns out to be sufficient to use the rough bound

‖(jf − ρfu)(t)‖Lp ≤ ‖jf (t)‖Lp + ‖ρfu(t)‖Lp .

In the whole space case, this is not sufficient to close the analysis, which explains why we need a finer
understanding of the Brinkman force.

Higher decay of the higher dissipation Dp comes from the following key identity. We will (towards
the end of the bootstrap analysis) obtain that Dp for p ≥ 2 enjoys a somewhat better decay than that
of D2 in Lemma 2.3.

Lemma 4.2. Let ϕ ∈ C 1([0,+∞)). For all p ≥ 2, all γ ∈ R, and all t ≥ 0,∫ t

0
Dp(s)ϕ(s) ds = 1

p

∫ t

0
Dp(s)ϕ′(s) ds

−
∫ t

0

∫
R3×R3

f(s, x, v) [∂su+ (∇xu)v] · [v − u(s, x)]|v − u(s, x)|p−2ϕ(s) dv dx ds

−
[
ϕ(s)
p

∫
R3×R3

f(s, x, v)|v − u(s, x)|p dv dx
]t

0
.

(4.3)

Proof. Write by the method of characteristics and a change of variables

Dp(s) =
∫
R3×R3

f(s, x, v)|v − u(s, x)|p dv dx

= e3s
∫
R3×R3

f0(X(0; s, x, v),V(0; s, x, v))|v − u(s, x)|p dv dx

=
∫
R3×R3

f0(x, v) |V(s; 0, x, v)− u(s,X(s; 0, x, v))|p dv dx.

Remark then that

d
ds |V(s; 0, x, v)− u(s,X(s; 0, x, v))|p

= p
d
ds [V(s; 0, x, v)− u(s,X(s; 0, x, v))] · [V(s; 0, x, v)− u(s,X(s; 0, x, v))]

× |V(s; 0, x, v)− u(s,X(s; 0, x, v))|p−2

= p

[
u(s,X(s; 0, x, v))−V(s; 0, x, v)− d

ds (u(s,X(s; 0, x, v)))
]

· [V(s; 0, x, v)− u(s,X(s; 0, x, v))]|V(s; 0, x, v)− u(s,X(s; 0, x, v))|p−2.

Consequently, we have

|V(s; 0, x, v)− u(s,X(s; 0, x, v))|p = −1
p

d
ds |V(s; 0, x, v)− u(s,X(s; 0, x, v))|p

− d
ds (u(s,X(s; 0, x, v))) · [V(s; 0, x, v)− u(s,X(s; 0, x, v))]

× |V(s; 0, x, v)− u(s,X(s; 0, x, v))|p−2.

We deduce the claimed identity by integration by parts in time.
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In the following, we will apply this lemma for ϕ(s) = (1 + s)pγ , which leads to∫ t

0
Dp(s)(1 + s)pγ ds

= γ

∫ t

0
Dp(s)(1 + s)pγ−1 ds

−
∫ t

0

∫
R3×R3

f(s, x, v) [∂su+ (∇xu)v] · [v − u(s, x)]|v − u(s, x)|p−2(1 + s)pγ dv dxds

−
[

(1 + s)pγ
p

∫
R3×R3

f(s, x, v)|v − u(s, x)|p dv dx
]t

0
.

(4.4)

Let us comment on the key identity (4.4): it shows that the higher dissipation integrated against a
polynomial weight in time can be decomposed as a sum of:

• a term of the same form involving a lower order weight in time;

• a second term involving ∂su and ∇xu that will be somehow absorbed (see Lemma 4.3 below);

• a non-negative term and a last one independent of time involving only the initial data.

Let us right away proceed with the estimate the second term of the right-hand side of (4.4).

Lemma 4.3. For all p ≥ 2, all γ ∈ R, and all t ≥ 0,∣∣∣∣∫ t

0

∫
R3×R3

f(s, x, v)∂su · [v − u(s, x)]|v − u(s, x)|p−2(1 + s)pγ dv dx ds
∣∣∣∣

. ‖ρf‖1/p
L∞(0,t;L∞(R3))‖(1 + s)γ∂su‖Lp(0,t;Lp(R3))

(∫ t

0
Dp(s)(1 + s)pγ ds

) p−1
p

,∣∣∣∣∫ t

0

∫
R3×R3

f(s, x, v)(∇xu)v · [v − u(s, x)]|v − u(s, x)|p−2(1 + s)pγ dv dxds
∣∣∣∣

. ‖(1 + s)γ |∇xu|(mpf)1/p‖Lp(0,t;Lp(R3))

(∫ t

0
Dp(s)(1 + s)pγ ds

) p−1
p

,

where we recall the notation
mpf(s, x) =

∫
R3
f(s, x, v)|v|p dv.

Proof. This is a consequence of the Hölder inequality; details are omitted.

We deduce

Corollary 4.4. For all p ≥ 2, all γ ∈ R, all k ∈ N, and all t ≥ 0,∫ t

0
Dp(s)(1 + s)pγ ds .

∫ t

0
Dp(s)(1 + s)pγ−k ds

+ ‖ρf‖L∞(0,t;L∞(R3))‖(1 + s)γ∂su‖pLp(0,t;Lp(R3))

+ ‖(1 + s)γ |∇xu|(mpf)1/p‖pLp(0,t;Lp(R3))

+
∫
R3×R3

f0|v − u0|p dv dx.

(4.5)
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Proof. This follows from a combination of the last two lemmas. We argue by induction. For k = 0, the
estimate (4.5) is tautological. Assume (4.5) holds for some k ∈ N. By Lemma 4.2, we have the identity∫ t

0
Dp(s)(1 + s)pγ−k ds

= γ

∫ t

0
Dp(s)(1 + s)pγ−(k+1) ds

−
∫ t

0

∫
R3×R3

f(s, x, v) [∂su+ (∇xu)v] · [v − u(s, x)]|v − u(s, x)|p−2(1 + s)pγ−k dv dx ds

−
[

(1 + s)pγ−k
p

∫
R3×R3

f(s, x, v)|v − u(s, x)|p dv dx
]t

0
.

Applying Lemma 4.3, we deduce the bound∫ t

0
Dp(s)(1 + s)pγ−k ds .

∫ t

0
Dp(s)(1 + s)pγ−(k+1) ds

+ ‖ρf‖1/p
L∞(0,t;L∞(R3))‖(1 + s)γ∂su‖Lp(0,t;Lp(R3))

(∫ t

0
Dp(s)(1 + s)pγ−k ds

) p−1
p

+ ‖(1 + s)γ |∇xu|(mpf)1/p‖Lp(0,t;Lp(R3))

(∫ t

0
Dp(s)(1 + s)pγ−k ds

) p−1
p

+
∫
R3×R3

f0|v − u0|p dv dx.

By Young’s inequality, we end up with∫ t

0
Dp(s)(1 + s)pγ−k ds .

∫ t

0
Dp(s)(1 + s)pγ−(k+1) ds

+ ‖ρf‖L∞(0,t;L∞(R3))‖(1 + s)γ∂su‖pLp(0,t;Lp(R3))

+ ‖(1 + s)γ |∇xu|(mpf)1/p‖pLp(0,t;Lp(R3)) +
∫
R3×R3

f0|v − u0|p dv dx,

yielding (4.5) at rank k + 1. We can therefore conclude by induction.

5 The bootstrap argument
5.1 Preliminaries
We shall rely on maximal parabolic regularity to get weighted in time estimates for ∂tu and ∆u. Maximal
regularity for the Stokes equation reads as follows (see e.g. [26] that concerns the heat equation, but
applies to Stokes after application of the Leray projection):

Theorem 5.1. Let U0 ∈ S ′(R3) with divU0 = 0. Let U solve the Stokes equation with a source S and
initial condition U0:

∂tU−∆U +∇p = S,

divU = 0,
U|t=0 = U0.

For all p, q ∈ (1,+∞), there holds

‖∂tU‖Lp(0,+∞;Lq(R3)) + ‖∆U‖Lp(0,+∞;Lq(R3)) . ‖S‖Lp(0,+∞;Lq(R3)) + ‖U0‖Bspq,p(R3), (5.1)

with
sp = 2− 2

p
. (5.2)
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We start with the following rough preliminary result. We recall that the definition of the symbol .0
is given in Notation 3.1; this will be used at multiple times in this section.
Lemma 5.2. There is p0 > 3 such that for p ∈ (3, p0], for all T ∈ [0, t?),

‖∂tu‖Lp(0,T ;Lp(R3)) + ‖∆u‖Lp(0,T ;Lp(R3)) < +∞.

Proof. According to [20, Proof of Lemma 6.2], we have the interpolation inequality

‖u · ∇xu‖La(0,T ;Lb(R3)) . ‖u‖L∞(0,T ;L6(R3))‖∇xu‖
r1/a
Lr1 (0,T ;Lr2 (R3))‖∇xu‖

1−r1/a

L∞(0,T ;L2(R3))

for a, b, r1, r2 ∈ (1,+∞) satisfying r1 ≤ a, 2 ≤ b ≤ r2,
1
b

= 1
6 + 1

r2

r1

a
+ 1

2

(
1− r1

a

)
.

By Proposition 3.3, Lemma 3.2 and Sobolev’s embedding, we have

‖u‖L∞(0,T ;L6(R3)) + ‖∇xu‖L∞(0,T ;L2(R3)) ≤ ψ
(
E(0) + ‖u0‖H1(R3) + ‖f0‖L1

v(R3;L∞x (R3))

)
and we therefore obtain

‖u · ∇xu‖La(0,T ;Lb(R3)) .0 ‖∇xu‖r1/a
Lr1 (0,T ;Lr2 (R3)). (5.3)

We consequently first get, choosing r1 = 2, r2 = 6 (applying (3.9) and the Sobolev embedding H2(R3) ⊂
W1,6(R3)),

‖u · ∇xu‖L2(0,T ;L3(R3)) .0 1.
In the following of the proof, η will stand for a nondecreasing function that may change from one line to
another. By Proposition 3.4, we get

‖jf − ρfu‖L2(0,T ;L3(R3)) .0 η(T ).

Thanks to Theorem 5.1, we deduce that

‖∂tu‖L2(0,T ;L3(R3)) + ‖∆u‖L2(0,T ;L3(R3)) . ‖u · ∇xu‖L2(0,T ;L3(R3)) + ‖jf − ρfu‖L2(0,T ;L3(R3)) + ‖u0‖B1
3,2(R3)

< +∞.

By Sobolev’s embedding, we infer that for all q ∈ [2,+∞),

‖∇u‖L2(0,T ;Lq(R3)) < +∞.

By (5.3) for r1 = 2 and r2 large enough, the consequence is that there is r > 5/2 such that

‖u · ∇xu‖Lr(0,T ;L3(R3)) < +∞.

Since we also have
‖jf − ρfu‖Lr(0,T ;L3(R3)) .0 η(T ),

we obtain, applying again Theorem 5.1, that

‖∂tu‖Lr(0,T ;L3(R3)) + ‖∆u‖Lr(0,T ;L3(R3)) . ‖u · ∇xu‖Lr(0,T ;L3(R3)) + ‖jf − ρfu‖Lr(0,T ;L3(R3)) + ‖u0‖Bsr3,r(R3)

< +∞,

with sr = 2− 2
r . By Sobolev’s embedding, this yields for all q ∈ [2,+∞)

‖∇u‖Lr(0,T ;Lq(R3)) < +∞

and then using again (5.3), there is p0 > 3 such that, for all p ∈ (3, p0],

‖u · ∇xu‖Lp(0,T ;Lp(R3)) < +∞

and we apply the same strategy one last time, which yields

‖∂tu‖Lp(0,T ;Lp(R3)) + ‖∆u‖Lp(0,T ;Lp(R3)) < +∞,

hence the result.
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The general principle to get weighted in time estimates for the fluid velocity field u will be to write
that given some power r > 0, defining

U(t, x) := (1 + t)ru(t, x),

U satisfies the Stokes equation

∂tU−∆U +∇p = (1 + t)r(jf − ρfu)− (1 + t)ru · ∇xu+ r(1 + t)r−1u,

divU = 0,
U|t=0 = u0.

(5.4)

Recall that we have fixed T ∈ (0, t?). In the following, we shall intensively apply the decay es-
timates of Section 2. They involve functions ϕ (applied to E(0) + ‖u0‖L1(R3)) which, according to
Theorem 2.1, depend only on ‖ρf‖L∞(0,T ;L∞(R3)). Thanks to Lemma 3.2, they therefore only depend on
‖f0‖L1

v(R3;L∞x (R3)).

5.2 Estimates for the higher dissipation
The goal of this subsection is to provide estimates of some of the terms appearing in Corollary 4.4. Let
us start with an inequality concerning the moment Mpf (recall Definition 1.4).

Lemma 5.3. For all p ≥ 2 such that Mpf0 < +∞, for all γ ≥ 0, there is k ∈ N large enough, so that∫ T

0
Mpf(s)(1 + s)pγ−k ds .0 1. (5.5)

Proof. By the method of characteristics, we write

mpf(t, x) =
∫
R3
f(t, x, v)|v|p dv

= e3t
∫
R3
f0(X(0; t, x, v),V(0; t, x, v))|v|p dv

By Lemma 3.1, we can use the change of variables w := V(0; t, x, v)(= Γt,x(v)), that yields

|mpf(t, x)| .
∫
R3
f0(X(0; t, x,Γ−1

t,x(w)), w)|Γ−1
t,x(w)|p dw. (5.6)

By (3.1) we infer

|Γ−1
t,x(w)| ≤ e−t|w|+

∫ t

0
eτ−t

∣∣u (τ,X (τ ; t, x,Γ−1
t,x(w)

))∣∣ dτ.

As can be checked with a small variant of [20, Lemma 4.4], for δ0 small enough, the map x 7→
X(0; t, x,Γ−1

t,x(w)) is a C 1 diffeomorphism from R3 to R3 with Jacobian bounded below by 1/2. On
[0, T ], by Proposition 3.3 and Sobolev’s embedding, there holds∫ t

0
eτ−t‖u‖L∞(R3) dτ . 1.

Consequently on [0, T ),
|Mpf(t)| .0 1,

and we can take k large enough to ensure integrability in time in (5.5).

We deduce the following lemma.

Lemma 5.4. For all p ≥ 2 such that Mpf0 < +∞, for all γ ≥ 0, there is k ∈ N large enough, so that
for all t ∈ [0, T ), ∫ t

0
Dp(s)(1 + s)pγ−k ds .0 1 + ‖(1 + t)γ∆u‖β1p

Lp(0,T ;Lp(R3)), (5.7)

for β1 = 3p
7p−6 .
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Proof. We use the rough bound∫ t

0
Dp(s)(1 + s)pγ−k ds .

∫ t

0

(∫
R3×R3

f(s, x, v)|v|p dv dx
)

(1 + s)pγ−k ds

+
∫ t

0

(∫
R3
ρf (s, x)|u|p dx

)
(1 + s)pγ−k ds

.
∫ t

0
Mpf(s)(1 + s)pγ−k ds+

∫ t

0
‖u‖pL∞(R3)(1 + s)pγ−k ds.

The first term above is treated with Lemma 5.3. For the second one, we rely on an interpolation
procedure. By the Gagliardo-Nirenberg inequality, we have

‖u‖L∞(R3) . ‖∆xu‖β1
Lp(R3)‖u‖

1−β1
L2(R3),

with
0 = 0 +

(
1
p
− 2

3

)
β1 + 1− β1

2 ⇐⇒ β1 = 3p
7p− 6 .

We may therefore use the Hölder inequality to get∫ t

0
‖u‖pL∞(R3)(1 + s)pγ−k ds .0

∫ t

0
‖∆xu‖β1p

Lp(R3)(1 + s)pγ−k ds

.0 ‖(1 + s)p(1−β1)γ−k‖
L

1
1−β1 (0,T )

‖(1 + s)γ∆u‖β1p
Lp(0,T ;Lp(R3))

and take k large enough to ensure uniform integrability in time, so that we get the claimed bound.

Let us now focus on p = 2.

Lemma 5.5. For all γ ∈ (0, 3/4), for all t ∈ [0, T ), there holds

‖m2f(t)‖L∞(R3) .0
1

(1 + t)2γ

(
1 + ‖(1 + s)γ∆u‖3/2

L2(0,T ;L2(R3))

)
. (5.8)

Proof. Let γ ∈ (0, 3/4). By the Gagliardo-Nirenberg inequality,

‖u‖L∞(R3) . ‖∆u‖3/4
L2(R3)‖u‖

1/4
L2(R3).

From Theorem 2.1, we know that

‖(1 + t)γu‖L∞(0,T ;L2(R3)) .0 1,

and therefore
‖(1 + t)γu‖L8/3(0,T ;L∞(R3)) .0 ‖(1 + t)γ∆u‖3/4

L2(0,T ;L2(R3)). (5.9)

Recall that the estimate (5.6) for p = 2 reads as

|m2f(t, x)| .
∫
R3
f0(X(0; t, x,Γ−1

t,x(w)), w)|Γ−1
t,x(w)|2 dw

and that we have

|Γ−1
t,x(w)| ≤ e−t|w|+

∫ t

0
eτ−t‖u‖L∞(R3) dτ.

By the Hölder inequality, we have∫ t

0
eτ−t‖u‖L∞(R3) dτ .

(∫ t

0

e
8
5 (τ−t)

(1 + τ) 8
5γ

dτ
)5/8

‖(1 + s)γu‖L8/3(0,T ;L∞(R3))

.0
1

(1 + t)γ ‖(1 + s)γ∆u‖3/4
L2(0,T ;L2(R3)).
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Consequently,
|m2f(t, x)| .0

1
(1 + t)2γ

(
1 + ‖(1 + s)γ∆u‖3/2

L2(0,T ;L2(R3))

)
,

hence proving (5.21).

Lemma 5.6. For all γ ∈ (0, 3/4), there holds

‖(1 + t)γ |∇xu|(m2f)1/2‖L2(0,T ;L2(R3)) .0 1 + ‖(1 + t)γ∆xu‖3/4
L2(0,T ;L2(R3)). (5.10)

Proof. By Lemma 5.5, we have

(1 + t)2γ‖|∇xu|(m2f)1/2‖2
L2(R3) .0 ‖∇xu‖2

L2(R3)

(
1 + ‖(1 + t)γ∆u‖3/2

L2(0,T ;L2(R3))

)
.

By the energy–dissipation inequality, ‖∇xu‖L2(0,T ;L2(R3)) .0 1 and the conclusion thus follows after
integrating with respect to time.

5.3 Weighted L2 maximal parabolic regularity estimates using higher decay
of higher dissipation

We now in position to establish weighted L2 maximal parabolic regularity estimates. We start with the
following interpolation result in order to control the convection term in the Navier-Stokes equation.
Lemma 5.7. For all t ∈ [0, T ), we have

‖u · ∇xu(t)‖L2(R3) .0 E(0)1/4‖∆xu(t)‖L2(R3). (5.11)

Consequently, for all γ ≥ 0,

‖(1 + t)γu · ∇xu‖L2(0,T ;L2(R3)) .0 E(0)1/4‖(1 + t)γ∆xu‖L2(0,T ;L2(R3)). (5.12)

Proof. By the Hölder inequality, we have

‖u · ∇xu‖L2(R3) ≤ ‖u‖L6(R3)‖∇xu‖L3(R3). (5.13)

By the Gagliardo-Nirenberg inequality, there are 1 > α1 > α2 > 0 such that

‖∇xu‖L3(R3) . ‖∆xu‖α1
L2(R3)‖u‖

1−α1
L2(R3), ‖u‖L6(R3) . ‖∆xu‖α2

L2(R3)‖u‖
1−α2
L2(R3), (5.14)

with
1
3 = 1

3 +
(

1
2 −

2
3

)
α1 + 1− α1

2 ⇐⇒ α1 = 3/4,

1
6 =

(
1
2 −

2
3

)
α2 + 1− α2

2 ⇐⇒ α2 = 1/2.

Therefore, we have α1 + α2 > 1. We then write

‖u‖L6(R3) = ‖u‖
1−α1
α2

L6(R3)‖u‖
1− 1−α1

α2
L6(R3) .

Recall that by Proposition 3.3 and Lemma 3.2, ‖u‖L∞(0,T ;L6(R3)) .0 1, we have by (5.14) the bound

‖u‖L6(R3) .0 ‖u‖
1−α1
α2

L6(R3)

.0 ‖∆xu‖1−α1
L2(R3)‖u‖

(1−α1)(1−α2)
α2

L2(R3) .

We finally get by (5.13), (5.14) and the fact that ‖u(t)‖2
L2(R3) ≤ 2E(0),

‖u · ∇xu‖L2(R3) .0 ‖∆xu‖L2(R3)‖u‖
1−α1
α2

L2(R3)

.0 E(0)µ‖∆xu‖L2(R3)

for µ := 1−α1
2α2

= 1/4, and the proof of (5.24) is complete.
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Lemma 5.8. For all γ ∈ (0, 3/4), we have the estimate

‖(1 + t)γ∂tu‖L2(0,T ;L2(R3)) + ‖(1 + t)γ∆u‖L2(0,T ;L2(R3)) .0 1. (5.15)

Proof. Let γ ∈ (0, 3/4). First, by Theorem 2.1, we have for all t ∈ [0, T ],

(1 + t)γ−1‖u(t)‖L2(R3) .
ϕ(E(0) + ‖u0‖2

L1(R3))
(1 + t) , (5.16)

which is clearly uniformly (i.e. independently of T ) bounded in L2(0, T ). Next, thanks to Lemma 5.7,

‖(1 + t)γu · ∇xu‖L2(0,T ;L2(R3)) .0 E(0)1/4‖(1 + t)γ∆xu‖L2(0,T ;L2(R3)). (5.17)

In order to estimate the contribution of the Brinkman force, we need to use the higher decay of D2,
thanks to Lemma 4.1 and Corollary 4.4 with p = 2. We first obtain by Corollary 4.4 that

‖(1 + t)γ(jf − ρfu)‖2
L2(0,T ;L2(R3)) . ‖ρf‖L∞(0,T ;L∞(R3))

∫ T

0
D2(t)(1 + t)2γ dt

. ‖ρf‖L∞(0,T ;L∞(R3))

(∫ T

0
D2(s)(1 + s)2γ−k ds

+ ‖ρf‖L∞(0,T ;L∞(R3))‖(1 + t)γ∂tu‖2
L2(0,T ;L2(R3))

+ ‖(1 + s)γ |∇xu|(m2f)1/2‖2
L2(0,T ;L2(R3)) +

∫
R3×R3

f0|v − u0|2 dv dx
)
.

Using Lemmas 5.4 and 5.6, recalling the meaning of .0 in Notation 3.1, we therefore get the estimate

‖(1 + t)γ(jf − ρfu)‖2
L2(0,T ;L2(R3))

. ψ (‖u0‖Z +Mαf0 +Nq(f0) + E(0) + 1)
(

1 + ‖(1 + t)γ∆xu‖3/2
L2(0,T ;L2(R3))

)
+ ‖ρf‖2

L∞(0,T ;L∞(R3))‖(1 + t)γ∂tu‖2
L2(0,T ;L2(R3)).

(5.18)

Recall that by Lemma 3.2, we have ‖ρf‖L∞(0,t;L∞(R3)) . ‖f0‖L1
v(R3;L∞x (R3)).

We now set U = (1 + t)γu, so that U solves (5.4) with r = γ. By the maximal parabolic regularity
result for p = q = 2 of Theorem 5.1, we deduce

‖∂tU‖L2(0,T ;L2(R3)) + ‖∆U‖L2(0,T ;L2(R3)) . ‖S‖L2(0,T ;L2(R3)) + ‖u0‖H1(R3),

with S = (1 + t)γ(jf − ρfu) − (1 + t)γu · ∇xu + γ(1 + t)γ−1u. Using (5.16), (5.17) and (5.18), Young’s
inequality and ∂tU = (1 + t)γ∂tu+ γ(1 + t)γ−1u, we obtain

‖(1 + t)γ∂tu‖L2(0,T ;L2(R3)) + ‖(1 + t)γ∆u‖L2(0,T ;L2(R3))

≤ ψ (‖u0‖Z +Mαf0 +Nq(f0) + E(0) + 1)

+
[
ψ (‖u0‖Z +Mαf0 +Nq(f0) + E(0) + 1)E(0)1/4 + C‖f0‖L1

v(R3;L∞x (R3)) + 1
2

]

×

(
‖(1 + t)γ∂tu‖L2(0,T ;L2(R3)) + ‖(1 + t)γ∆u‖L2(0,T ;L2(R3))

)
.

Wemay choose Ψ and δ in the assumptions of Theorem 1.1 such that by (1.17), E(0) and ‖f0‖L1
v(R3;L∞x (R3))

are small enough so that[
ψ (‖u0‖Z +Mαf0 +Nq(f0) + E(0) + 1)E(0)1/4 + C‖f0‖L1

v(R3;L∞x (R3)) + 1
2

]
<

2
3 .

We can thus absorb all terms of the right-hand side involving ‖(1 + t)γ∂tu‖L2(0,T ;L2(R3)) and ‖(1 +
t)γ∆u‖L2(0,T ;L2(R3)) by the left-hand side.

22



We deduce
‖(1 + t)γ∂tu‖L2(0,T ;L2(R3)) + ‖(1 + t)γ∆u‖L2(0,T ;L2(R3)) .0 1, (5.19)

which concludes the proof of the lemma.

As a consequence of Lemma 5.8, we obtain the following improved control on ‖u‖L∞(R3):

Corollary 5.9. For all γ ∈ (0, 3/4), there holds

‖(1 + t)γu‖L8/3(0,T ;L∞(R3)) .0 1. (5.20)

Proof. This is a straightforward consequence of (5.9).

A first application of Corollary 5.9 is a pointwise in time control of the L∞(R3) norm of the moment
mpf , which improves as p increases.

Lemma 5.10. Let p ≥ 2 such that ‖mpf0‖L∞(R3) < +∞. For all γ ∈ (0, 3/4), for all t ∈ [0, T ), there
holds

‖mpf(t)‖L∞(R3) .0
1

(1 + t)γp . (5.21)

Proof. The proof is almost identical to that of Lemma 5.5, except that we now have (5.20), and is
therefore omitted.

We deduce the following variant of Lemma 5.6 for larger values of p.

Lemma 5.11. Let p ≥ 2 such that ‖mpf0‖L∞(R3) < +∞. For all γ ∈
(

0, 27
8 −

13
4p

)
, there holds

‖(1 + s)γ |∇xu|(mpf)1/p‖Lp(0,T ;Lp(R3)) .0 ‖(1 + t)γ∆xu‖β2
Lp(0,T ;Lp(R3)), (5.22)

for β2 = 5p−6
7p−6 .

Proof. Let ν ∈ (0, 3/4). By Lemma 5.10, we have

(1 + t)pγ‖|∇xu|(mpf)1/p‖pLp(R3) .0 (1 + t)p(γ−ν)‖∇xu‖pLp(R3),

By the Gagliardo-Nirenberg inequality, we can write that

‖∇xu‖Lp(R3) . ‖∆xu‖β2
Lp(R3)‖u‖

1−β2
L2(R3),

with
1
p

= 1
3 +

(
1
p
− 2

3

)
β2 + 1− β2

2 ⇐⇒ β2 = 5p− 6
7p− 6 .

As a result, by Theorem 2.1, we obtain

(1 + t)pγ‖|∇xu|(mpf)1/p‖pLp(R3) .0 (1 + t)p(γ(1−β2)+(β2−2)ν)[(1 + t)γ‖∆xu‖Lp(R3)]β2p.

Applying the Hölder inequality, we get

‖(1 + t)γ |∇xu|(mpf)1/p‖pLp(0,T ;Lp(R3))

.0 ‖(1 + t)p(γ(1−β2)+(β2−2)ν)‖
L

1
1−β2 (0,T )

‖(1 + t)γ∆xu‖pβ2
Lp(0,T ;Lp(R3)).

In order to ensure integrability in time, we thus need to enforce that

p

(
3
4(2− β2)− γ(1− β2)

)
1

1− β2
> 1⇐⇒ γ <

27
8 −

13
4p ,

and we obtain the claimed admissible interval for γ.
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5.4 Lp bounds on the source term
In view of a subsequent application of Theorem 5.1, let us first prove some bounds in Lp for p > 3 on
the terms (1 + t)γu · ∇xu+ γ(1 + t)γ−1u in the source term of the Stokes equation.

Lemma 5.12. Let p ∈ (3, 14/3). For all γ ∈
(

0, 17
8 −

7
4p

)
, we have

‖(1 + t)γ−1u‖Lp(0,T ;Lp(R3)) .0 1. (5.23)

Proof. By interpolation, we write

‖u‖pLp(R3) . ‖u‖
2
L2(R3)‖u‖

p−2
L∞(R3),

so that by Theorem 2.1, for all γ > 0,

(1 + t)p(γ−1)‖u‖pLp(R3) .
ϕ(E(0) + ‖u0‖2

L1(R3))

(1 + t) 3
2
− (1 + t)p(γ−1)‖u‖p−2

L∞(R3)

. ϕ(E(0) + ‖u0‖2
L1(R3))(1 + t)p(γ−1)−p 3

4
−

[(1 + t) 3
4
−
‖u‖L∞(R3)]p−2,

where 3
4
− stands for some α ∈ (0, 3/4) arbitrarily close to 3/4. By the Hölder inequality, we deduce that

‖(1 + t)γ−1u‖pLp(0,T ;Lp(R3))

. ϕ(E(0) + ‖u0‖2
L1(R3))‖(1 + t)p(γ−1)−p 3

4
−
‖

L
8

14−3p (0,T )
‖(1 + t) 3−

4 u‖p−2
L8/3(0,T ;L∞(R3))

.0 ‖(1 + t)p(γ−1)−p 3
4
−
‖

L
8

14−3p (0,T )
,

where we have applied Corollary 5.9 in the last line. In order to ensure time integrability (and thus a
uniform bound independent of T ), we therefore require that

p

(
3
4 − (γ − 1)

)
8

14− 3p > 1⇐⇒ γ <
17
8 −

7
4p ,

which concludes the proof.

We finally have the analog of Lemma 5.7 for p larger than and close to 3.
Lemma 5.13. There is p0 > 3 such that, for all p ∈ (3, p0], the following holds. There exists µ > 0 such
that, for all t ∈ [0, T ), we have

‖u · ∇xu(t)‖Lp(R3) .0 E(0)µ‖∆xu(t)‖Lp(R3). (5.24)

Consequently, for all γ ≥ 0,

‖(1 + t)γu · ∇xu‖Lp(0,T ;Lp(R3)) .0 E(0)µ‖(1 + t)γ∆xu‖Lp(0,T ;Lp(R3)). (5.25)

Proof. The beginning of the proof is the same as for Lemma 5.7. By the Hölder inequality, we have

‖u · ∇xu‖Lp(R3) ≤ ‖u‖L6(R3)‖∇xu‖Lq(R3).

with 1
p = 1

6 + 1
q . By the Gagliardo-Nirenberg inequality, there are 1 > α1 > α2 > 0 such that

‖∇xu‖Lq(R3) . ‖∆xu‖α1
Lp(R3)‖u‖

1−α1
L2(R3), ‖u‖L6(R3) . ‖∆xu‖α2

Lp(R3)‖u‖
1−α2
L2(R3),

with
1
q

= 1
3 +

(
1
p
− 2

3

)
α1 + 1− α1

2 ,
1
6 =

(
1
p
− 2

3

)
α2 + 1− α2

2 .

We can check that when p is close to 3, q is close to 6 while α1 and α2 are close to 4/5 and 2/5. Therefore,
we must have α1 + α2 > 1 when taking p0 close enough to 3. The conclusion of the proof is finally the
same as for Lemma 5.7 and is thus omitted.
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5.5 Weighted maximal parabolic regularity for p > 3 using higher decay of
higher dissipation

We now turn to the key last estimates of the proof. Namely, we apply maximal regularity in Lp for some
p > 3 after relying on the higher decay of higher dissipation provided by Lemma 4.2 and Corollary 4.4.

The preceding estimates are used in order to estimate

S = (1 + t)γ(jf − ρfu)− (1 + t)γu · ∇xu+ γ(1 + t)γ−1u

for a sufficiently large value of γ > 0, in Lp for some p > 3. This is the purpose of the next lemma.

Lemma 5.14. There is p0 > 3 such that, for all p ∈ (3, p0], the following holds. For all γ ∈
(

0, 17
8 −

7
4p

)
we have

‖S‖Lp(0,T ;Lp(R3))

. ‖f0‖L1
v(R3;L∞x (R3))‖(1 + s)γ∂su‖Lp(0,t;Lp(R3)) + ψ (‖u0‖Z +Mαf0 +Nq(f0) + E(0) + 1)

×
(

1 + ‖(1 + t)γ∆u‖β1
Lp(0,T ;Lp(R3)) + ‖(1 + t)γ∆u‖β2

Lp(0,T ;Lp(R3)) + E(0)µ‖(1 + t)γ∆u‖Lp(0,T ;Lp(R3))

)
,

(5.26)
where β1 ∈ (0, 1) (resp. β2 ∈ (0, 1)) appears in Lemma 5.4 (resp. Lemma 5.11) and µ > 0 appears in
Lemma 5.13.

Proof. For γ < 17
8 −

7
4p , the contribution of the terms (1 + t)γ−1u and (1 + t)γu · ∇xu are treated thanks

to Lemma 5.12 and Lemma 5.13, which yields

‖(1 + t)γ−1u‖Lp(0,T ;Lp(R3)) + ‖(1 + t)γu · ∇xu‖Lp(0,T ;Lp(R3)) .0 1 + E(0)µ‖(1 + t)γ∆xu‖Lp(0,T ;Lp(R3)),

with µ > 0. The contribution of the Brinkman force requires the use of the higher decay of higher
dissipation as provided by Lemma 4.1 and Lemma 4.2. By Corollary 4.4, we first bound

‖(1 + t)γ(jf − ρfu)‖pLp(0,T ;Lp(R3)) . ‖ρf‖
p−1
L∞(0,T ;L∞(R3))

∫ T

0
Dp(t)(1 + t)pγ dt

. ‖ρf‖p−1
L∞(0,T ;L∞(R3))

(∫ T

0
Dp(s)(1 + s)pγ−k ds

+ ‖ρf‖L∞(0,t;L∞(R3))‖(1 + t)γ∂tu‖pLp(0,T ;Lp(R3))

+ ‖(1 + s)γ |∇xu|(mpf)1/p‖pLp(0,T ;Lp(R3)) +
∫
R3×R3

f0|v − u0|p dv dx
)
.

Recall that by Lemma 3.2, we have ‖ρf‖L∞(0,t;L∞(R3)) . ‖f0‖L1
v(R3;L∞x (R3)). By Lemma 5.4 and Lemma 5.11,

we infer that for γ < 27
8 −

13
4p and k large enough,

‖(1 + t)γ(jf − ρfu)‖pLp(0,T ;Lp(R3))

. ‖f0‖pL1
v(R3;L∞x (R3))‖(1 + s)γ∂su‖pLp(0,T ;Lp(R3))

+ ψ (‖u0‖Z +Mαf0 +Nq(f0) + E(0) + 1)
[

1 + ‖(1 + t)γ∆u‖β1p
Lp(0,T ;Lp(R3)) + ‖(1 + t)γ∆u‖β2p

Lp(0,T ;Lp(R3))

]
,

with β1, β2 ∈ (0, 1). This concludes the proof of the lemma.

We are finally in position to apply Theorem 5.1 for some p = q > 3.

Lemma 5.15. There is p0 > 3 such that, for all p ∈ (3, p0], the following holds. For all γ ∈
(

0, 17
8 −

7
4p

)
we have

‖(1 + t)γ∂tu‖Lp(0,T ;Lp(R3)) + ‖(1 + t)γ∆u‖Lp(0,T ;Lp(R3)) .0 1. (5.27)
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Proof. We apply Theorem 5.1 together with Lemma 5.14 and the Young inequality, which yields

‖(1 + t)γ∂tu‖Lp(0,T ;Lp(R3)) + ‖(1 + t)γ∆u‖Lp(0,T ;Lp(R3))

≤ ψ (‖u0‖Z +Mαf0 +Nq(f0) + E(0) + 1)

+
[
ψ (‖u0‖Z +Mαf0 +Nq(f0) + E(0) + 1)E(0)µ + C‖f0‖L1

v(R3;L∞x (R3)) + 1
2

]

×

(
‖(1 + t)γ∂tu‖Lp(0,T ;Lp(R3)) + ‖(1 + t)γ∆u‖Lp(0,T ;Lp(R3))

)
.

We may choose Ψ and δ in the assumptions of Theorem 1.1 such that by (1.17), both E(0) and
‖f0‖L1

v(R3;L∞x (R3)) are small enough so that[
ψ (‖u0‖Z +Mαf0 +Nq(f0) + E(0) + 1)E(0)µ + C‖f0‖L1

v(R3;L∞x (R3)) + 1
2

]
<

2
3 .

We can thus absorb all terms of the right-hand side involving ‖(1 + t)γ∂tu‖Lp(0,T ;Lp(R3)) and ‖(1 +
t)γ∆u‖Lp(0,T ;Lp(R3)) by the left-hand side. The proof of the lemma is eventually complete.

As we can take γ > 1/p′, arguing again by interpolation, we obtain the desired estimate for
‖∇xu‖L∞(R3).

Corollary 5.16. There exists ν > 0 such that∫ T

0
‖∇u‖L∞(R3) ds .0 E(0)ν .

Proof. By the Gagliardo-Nirenberg inequality, for p > 3,

‖∇u‖L∞(R3) . ‖∆u‖βLp(R3)‖u‖
1−β
L2(R3)

with
0 = 1

3 +
(

1
p
− 2

3

)
β + 1− β

2 ⇐⇒ β = 5p
7p− 6 .

We choose p as in the statement of Lemma 5.15. Note that for p close to 3, β is close to 1. By the Hölder
inequality, we thus obtain∫ T

0
‖∇u‖L∞(R3) ds .

∫ T

0
‖∆u‖βLp(R3)‖u‖

1−β
L2(R3) ds

.
∫ T

0
‖∆u‖βLp(R3)‖u‖

1−β
L2(R3) ds

.
∫ T

0

[
(1 + s)γ‖∆u‖Lp(R3)

]β (1 + s)−γβ‖u‖1−β
L2(R3) ds

.

(∫ T

0
(1 + t)−γ

βp
p−β ‖u‖(1−β) p

p−β
L2(R3) ds

) p−β
p

‖(1 + t)γ∆u‖βLp(0,T ;Lp(R3)).

As we can choose p as close to 3 as necessary (by choosing p0 appropriately in the assumptions of
Theorem 1.1) and take γ close to 17

8 −
7

4p thanks to Lemma 5.15, we can ensure

γ
βp

p− β
> 1,

and we may finally combine it with the energy bound ‖u‖2
L2(R3) . E(0) to get the claimed result, with

ν := 1−β
2 .
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5.6 End of the bootstrap
We are in position to conclude.

Lemma 5.17. We have ∫ t?

0
‖jf − ρfu‖2

Ḣ−1/2(R3)
dt . ‖f0‖2/3

L1
v(R3;L∞x (R3))E(0). (5.28)

Proof. By the Sobolev embedding and the Hölder inequality,

‖jf − ρfu‖2
Ḣ−1/2(R3)

. ‖jf − ρfu‖2
L3/2(R3)

. D2‖ρf‖L3(R3).

Using the energy–dissipation inequality and the fact that by Lemma 3.2

sup
[0,t?]
‖ρf‖L3(R3) ≤ sup

[0,t?]
‖ρf‖1/3

L1(R3)‖ρf‖
2/3
L∞(R3) . ‖f0‖2/3

L1
v(R3;L∞x (R3)),

we finally obtain∫ t?

0
‖jf − ρfu‖2

Ḣ−1/2(R3)
dt . ‖f0‖2/3

L1
v(R3;L∞x (R3))

∫ t?

0
D2(t) dt . ‖f0‖2/3

L1
v(R3;L∞x (R3))E(0),

concluding the proof of (5.28).

We deduce that choosing Ψ appropriately, (1.17) enforces that

‖u0‖2
Ḣ1/2(R3)

+ C?
∫ t?

0
‖jf − ρfu‖2

Ḣ−1/2(R3)
ds < 1

C2
?

. (5.29)

Recalling (3.14), this means that there exist strong existence times that are strictly larger than t?. On
the other hand, choosing Ψ appropriately for (1.17), Corollary 5.16 entails that∫ t?

0
‖∇u‖L∞(R3) ds ≤ δ0

2 ,

where δ0 is the parameter of Lemma 3.1. Owing to (3.13) in Proposition 3.4, we can thus find a strong
existence time t0 > t? such that ∫ t0

0
‖∇u‖L∞(R3) ds < δ0.

This is a contradiction with the definition of t?. We deduce that we must have t? = +∞ and the proof
of Theorem 1.1 is complete.
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