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The non-relativistic limit of the Vlasov-Maxwell system
with uniform macroscopic bounds
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Abstract. We study in this paper the non-relativistic limit from
Vlasov-Maxwell to Vlasov-Poisson, which corresponds to the regime
where the speed of light is large compared to the typical velocities of
particles. In contrast with [4], [14], [43] which handle the case of clas-
sical solutions, we consider measure-valued solutions, whose moments
and electromagnetic field are assumed to satisfy some uniform bounds.
To this end, we use a functional inspired by the one introduced by
Loeper in his proof of uniqueness for the Vlasov-Poisson system [33].
We also build a special class of measure-valued solutions, that enjoy no
higher regularity with respect to the momentum variable, but whose
moments and electromagnetic fields satisfy all required conditions to
enter our framework.

Résumé. Nous étudions dans cet article la limite non-relativiste de
Vlasov-Maxwell vers Vlasov-Poisson, ce qui correspond au régime où
la vitesse de la lumière est grande par rapport à la vitesse typique des
particles. Contrairement à [4], [14], [43] qui traitent le cas de solutions
classiques, nous considérons des solutions à valeurs dans les mesures,
dont les moments et champ électro-magnétique sont supposés satisfaire
certaines bornes uniformes. À cette fin, nous utilisons une fonctionnelle
inspirée par celle introduite par Loeper dans sa preuve d’unicité pour
le système de Vlasov-Poisson [33]. Nous construisons également une
classe particulière de solutions à valeurs dans les mesures, qui ne sont
pas lisses par rapport à la variable de moment, mais dont les moments
et champ électro-magnétiques satisfont toutes les conditions requises
pour entrer dans notre cadre de travail.
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1. Introduction

1.1. The Vlasov-Poisson and Vlasov-Maxwell systems

This paper is concerned with the non-relativistic limit of the relativistic
Vlasov-Maxwell system towards the classical Vlasov-Poisson system. These
equations govern the evolution of a distribution function f(t, x, ξ) describing
a system of charged particles interacting through electromagnetic forces,
t ∈ [0,∞) being the time variable, x ∈ R3 or T3 (the 3-dimensional torus
R3/Z3, equipped with the normalized Lebesgue measure) the space variable,
and ξ ∈ R3 the momentum variable. Namely, for any t ∈ [0,∞), f(t, ·, ·)
stands for the probability density of particles with phase-space coordinates
(x, ξ).

Such systems come from the study of magnetized collisionless plasma.
The difference between them lies in the way the electromagnetic force is
defined. One can refer to the reference monograph [20] of Glassey (in partic-
ular Chapters IV, V, VI) for an overview on the background of these kinetic
equations.

For the sake of simplicity we consider a system with a single species of
particles with charge and mass equal to one, say electrons. For the case of
periodic boundary conditions, we shall assume the presence of a background
of fixed particles of opposite charge and unit density (typically ions whose
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mass is much larger than that of electrons). We will denote by c the speed
of light and by |vp| the typical velocity of particles, and we will consider

ε := |vp|
c
∈ (0, 1]

as the small parameter converging to 0, characterizing the so-called non-
relativistic limit.

For a given momentum ξ ∈ R3, the particles have in the non-relativistic
framework a velocity

v(ξ) = ξ,

while in the relativistic framework a velocity

v(ξ) = ξ

(1 + ε2|ξ|2)1/2 .

Their motion is governed by the Vlasov equation:

∂tf + v(ξ) · ∇xf + F · ∇ξf = 0,

where F stands for the electromagnetic force.

To avoid any confusion the quantity v(ξ) will always designate the rela-
tivistic velocity in the following.

Such Vlasov equations are well understood when the self-induced force
F enjoys a gain of regularity compared to the distribution function f , as
in the Vlasov-Poisson system where one only considers the action of the
electric field stemming from the Coulomb potential (in the non-relativistic
framework). On the whole space, the existence and uniqueness of global in
time classical solutions has been known (either for smooth initial data with
compact support or with bounded high order velocity moments) since the
seminal work of Lions and Perthame [32] and Pfaffelmoser [41] (see also [44]
for a simplified proof). For periodic boundary conditions, adapting the proof
of [41], the global existence of classical solutions has been established by
Batt and Rein in [7].

In our framework, that is

• either with no other charged particles in the case of the space domain
Ω = R3,
• or with a background of massive fixed ions in the case of the space
domain Ω = T3,
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the Vlasov-Poisson system is the following:
∂tf

VP + ξ · ∇xfVP + E(t, x) · ∇ξfVP = 0, t ∈ [0,∞), x, ξ ∈ Ω×R3 ,

E = −∇φVP,

−∆φVP = ρVP − λΩ,

(VP)
where ρVP(t, x) stands for the macroscopic density function of particles in
the plasma and jVP(t, x) for the current density vector which are defined in
the following way:

ρVP(t, x) =
∫

R3
ξ

fVP(t, x, dξ), jVP(t, x) =
∫

R3
ξ

ξfVP(t, x, dξ).

To distinguish between R3 and T3, we use the notation

λR3 = 0, λT3 = 1.

The system is endowed with an initial condition

f |t=0 = f0,

normalized so that
∫

Ω×R3
ξ
f0(dx, dξ) = 1. We will denote by fVP a solution

to (VP).

When the force F is the Lorentz force produced by an electromagnetic
field (E(t, x), B(t, x)) whose evolution is governed by the Maxwell equations,
we obtain the Vlasov-Maxwell system:

∂tf
VM
ε + v(ξ) · ∇xfVM

ε + (Eε + εv(ξ)×Bε) · ∇ξfVM
ε = 0 ,

ε∂tEε = ∇×Bε − εjVM
ε , t ∈ [0,∞), x, ξ ∈ Ω×R3 ,

∇ · Eε = ρVM
ε − λΩ,

ε∂tBε = −∇× Eε,
∇ ·Bε = 0,

(VM)

where this time

ρVM
ε (t, x) =

∫
R3
ξ

fVM
ε (t, x, dξ), jVM

ε (t, x) =
∫

R3
ξ

v(ξ)fVM
ε (t, x, dξ).

The system is endowed with an initial condition

fε|t=0 = f0, Eε|t=0 = E0
ε , Bε|t=0 = B0

ε .

We will denote by (fVM
ε , Eε, Bε) a solution to (VM). We will often omit to

index the quantities involved in (VM) by ε when not needed, in order to
enlighten the notations.
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In the following we will use the potential formulation of the Maxwell equa-
tions, sometimes called the Lienard-Wiechert formulation (see for instance
Section 2 of [9] for a proof of the equivalence of the two formulations, and
[30] for the physical point of view) that consists in introducing the potentials
(φε, Aε) solving {

−∆φVM
ε = ρVM

ε − λΩ,

ε2∂2
tAε −∆Aε = εP(jVM

ε ),
(1.1)

where P stands for the Leray projection, that is the projection from the
set of vector fields whose components belong to L2(Ω) onto the subspace of
divergence free vector fields. It appears in the equations because to have a
unique pair of potentials (φε, Aε) corresponding to the electromagnetic field
(Eε, Bε) we need an additional gauge condition. We make the choice of the
Coulomb gauge condition

∇ ·Aε = 0,
which is encoded in the equations thanks to the operator P. Then one obtains
Eε by the formula

Eε = −∇φVM
ε − ε∂tAε, (1.2)

while Bε is recovered

• for Ω = R3, thanks to the equation

Bε = ∇×Aε, (1.3)

• for Ω = T3, this requires to take into account the mean space value,
which results in the equation

Bε = ∇×Aε +
∫

T3
Bε dx. (1.4)

We shall also endow (1.1) with initial conditions (Aε|t=0, ε∂tAε|t=0) that
must be compatible with Eε|t=0 = E0

ε , Bε|t=0 = B0
ε .

In this paper, as we shall manipulate solutions to the Vlasov-Maxwell
and Vlasov-Poisson systems, we will index the quantities f , ρ, j, φ etc. by
VP or VM when needed to make the distinction.

1.2. The non-relativistic limit

Formally taking ε = 0 in the Vlasov-Maxwell system (VM), one almost
readily obtains the Vlasov-Poisson system (VP). The general goal is to de-
termine, given a sequence (fVM

ε )ε of weak solutions to (VM), whether it
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converges (in a sense to be made precise) to a solution fVP to (VP). This is
what we refer to as the non-relativistic limit.

Until now this problem has been tackled in the pioneering (simultaneous
and independent) works of Asano-Ukai [4], Degond [14] and Schaeffer [43],
which all concern classical solutions to (VM) and (VP) on Ω = R3. They
rely on high order (Sobolev or Lipschitz) estimates on the difference fVP −
fVM
ε , i.e. between two classical solutions stemming from the same smooth
initial distribution function. These non-relativistic limits require at least
Lipschitz uniform regularity and boundedness for the distribution function
(with respect to x and ξ) and for the electromagnetic field (with respect to
x). We would like to be able to relax such an assumption. Let us also mention
that the non-relativistic limit has also been treated for the Vlasov-Nordström
system in [13], for the Vlasov-Maxwell system in lower dimensions in [31] and
more recently in [45]. Large time (with respect to 1/ε) estimates are studied
in [37] for Ω = R3 and in [26], [27], in relation with Penrose stability issues
for Ω = T3.

We observe that the structure of the proofs in [4], [14], [43] is in fact
somehow similar to the one used by Robert in [42] to prove a uniqueness re-
sult for the Vlasov-Poisson system, when the initial distribution function f0

is a bounded measurable and compactly supported function. More recently,
this assumption on the initial data has been weakened by Loeper in [33]
who was able to handle measure-valued solutions without compact support.
Using tools from optimal transport, he proved, given an initial condition,
the uniqueness of weak solutions to the Vlasov-Poisson system which have
a bounded macroscopic density. Let us mention that this result has been
refined by Miot [36] and Holding-Miot [28].

Our idea in this work is to adopt the same point of view as Loeper in [33],
that is to consider measure-valued solutions to (VM) and (VP) and prove
the non-relativistic limit with conditional bounds on macroscopic quantities
(moments or force fields). Loosely speaking, we shall prove that given a fixed
initial distribution function f0 and

• a sequence of solutions (fVM
ε ) to (VM) with a bounded density ρVM

that is uniformly bounded in ε and with a higher order moment and
and electromagnetic field of controlled growth in ε,
• a solution fVP to (VM) with a uniformly bounded density ρVP,

together with some other milder conditions to be later stated, the sequence
(fVM
ε ) must converge to fVP in the weak-? sense of measures (which will be
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quantified using a Wasserstein distance). Perhaps surprisingly, this frame-
work allows to consider solutions to the Vlasov-Maxwell system with elec-
tromagnetic fields that are not even bounded in ε.

To do so, we will derive an Osgood-type inequality on a functional in-
volving the two regular Lagrangian flows associated to the solutions fVP and
fVM
ε , an argument related to the proof developed by Dobrushin in [17] for
the purpose of the Mean-Field limit and then used by Loeper in [33] to prove
his uniqueness result for the Vlasov-Poisson system. Finally, we mention that
the idea of using Wasserstein stability estimates for studying singular limits
of Vlasov equations has also recently been used in [25], [24] (in the context
of the so-called quasineutral limit).

1.3. Main results

Before being allowed to state our main result, we have to specify the
notions of weak solutions we will manipulate.

We denote by P2(Ω × R3) the set of probability measures on Ω × R3,
with finite first two moments, endowed with the standard weak-∗ topology.
We look for solutions to (VP) and (VM) such that

f |t=0 = f0.

with f0 ∈ P2(Ω×R3).

Definition 1.1. — (Weak solution to (VP)). For T > 0, we will call
fVP a weak solution to (VP) on [0, T ) associated to the initial condition f0

if

• f ∈ C([0, T ),P2(Ω×R3)− w∗),
• −∇φVP ∈ L1(0, T ;C(Ω)),
• for all test functions ϕ ∈ C∞c ([0, T )× Ω×R3),∫

[0,T )×Ω×R3

(
∂tϕ+ v(ξ) · ∇xϕ−∇xφVP · ∇ξϕ

)
f(t, dξ, dx) dt

= −
∫

Ω×R3
ϕ|t=0 f

0(dξ, dx),

• for all t ∈ [0, T ), φVP(t) solves the Poisson equation:

−∆φVP = ρVP − λΩ.
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• for all t ∈ [0, T ), the density of current jVP satisfies the conservation
law:

∂tj
VP +∇x : 〈f, 1⊗ |ξ|2〉 = −∇xφVPρVP.

Remark 1.2. — We should mention that in the following we only con-
sider solutions such that the macroscopic density ρVP belongs to L∞(0, T ;L1∩
L∞(Ω)) and therefore ∇φVP will actually be log-Lipschitz.

Definition 1.3. — (Weak solution to (VM)). For T > 0, we will call
(fVM, E,B) a weak solution to (VM) on [0, T ) associated to the initial con-
dition (f0, E0, B0) if

• fVM ∈ C([0, T );P2(Ω×R3)− w∗),
• E,B ∈ L1(0, T ;C0 ∩ L∞(Ω)) ∩ L1(0, T ;LogLiploc(Ω)),
• for all test functions ϕ ∈ C∞c ([0, T )× Ω×R3),∫

[0,T )×Ω×R3
(∂tϕ+ v(ξ) · ∇xϕ+ E · ∇ξϕ+ εv(ξ)×B · ∇ξϕ) f(t, dξ, dx) dt

= −
∫

Ω×R3
ϕ|t=0 f

0(dξ, dx),

• for all test functions ψ ∈ C∞c ([0, T ) × Ω,R), Ψ ∈ C∞c ([0, T ) ×
Ω,R3)3,

ε〈E, ∂tΨ〉D′,D + 〈∇ ×B,Ψ〉D′,D − ε〈jVM,Ψ〉D′,D = −ε〈E0,Ψ|t=0〉D′,D ,

〈∇ · E,ψ〉D′,D = 〈ρVM − λΩ, ψ〉D′,D
ε〈∂tB,Ψ〉D′,D − 〈∇× E,Ψ〉D′,D = ε〈B0,Ψ|t=0〉D′,D
〈∇ ·B,ψ〉D′,D = 0.

Remark 1.4. — Let us provide some remarks about Definition 1.3.

• Again, we shall only consider solutions such that the density ρVM

belongs to L∞(0, T ;L1 ∩L∞(Ω)). The assumption on the regularity
of E is therefore only a condition on ε∂tA.

• The LogLip-regularity on E and B is ad hoc in order to be able
to define characteristics using Osgood’s theorem. Note however that
this regularity is not asked to be uniform with respect to ε. It is
likely that less regularity can be asked for, using the more recent
theories developed by DiPerna and Lions [16] and Ambrosio [1], but
the situation is not clear as we deal with measure data.

• To ensure this regularity, we can for instance impose some Sobolev
regularity for jVM. Thanks to the wave equation satisfied by A in
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(1.1) and the Sobolev embedding, it is for instance enough to set the
condition jVM ∈ L∞(0, T ;Hs(Ω)) for some s > 3/2.

Before stating our main result we also need to specify further assumptions
that the solutions we are considering need to satisfy.

Definition 1.5. — We say that a weak solution fVP to the Vlasov-
Poisson system in the sense of Definition 1.1 is suitable if the macroscopic
density and the fourth moment of fVP are bounded in the following sense:

‖ρVP‖L∞(0,T ;L1∩L∞(Ω)) < +∞,
∥∥∥∥∫

R3
|ξ|4fVP(t, x, dξ)

∥∥∥∥
L∞(0,T ;L1(Ω))

< +∞.

Such a solution is actually unique according to [33] (recalled in Theo-
rem 1.8 below).

Finally, some normalization conditions are required for the initial condi-
tions that we are going to consider. These are stated in the following defini-
tion.

Definition 1.6. — We say that the initial data (f0, E0
ε , B

0
ε ) ∈ P2(Ω ×

R3)×D′(Ω)2 are normalized if the following conditions hold. First of all,

∇ · E0
ε =

∫
R3
f0(x, dξ)− λΩ, and ∇ ·B0

ε = 0 in D′(Ω).

In the case Ω = T3, we furthermore ask that

• the spatial mean of the current density is initially assumed to be
zero(1) ∫

T3×R3
ξf0(dx, dξ) = 0;

• the spatial mean value of E0
ε satisfies

〈E0
ε 〉 :=

∫
T3
E0
ε (x) dx = 0.

We are finally in position to state our main result:

Theorem 1.7. — Let f0 in P2(Ω×R3), (E0
ε , B

0
ε ) ∈ D′(Ω)2 be normal-

ized initial data in the sense of Definition 1.6. Let T > 0 (independent of
the parameter ε) and assume that fVP and (fVM

ε , Eε, Bε) are weak solutions
to respectively (VP) and (VM) on the interval of time [0, T ], with respective

(1) Note that this assumption on the current density can be ensured by a Galilean
change of frame.
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initial data f0 and (f0, E0
ε , B

0
ε ). Assume furthermore that fVP is a suitable

solution in the sense of Definition 1.5.

Finally assume that there exists C0 > 0 and (α, β, γ1, γ2) ∈ [0, 1)4 such
that

κ := min(α− (β + 2γ2), 1− (γ1 + γ2)) > 0, (1.5)
so that

• the macroscopic density ρVM is uniformly bounded in ε:

‖ρVM
ε ‖L∞(0,T ;L1∩L∞(Ω)) 6 C0, (1.6)

• the moment of order α

mα(t, x) :=
∫

R3
fVM
ε (t, x, dξ)|v(ξ)|α,

has a uniform bound that has a controlled growth in ε:

‖mα‖L∞(0,T ;L∞(Ω)) 6 C0ε
−β , (1.7)

• the longitudinal electric and magnetic fields have a L2 norm that
has a controlled growth in ε:

‖ε∂tAε‖L∞(0,T ;L2(Ω)) 6 C0ε
−γ1 ,

‖Bε‖L∞(0,T ;L2(Ω)) 6 C0ε
−γ2 .

(1.8)

Then there exist ε0 > 0 a constant C > 0 depending only on the initial data
such that(2) for all ε ∈ (0, ε0] and for all t in [0, T ],

W2(fVP, fVM
ε )(t) 6

(
C (1 + T )2

εκ
)exp(−C(1+T )2)

. (1.9)

The proof of Theorem 1.7 is based on the study of the functional

Q(t) := 1
2

∫
Ω×R3

f0(dx, dξ)
(
|XVP −XVM|2 + |ΞVP − ΞVM|2

)
(1.10)

where, loosely speaking, (XVP,ΞVP) (resp. (XVM,ΞVM)) stand for the char-
acteristic curves (more precisely the lagrangian flow) associated to Vlasov-
Poisson (resp. Vlasov-Maxwell).

The core of the proof will consist in proving the following Osgood-type
inequality. For all t ∈ [0, T ],

Q(t) 6 C (1 + T )2
εκ +

∫ t

0
C (1 + T )2

Q(s)
(

1 + log+
(

1
Q(s)

))
ds, (1.11)

(2) Here W2 stands for the Wasserstein-2 distance on which we refer to Section 2 for
a definition and some properties.
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from which we can deduce the stability estimate (1.9).

Of course, it is possible to apply Theorem 1.7 to the strong solutions built
in [4], [14], [43], for which we already know that the non-relativistic limits
holds. But Theorem 1.7 is designed to handle other types of solutions. It is
the purpose of a second result (see Theorem 4.4 later in this paper) to build
measure-valued weak solutions to (VM) and (VP) that do not enjoy higher
regularity with respect to ξ, but whose moments and electromagnetic field
satisfy all required conditions.

1.4. Comments on Theorem 1.7

A few comments on the statement of Theorem 1.7 are in order.

1. Contrary to the classical results of [4], [14], [43], we obtain in the stability
estimate (1.9) a polynomial rate of convergence whose exponent decreases
exponentially fast to zero with the time running.

It is not clear whether the method of [28] instead of that of [33] can be
adapted to study the non-relativistic limit: if it were the case, this would
allow to improve the rates of convergence in the stability estimate (1.9).
This is left to future studies.

2. As already mentioned, Theorem 1.7 allows electromagnetic fields that may
blow up in ε. No well-prepared assumption is either required. Note however
that the convergence result only concerns distribution functions and not
these fields.

3. One can observe that the condition on the moments of the solution to the
Vlasov-Maxwell system fVM is (perhaps as expected) more restrictive than
the one imposed on fVP (which corresponds to the criterion of Loeper [33] in
view of uniqueness), since we require a control of a higher order moment mα.
But the parameter α can be taken arbitrarily close to 0 and some growth in
ε is even permitted. The price to pay is that the rate of convergence in (1.9)
gets deteriorated at the same time.

4. Our framework shows little dependence on the space dimension: all state-
ments could be modified to handle other dimensions than 3. This aspect
differs from the classical approaches on Ω = Rd where explicit formulas for

– 11 –



N. BRIGOULEIX AND D. HAN-KWAN

solutions to wave equations are used and are thus dependent on the dimen-
sion d (in particular on its evenness or oddness).

5. If additionally f0 is in L1 ∩ L∞(Ω ×R3) and E0
ε , B

0
ε ∈ L2(Ω), then for

all ε ∈ (0, 1], one can build a global weak solution fVM
ε to (VM) satisfying

an energy inequality (see Theorem 1.10 below, and Proposition 1.6 of [10]).
If we additionally assume that the initial energy is uniformly bounded in ε,
that is to say∫

Ω×R3

1
ε2

(√
1 + ε2|ξ|2 − 1

)
f0 dξdx+ 1

2

∫
Ω

(
|E0
ε |2 + |B0

ε |2
)
dx

6
∫

Ω×R3
|ξ|2f0 dξdx+ 1

2

∫
Ω

(
|E0
ε |2 + |B0

ε |2
)
dx 6 C0,

we obtain the existence of C1 > 0 such that for all ε ∈ (0, 1],

‖|ξ|fVM
ε ‖L∞(0,+∞;L1(Ω×R3)) + ‖Eε‖L∞(0,+∞;L2(Ω))

+ ‖Bε‖L∞(0,+∞;L2(Ω)) 6 C1.

This means that the control (1.8) with γ = 0 is automatically ensured for
such solutions.

6. In the case Ω = T3, it is also possible to consider initial data such that
that the spatial mean-value of the initial electric field satisfies

|〈E0
ε 〉| 6 C0ε

δ,

for some δ > 0. The rate of convergence in (1.9) can get worse if δ is close
to 0.

7. It is finally possible to consider initial conditions that fully depend on ε,
i.e. (f0

ε , E
0
ε , B

0
ε ) for Vlasov-Maxwell and an initial condition f0 for Vlasov-

Poisson. Loosely speaking, the final stability estimate (1.9) is then replaced
by

W2(fVP, fVM
ε )(t) 6 C

(
C (1 + T )2

εκ + CW2(f0
ε , f

0)
)exp(−C(1+T )2)

,

(1.12)
assuming W2(f0

ε , f
0) is small enough. To obtain such a result, this requires

to modify the functional Q introduced in (1.10) (see for instance the proof
of Theorem 3.1 in [24]).
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1.5. The Cauchy problem for the Vlasov-Maxwell and Vlasov-
Poisson systems: a short review

The study of the Cauchy problem (either for classical or weak solutions)
for the Vlasov-Poisson and the Vlasov-Maxwell system has a long history.
We will only (quickly) review some aspects that are pertaining to this work.

Vlasov-Poisson. For what concerns classical solutions, we have already
discussed the landmark works [32], [41] and [44], [7] (see also the earlier
important works [47] and [6]). On the other hand, Arsenev in [2] built the
first global weak solutions to (VP). Let us also state the uniqueness result
of [33] to which this work is related.

Theorem 1.8. — (Loeper [33]) Given f0 in P2(R3 ×R3), there exists
at most one weak solution f to (VP) such that∥∥∥∥∫

R3
f(t, x, dξ)

∥∥∥∥
L∞([0,T )×R3)

< +∞.

The propagation of moments is also an important issue that was studied
in [32] on R3. Recently, Pallard in [38] was able to prove the propagation of
moments on T3 (see also [39]).

Theorem 1.9. — (Pallard [38]) Given k > 14/3 and a non-negative
initial data f0 ∈ L1 ∩ L∞(T3 ×R3) such that:∫

T3×R3
|ξ|kf0(x, ξ) dξdx < +∞,

there exists a weak solution f ∈ C([0, T ),P2(T3 ×R3)−w∗) to the Cauchy
problem for the Vlasov-Poisson system (VP) such that for any T > 0 we
have the following propagation of the moments:∫

T3×R3
|ξ|kf(t, x, ξ) dξdx < +∞.

Vlasov-Maxwell. The theory of (local) classical solutions to the Vlasov-
Maxwell system (seen as a quasi-linear equation) was first developed in [49],
[3], [21]. In particular in [21], Glassey and Strauss found a criterion for the
formation of possible singularities: loosely speaking, they can occur only at
large velocities. This was later revisited in [9], [29]. We also refer to [40] and
[34] (and references therein) for some recent developments. Global existence
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is only known for special cases, in particular for small data (see [19], [46],
[8]). The existence of global weak solutions was proved in the landmark work
by DiPerna and Lions in [15].

Theorem 1.10. — (DiPerna-Lions [15]) Let f0 ∈ L1 ∩ L∞(R3 × R3)
be a non-negative function that satisfies:∫

R3×R3
|ξ|2f0(x, ξ) dξdx < +∞.

Let E0, B0 ∈ L2(R3) satisfy the following compatibility conditions on the
initial data:

∇x · E0 =
∫

R3
f0(x, ξ) dξ, and ∇ ·B0 = 0 in D′(R3).

Then there exist f ∈ L∞(0,+∞;L1 ∩ L∞(R3 × R3)) and an electromag-
netic field E,B ∈ L∞(0,+∞;L2(R3)) which satisfy (VM) in the sense of
distributions.

As far as we know, propagation of moments for solutions to (VM) remains
largely open.

1.6. Organization of the paper

The paper is organized as follows. In the next Section 2 we recall some
basic definitions and facts about the Wasserstein distance in order to set up
the framework we will work in and also recall a very useful property proved
by Loeper in [33]. Then we proceed to the proof of Theorem 1.7 in Section
3. Namely we provide an Osgood inequality for the functional Q. Finally in
Section 4 and in Section 5, in the case Ω = T3, we construct a special class
of measure-valued solutions, that have no higher regularity in ξ but that
are very regular in x, namely real-analytic. This is based on a multifluid
representation (introduced by Grenier in [22]), with analyticity regularity in
space variable but only measure in the momentum variable.

Throughout this paper, C will designate a positive constant depending
on the initial data but independent of the parameter ε, that may change
from line to line.

Acknowledgements. Partial support of the grant ANR-19-CE40-0004 is
acknowledged.
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2. Definitions, notations and classical results about the
Wasserstein distance W2

This section is devoted to the exposition of a few classical results from
Optimal Transportation Theory (see [48] for an overview of the tools needed
here) and the links between the Wasserstein distances and the H−1-Sobolev
norm. For the proofs of the following theorems we refer to Section 2 of [33].

Definition 2.1. — Let X and Y be two polish spaces. Let ρ1, ρ2 be two
Borel probability measures on respectively X and Y . We define the Wasser-
stein distance of order 2 between ρ1 and ρ2, denoted W2(ρ1, ρ2), by:

W2(ρ1, ρ2) = inf
γ

(∫
X×Y

d(x, y)2dγ(x, y)
)1/2

,

where the inf runs over the set of probability measures γ on X × Y whose
marginals Pxγ and Pyγ are equal respectively to ρ1 and ρ2.

Remark 2.2. — Let us state some remarks about the previous defini-
tions.

• We do not need this degree of generality for our purpose, in the
following X and Y will always be either T3 or R3.
• The Wasserstein distance of order p would have been defined in the
same way, only replacing d(x, y)2 by d(x, y)p but we restrict our-
selves to the case p = 2.
• There is an important relation between this distance and the optimal
transportation theory. This is what enables to relate the distance W2
and the H−1-norm, a relation described in the next proposition. The
proof and the intermediary lemmas that lead to this result for mea-
sure on R3 are detailed in Section 2 of [33] (they adapt to T3 with
minor changes), based on the seminal results from optimal trans-
portation theory by Brenier [11] and McCann and Gangbo [18].

Theorem 2.3. — (Loeper [33].) Let ρ1, ρ2 be two probability measures
on Ω with L∞ density with respect to the Lebesgue measure. Let ψi, i = 1, 2,
solve:

−∆ψi = ρi − 1, on Ω.

Then

‖∇ψ1 −∇ψ2‖L2(Ω) 6 (max{‖ρ1‖L∞ , ‖ρ2‖L∞})1/2
W2(ρ1, ρ2).
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Definition 2.4. — Let ρ1 be a Borel probability measure on Ω×R3 and
T : Ω×R3 → Ω×R3 be a measurable mapping. The push-forward of ρ1 by
T is the measure ρ2 defined by

∀B ⊂ Ω×R3 Borel, ρ2(B) = ρ1(T−1(B)).

We will use the notation ρ2 = T#ρ1.

We shall now give a useful remark in view of the estimates of section 3.

Remark 2.5. — Let (Ω0, µ) be a probability space , and consider X1, X2
two mappings from (Ω0, µ) to Ω ×R3. If X1#dµ = ρ1, X2#dµ = ρ2, then
γ := (X1, X2)#dµ has marginals ρ1 and ρ2, which implies that∫

Ω0

d(X1, X2)2dµ =
∫

Ω×R3
d(x, y)2dγ(x, y) 6W 2

2 (ρ1, ρ2).

3. Proof of Theorem 1.7

In order to prove Theorem 1.7, we shall focus on the case Ω = T3 as
the treatment of space mean values requires a specific analysis compared
to the case of R3. We explain in a final subsection the (slight) required
modifications to handle the case Ω = R3.

3.1. Lagrangian formulation for weak solutions of Vlasov-Poisson
and relativistic Vlasov-Maxwell

We adopt a Lagrangian point of view, which means that our analysis
will essentially rely on following the particles along their path. It means in
concrete terms that we consider the two characteristic systems of ODEs cor-
responding to the Vlasov-Poisson system and the Vlasov-Maxwell system,
starting at (x, ξ) at time 0.

We consider a weak solution fVP to (VP) in the sense of Definition 1.1
and a weak solution fVM to (VM) in the sense of Definition 1.3.

The macroscopic densities ρi are assumed to be bounded in L1∩L∞ and
therefore ∇xφi classically satisfies the following regularity properties (see
Lemma 3.1 of [33] or Lemma 3.2 of [24]):
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Lemma 3.1. — Let φ satisfy the Poisson equation

−∆φ = ρ− 1, in T3.

Then there exists C depending only on ‖ρ− 1‖L∞((0,T )×T3), such that

‖∇φ‖L∞((0,T )×T3) 6 C,

and

∀t ∈ [0, T ), ∀(x, y) ∈ R3 ×R3,

|∇φ(t, x)−∇φ(t, y)| 6 C|x− y|
(

1 + log+
(

1
|x− y|

))
,

where log+(z) = log z if z > 1, log+(z) = 0 if z < 1.

This is enough to define a unique Hölder continuous flow (see e.g. [35])
that satisfies {

∂tX
VP(t, x, ξ) = ΞVP(t, x, ξ),

∂tΞVP(t, x, ξ) = −∇φVP(t,XVP),
(3.1)

with the initial conditions {
XVP(0, x, ξ) = x,

ΞVP(0, x, ξ) = ξ.
(3.2)

On the other hand, for the Vlasov-Maxwell system, by definition of a
weak solution, we also have that the electromagnetic field (E,B) belongs
to L1(0, T ; LogLip(T3)). This is therefore enough to define a unique Hölder
continuous flow that satisfies{

∂tX
VM(t, x, ξ) = v(ΞVM(t, x, ξ)),

∂tΞVM(t, x, ξ) = E(t,XVM) + εv(ΞVM)×B(t,XVM),
(3.3)

endowed with the initial data{
XVM(0, x, ξ) = x,

ΞVM(0, x, ξ) = ξ.
(3.4)

Moreover, we have the following representation formula:

∀t ∈ [0, T ), fVP = (XVP,ΞVP)(t, ·, ·)#f0, (3.5)

and
∀t ∈ [0, T ), fVM = (XVM,ΞVM)(t, ·, ·)#f0. (3.6)

Likewise,
∀t ∈ [0, T ), ρVP = XVP(t, ·, ·)#f0, (3.7)
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and
∀t ∈ [0, T ), ρVM = XVM(t, ·, ·)#f0. (3.8)

3.2. Log-Grönwall estimate on the square of the W2 distance be-
tween the Lagrangian trajectories

We define the functional

Q(t) := 1
2

∫
T3×R3

f0(dx, dξ)
(
|XVP −XVM|2 + |ΞVP − ΞVM|2

)
(3.9)

which quantifies the distance between the two solutions in a weak sense that
we are going to explain. One can notice that

((XVP,ΞVP)(t), (XVM,ΞVM)(t))#f0

is a probability measure on
(
T3 ×R3)2 with marginals fVP and fVM, which

leads to the important preliminary lemma:

Lemma 3.2. — Let Q be the quantity defined in (3.9), then

W 2
2 (fVP(t), fVM(t)) 6 2Q(t),

and
W 2

2 (ρVP(t), ρVM(t)) 6 2Q(t).

Any control of the functional Q(t) will consequently imply an estimate
of the Wasserstein distance between fVP and fVM.

One can notice that the same considerations as above on the Lagrangian
flows for the quantities |XVP −XVM|2 and |ΞVP − ΞVM|2 lead to

|XVP −XVM|2(t) = 2
∫ t

0
(XVP −XVM)(s) ·

(
ΞVP − v(ΞVM)

)
(s)ds,

and

|ΞVP − ΞVM|2(t) =

2
∫ t

0
(ΞVP − ΞVM)(s) · (FVP(s,XVP)− FVM(s,XVM,ΞVM))ds.

with the notation
FVP(t, x) = −∇xφVP(t, x),

FVM(t, x, ξ) = −∇xφVM(t, x)− ε∂tA(t, x) + εv(ξ)×B(t, x).
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This yields for all t in [0, T ):

Q(t) 6 Q(0)

+
∫ t

0

∫
T3×R3

f0(dx, dξ)
∣∣(XVP(s)−XVM(s)

)
·
(
ΞVP(s)− v(ΞVM(s))

)∣∣ ds
+
∫ t

0

∫
T3×R3

f0(dx, dξ)
∣∣∣ (ΞVP(s, x, ξ)− ΞVM(s, x, ξ)

)
· (∇xφVP(s,XVP(s, x, ξ))−∇xφVM(s,XVM(s, x, ξ)))

∣∣∣ ds
+ ε

∫ t

0

∫
T3×R3

f0(dx, dξ)
∣∣(ΞVP − ΞVM) · (v(ΞVM)×B(s,XVM))

∣∣ ds
+ ε

∫
T3×R3

f0(dx, dξ)
∣∣∣∣∫ t

0

(
ΞVP − ΞVM) · ∂tA(s,XVM) ds

∣∣∣∣ .
(3.10)

In the following, the C will stand for a generic positive constant (inde-
pendent of ε but that may depend on the initial data) that may change from
line to line.

We will be able to somehow systematically replace ΞVP(t) − v(ΞVM)(t)
by ΞVP(t)−ΞVM(t), up to some error terms. This is the content of the next
lemma.

Lemma 3.3. — Let G ∈ L1
loc(T3 × R3). For almost all s ∈ [0, T ), we

have the estimate∫
T3×R3

f0(dx, dξ)
∣∣(ΞVP − v(ΞVM)

)
·G
∣∣ 6

C

(
ε2 +

∫
T3×R3

f0(dx, dξ)|G|2 +
∣∣∣∣∫

T3×R3
f0(dx, dξ)

∣∣ΞVP − ΞVM∣∣ |G|∣∣∣∣
)
.

(3.11)

Proof. — We can write

ΞVP − v(ΞVM) =
[
ΞVP − v(ΞVP)

]
+
[
v(ΞVP)− v(ΞVM)

]
We observe then that

|v(ξ)− ξ| 6 ε|ξ|2√
1 + ε2|ξ|2

6 ε|ξ|2,
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and by the Cauchy-Schwarz inequality and the Young inequality, we infer∫
T3×R3

f0(dx, dξ)
∣∣(ΞVP − v(ΞVP)

)
·G(x, ξ)

∣∣ 6
1
2

(
ε2
∣∣∣∣∫

T3×R3
|ξ|4fVP(t, dx, dξ)

∣∣∣∣+
∫

T3×R3
f0(dx, dξ)|G(x, ξ)|2 dξdx

)
,

and the first term is bounded by Cε2 thanks to the assumption that the
solution to Vlasov-Poisson is suitable in the sense of Definition 1.5, which
implies ∥∥∥∥∫

R3
|ξ|4fVP(t, x, dξ)

∥∥∥∥
L∞(0,T ;L1(T3))

6 C0.

Moreover, a straightforward computation ensures that the gradient of the
velocity is bounded by a constant independent of ε:

‖∇v‖L∞(R3) 6 C.

Therefore we have the estimate

|v(ΞVP)− v(ΞVM)| 6 C|ΞVP − ΞVM|

and we can conclude. �

We apply Lemma 3.3 to the first term in the expansion of the rhs of
(3.10), for G = XVP(s)−XVM(s). We deduce a control by

C

(
Tε2 +

∫ t

0
Q(s) ds

)
.

To derive a suitable estimate for Q we therefore focus on the remaining terms
of (3.10). We define the following three quantities I1, I2 and I ′3 for t ∈ [0, T ),
which we will tackle one after another:

I1 :=
∫

T3×R3
f0(dx, dξ)

∣∣XVP(t)−XVM(t)
∣∣ ∣∣ΞVP(t)− ΞVM(t)

∣∣
+
∫

T3×R3
f0(dx, dξ)

∣∣∣ (ΞVP(t)− ΞVM(t)
)

· (∇xφVP(t,ΞVP(t))−∇xφVM(t,ΞVM(t)))
∣∣∣,

which will be estimated following the path traced in Section 3.2 of [33],

I2 := ε

∫
T3×R3

f0(dx, dξ)
∣∣(ΞVP(t)− ΞVM(t)

)
· (v(ΞVM)×B(t,XVM))

∣∣ ,
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whose estimate is almost straightforward with the uniform control (1.8) on
the L2 norm of the magnetic field B, and

I ′3 := ε

∫
T3×R3

f0(dx, dξ)
∣∣∣∣∫ t

0

(
ΞVP(t)− ΞVM(t)

)
· ∂tA(t,XVM(t)) ds

∣∣∣∣ ,
(3.12)

which requests a little more subtle integration by part arguments, which
explains that we need to keep the integral in time for estimating this contri-
bution.

3.2.1. Estimate on I1

In this paragraph we follow carefully the steps of the proof of Section 3
of [33].

By a straightforward Young inequality the first term of I1 is bounded
by Q(t). The Cauchy-Schwarz inequality implies that the second term is
bounded by:

(2Q(t))1/2×(∫
T3×R3

f0(dx, dξ)
∣∣∇xφVP(t,XVP)−∇xφVM(t,XVM)

∣∣2)1/2
.

We then write(∫
T3×R3

f0(dx, dξ)
∣∣∇xφVP(t,XVP)−∇xφVM(t,XVM)

∣∣2)1/2

6

(∫
T3×R3

f0(dx, dξ)
∣∣∇xφVP(t,XVM)−∇xφVM(t,XVM)

∣∣2)1/2

+
(∫

T3×R3
f0(dx, dξ)

∣∣∇xφVP(t,XVP)−∇xφVP(t,XVM)
∣∣2)1/2

=: J1(t)1/2 + J2(t)1/2.

We are now going to estimate J1 and J2.

For J1, the equations (3.7), (3.8) and Theorem 2.3 imply that

J1(t) =
∫

T3
ρVP(t, x)|∇xφVP(t, x)−∇xφVM(t, x)|2 dx

6 max{‖ρVP‖L∞ , ‖ρVM‖L∞}2W 2
2 (ρVP(t), ρVM(t)).
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Using Lemma 3.2, we conclude that

J1(t) 6 2 max{‖ρVP‖L∞ , ‖ρVM‖L∞}2Q(t).

By assumption both ‖ρVP‖L∞ and ‖ρVM‖L∞ are uniformly bounded in ε

(see (1.6)). The estimate of J2 can be done from standard arguments relying
on the Log-Lipschitz regularity of ∇xφVP, see Lemma 3.1. We refer to the
end of the section 3 of [33] for the computations leading to the following
estimate:

J2(t) 6 CQ(t)
(

1 + log+
(

1
Q(t)

))
.

Gathering the previous estimates finally gives:

I1 6 CQ(t)
(

1 + log+
(

1
Q(t)

))
. (3.13)

3.2.2. Estimate on I2

First, an application of the Cauchy-Schwarz inequality gives:

I2 6 εQ(t)1/2
(∫

T3×R3
f0(dx, dξ)|v(ΞVM)|2|B(t,XVM)|2

)1/2

6 εQ(t)1/2
(∫

T3×R3
fVM(t, dx, dξ)|v(ξ)|2|B(t, x)|2

)1/2

6 εQ(t)1/2‖B(t)‖L2(T3)

∥∥∥∥∫
R3
fVM(t, x, dξ)|v(ξ)|2

∥∥∥∥1/2

L∞(T3)
.

By the assumption (1.8), we have

‖B(t)‖L2(T3) 6 Cε
−γ2 .

It remains then to estimate the quantity ε2‖
∫

R3 f
VM(t, x, dξ)|v(ξ)|2‖L∞(T3).

To this end, we use the uniform bound (1.7) bearing on ‖mα‖L∞(T3) and
the general fact that ε|v(ξ)| 6 1. This gives

ε2
∥∥∥∥∫

R3
fVM(t, x, dξ)|v(ξ)|2

∥∥∥∥
L∞(T3)

6 Cεα
∥∥∥∥∫

R3
fVM(t, x, dξ)|v(ξ)|α

∥∥∥∥
L∞(T3)

6 Cεα−β .

Consequently we obtain using Young’s inequality,

I2 6 Cε
α−(β+2γ2) + CQ(t). (3.14)
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3.2.3. Estimate on I ′3

The same direct approach fails for the estimate of I ′3 because it gives

I ′3 6 CQ(t)1/2‖ε∂tA(t,XVP(t, .))‖L2(T3),

but unfortunately, at first glance, we can only use (1.8), that gives

‖ε∂tA‖L2(T3) 6 Cε
−γ1 ,

and we seemingly lose some power of ε.

Remark 3.4. — Even if we assume some uniform bound in L2 for jVM,
the same problem of "loss of ε" will occur. Indeed, the energy estimate for
the wave equation

ε2∂2
tA−∆xA = εP(jVM)

gives the estimate

‖ε∂tA(t,XVP(t, .))‖L2(T3) 6 CT‖j‖L∞(0,T ;L2(T3)),

and the small parameter ε is lost as well.

This is the reason why we have to deal with the Gronwall inequality in
its integral form in order to perform an integration by parts with respect to
the time variable.
One must first observe that

∂sA(s,XVM(s, x, ξ)) = d

ds

(
A
(
s,XVM(s, x, ξ)

))
− ∂sXVM · ∇xA(s,XVM)

= d

ds

(
A
(
s,XVM(s, x, ξ)

))
− v(ΞVM) · ∇xA(s,XVM).

We then define

I ′31 := ε∫
T3×R3

f0(dx, dξ)
∣∣∣∣ ∫ t

0

d

ds

[
A
(
s,XVM(s, x, ξ)

)
− 〈A〉

]
· (ΞVP − ΞVM)ds

∣∣∣∣ ,
I ′32 := ε

∫
T3×R3

∫ t

0
f0(dx, dξ)

∣∣(v(ΞVM) · ∇xA(s,XVM)
)
· (ΞVP − ΞVM)

∣∣ ds,
and

I ′33 := ε

∫
T3×R3

∫ t

0
f0(dx, dξ)

∣∣(〈∂sA〉) · (ΞVP − ΞVM)(s)
∣∣ ds,

so that
I ′3 6 I

′
31 + I ′31 + I ′33.

– 23 –



N. BRIGOULEIX AND D. HAN-KWAN

To estimate I ′32 we perform again a Cauchy-Schwarz inequality in the integral
over T3:

I ′32 6 ε
∫ t

0

(
Q(s)1/2

(∫
T3×R3

|v(ξ)|2fVM(s, dx, dξ)|∇xA(s, x)|2
)1/2

)
ds.

The factor ∇xA can be bounded in L2 by the L2 norm of B thanks to the
Biot and Savart law.

Lemma 3.5. — Let B ∈ L2(T3) and A such that

∇×A = B − 〈B〉.

Then we have the Biot and Savart law:

A− 〈A〉 = ∇×
(
∆−1 (B − 〈B〉)

)
.

where ∆−1 selects the unique solution with zero mean to the associated Pois-
son equation. It follows in particular that

‖∇A‖L2(T3) 6 C‖B − 〈B〉‖L2(T3).

Proof. — There exist a unique distribution ψ such that

−∆ψ = B − 〈B〉,
∫

T3
ψ dx = 0.

Then one can check that

∇× (A−∇× ψ) = −∇ (∇ · ψ) = 0,

and therefore
A = ∇× ψ + 〈A〉.

The Biot and Savart law and the estimate follow. �

We also have the following conservation of the spatial mean of B.

Lemma 3.6. — The space mean-value of B is constant, for any t in
[0, T ):

〈B(t)〉 = 〈B0〉

Proof. — It is straightforward since from the Maxwell equations, for any
t in [0, T ) we have

ε
d

dt
〈B(t)〉 = ε〈∂tB(t)〉 = −〈∇× E(t)〉 = 0.

�
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We deduce from the above lemmas and (1.8) that

‖B − 〈B〉‖L2(T3) 6 ‖B‖L2(T3) + |〈B〉| 6 Cε−γ2 ,

so that
‖∇xA‖L∞(0,T ;L2(T3)) 6 Cε

−γ2 .

We then have using the Young inequality,

I ′32 6 C
∫ t

0
Q(s)ds+ Ctεα−(β+γ2). (3.15)

To estimate I ′33 we first use the Cauchy-Schwarz inequality

I ′33 6 ε
∫ t

0
Q(s)1/2|〈∂sA(s)〉|ds

and then rely on the fact that for any t in [0, T ), since ε〈∂tA〉 satisfies

ε
d

dt
〈∂tA〉 = 〈jVM〉,

we have

ε〈∂tA〉 =
∫ t

0
〈jVM〉(s)ds+ ε〈∂tA〉|t=0. (3.16)

The initial data being normalized, the last term is by assumption on the
initial electric field E0

ε equal to 0. We therefore must focus on the first term
of (3.16).

We write that∫ t

0
〈jVM〉(s)ds =

∫ t

0

(
〈jVM〉(s)− 〈jVP〉(s)

)
ds+

∫ t

0
〈jVP〉(s)ds.

We then remark that∫ t

0

(
〈jVM〉(s)− 〈jVP〉(s)

)
ds =

∫ t

0

∫
T3×R3

f0(dx, dξ)
(
v(ΞVM)− ΞVP) ds

=
∫ t

0

∫
T3×R3

f0(dx, dξ)
(
v(ΞVM)− v(ΞVP)

)
ds

+
∫ t

0

∫
T3×R3

f0(dx, dξ)
(
v(ΞVP)− ΞVP) ds,

and since
|v(ξ)− ξ| 6 ε|ξ|2

and
‖∇ξv‖L∞ 6 C,
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we have∣∣∣∣∫ t

0

(
〈jVM〉(s)− 〈jVP〉(s)

)
ds

∣∣∣∣
6 CTQ(t)1/2 + CεT

∥∥∥∥∫
R3
|ξ|2fVP(t, x, dξ)

∥∥∥∥
L1(T3)

.

Concerning
∫ t

0 〈j
VP〉(s)ds, we use the fact that the Vlasov-Poisson equation

preserves the current density which therefore will be equal to 0 because the
initial data is normalized so that 〈jVP〉|t=0 = 0.

Lemma 3.7. — We have the conservation of the spatial mean-value of
the current density for the Vlasov-Poisson system:

∀t ∈ [0, T ), 〈jVP〉(t) = 〈jVP〉(0).

Proof. — We have the following conservation law ensured by Definition
1.1

∂tj
VP +∇x : 〈f, 1⊗ |ξ|2〉 = ρVPE.

Therefore
d

dt
〈jVP〉 =

∫
T3

∆xφ
VP∇xφVP dx.

For any i ∈ {1, 2, 3}, we have∫
T3
∂iiφ

VP∂iφ
VP dx = 1

2

∫
T3
∂i|∂iφVP|2 dx = 0.

Likewise, for any i 6= j, we have by integration by parts with respect to xi,∫
T3
∂iiφ

VP∂jφ
VP dx = −

∫
T3
∂iφ

VP∂ijφ
VP dx

= −1
2

∫
T3
∂j |∂iφVP|2 dx

= 0.

The lemma is finally proved. �

We end up with the following estimate for I ′33, for any t in [0, T ):

I ′33(t) 6 C(1 + T )2
(
ε2 +

∫ t

0
Q(s)ds

)
. (3.17)

To estimate I ′31 we first perform the integration by parts with respect to
the time variable, which yields

|I ′31| 6 K̄1 +K2, (3.18)
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with

K̄1 := ε

∫
T3×R3

∫ t

0
f0(dx, dξ) ds∣∣(A(s,XVM(s, x, ξ))− 〈A〉(s)) ·

(
FVP(XVP(t))− FVM(XVM(s),ΞVM(s))

)∣∣
K2 := ε

∫
T3×R3

f0(dx, dξ)
∣∣(A(t,XVM(t))− 〈A〉(t)

)
·
(
ΞVP(t)− ΞVM(t)

)∣∣ ,
where we recall

FVM(s,XVM)− FVP(s,XVP) =

∇xφVM(s,XVM)−∇xφVP(s,XVP)+εv(ΞVM)×B(s,XVM)+ε∂tA(s,XVM).

We first treat K̄1. We are somehow back to the terms I1, I2 but with a gain
of a power of ε. Then by (1.8),

‖ε∂tA‖L2(T3)(t) 6 C0ε
−γ1 ,

and performing the same analysis, one has

|K̄1| 6C‖ρVM‖1/2L∞(T3)‖A(t, .)− 〈A〉‖L∞(0,T ;L2(T3))

×
(
ε

∫ t

0
Q(s)

(
1 + log+

(
1
Q

(s)
))

ds+ Tε1+α−β
2 −γ2 + ε1−γ1T

)
.

Now by the Poincaré inequality on T3 and the Biot and Savart law, we have

‖A(t, .)−〈A〉‖L2(T3) 6 C‖∇A‖L2(T3) 6 C‖B−〈B〉‖L2(T3) 6 Cε
−γ2 . (3.19)

Summing up all these estimates,and noticing that the condition on κ in
Theorem 1.7 implies α−β

2 − γ2 > 0, we obtain that for all t in [0, T ):

|K̄1| 6 C(1 + T )2
(
ε1−γ2 + ε1−(γ1+γ2) +

∫ t

0
Q(s)

(
1 + log+

(
1
Q

(s)
))

ds

)
.

(3.20)
For K2, we get by Cauchy Schwarz

|K2| 6 ε‖ρVM(t)‖1/2L∞‖(A− 〈A〉)(t)‖L2(T3)Q(t)1/2.

Therefore, by the Young inequality, we conclude that

|K2| 6 ε1+γ2−γ1‖ρVM(t)‖2L∞‖(A− 〈A〉)(t)‖2L2(T3) + ε1+γ1−γ2Q(t)

6 Cε1−(γ1+γ2) + Cε1+γ1−γ2Q(t),
(3.21)
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where we have used again the Biot and Savart law and (1.8). Finally, gath-
ering (3.15), (3.17), (3.18), (3.20) and (3.21), since γ2 < 1, we obtain

|I ′3| 6 C(1 + T )2εmin(α−(β+2γ2),1−(γ1+γ2))

+
∫ t

0
C(1 + T )2Q(s)

(
1 + log+

(
1

Q(s)

))
ds+ Cε1+γ1−γ2Q(t). (3.22)

3.3. Final estimate

Finally by (3.13), (3.14) and (3.22) (for ε ∈ [0, ε0] with ε0 small enough
to absorb the term Cε1+γ1−γ2Q(t) in (3.22) by Q(t) of the left-hand side)
we have the following Osgood estimate on the quantity Q(t):

Q(t) 6 C (1 + T )2
εκ +

∫ t

0
C (1 + T )2

Q(s)
(

1 + log+
(

1
Q(s)

))
ds. (3.23)

with
κ = min(α− (β + 2γ2), 1− (γ1 + γ2)).

The procedure to obtain (1.9) from (3.23) is standard: let us quickly explain
it for the sake of completeness. Set

µ(z) = C (1 + T )2
z(1 + log+(1/z)),

ϕ(t) = C (1 + T )2
εκ +

∫ t

0
C (1 + T )2

Q(s)
(

1 + log+
(

1
Q(s)

))
ds.

Since µ is non-decreasing, we have

ϕ′(t) = µ(Q(t)) 6 µ(ϕ(t)).

Set then
U(t) = logϕ(t).

It follows that U satisfies

U ′(t) 6 C(1 + T )2(1− U(t)).

which we can explicitly integrate, yielding

U(t) 6 U(0)e−C(1+T )2t + (1− e−C(1+T )2t).

Coming back to Q, by a continuity (in time) argument, taking ε0 > 0 small
enough, we finally obtain that for all ε ∈ (0, ε0] and t ∈ [0, T ],

Q(t) 6 C exp
(
log
(
C(1 + T )2εκ

)
exp

(
−C(1 + T )2)) ,

which implies the desired inequality (1.9) and the proof of Theorem 1.7 is
complete.
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3.4. The case Ω = R3

As already mentioned, the proof for Ω = R3 is very similar, yet simpli-
fied in some aspects. The main difference is that we do not need to handle
space mean values as in the torus case. This is in particular apparent in the
treatment of the term I ′3 (as defined in (3.12)). We have this time

I ′3 6 I
′
31 + I ′32,

where

I ′31 = ε

∫
R3×R3

f0(dx, dξ)
∣∣∣∣∫ t

0

d

ds

[
A
(
s,XVM(s, x, ξ)

)]
· (ΞVP − ΞVM) ds

∣∣∣∣ ,
I ′31 = ε

∫
R3×R3

∫ t

0
f0(dx, dξ)

∣∣(v(ΞVM) · ∇xA(s,XVM)
)
· (ΞVP − ΞVM)

∣∣ ds,
To study I ′31, we rely on the same integration by parts in time argument.
Only the final estimate is different: in R3 the Biot and Savart law gets
simplified compared to the case of T3, so that

‖∇xA‖L2(R3) 6 C‖B‖L2(R3)

and we use the Sobolev embedding instead of the Poincaré inequality (3.19),
which yields

‖A(s)‖L6(R3) 6 C‖∇xA‖L2(R3)

6 C‖B(s)‖L2(R3).

Writing
|I ′31| 6 K̄1 +K2,

with

K̄1 := ε

∫
R3×R3

∫ t

0
f0(dx, dξ)∣∣(A(s,XVM(s, x, ξ)) ·

(
FVP(XVP)− FVM(XVM)

)∣∣ ds,
K2 := ε

∫
R3×R3

f0(dx, dξ)
∣∣(A(t,XVM(t)) ·

(
ΞVP(t)− ΞVM(t)

)∣∣ ,
the outcome is the estimate

|K̄1| 6 C‖ρVM‖L3(R3)‖B(t, .)‖L2(R3)

×
(
ε

∫ t

0
Q(s)

(
1 + log+

(
1
Q

(s
))

ds+ εα−(β+γ2) + ε1−γ1T

)
,

|K2| 6 ε‖ρVM(t)‖L6/5(R3)‖B(t)‖L2(R3) + εQ(t).

The remaining of the proof applies, mutatis mutandis.
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4. A class of measure-valued solutions which satisfies the
assumptions of Theorem 1.7

Let Ω = T3. The goal of this section is to build measure-valued solutions
to (VM) and (VP) that are not in the class of compactly supported C1

solutions in x and ξ, and to which Theorem 1.7 can nevertheless apply.
More precisely we are interested in solutions with high regularity in the
space variable x, namely real-analytic, and very little in the momentum
variable ξ: basically we only ask for f(t, x, .) to be a measure with some
finite moments. The corresponding weak solutions to (VM) and (VP) will in
fact be induced by a family of strong solutions in x to a related fluid system.
In the first subsection we will give the definition of what we call weak in ξ
and strong in x solutions, following Baradat [5]. Then we explain a multifluid
representation (used by Grenier [22]) that will allow us to rewrite the Vlasov-
Maxwell system as a system of fluid equations that we will effectively study.
Finally we will prove a small time existence result for these systems by a
Cauchy-Kovalevskaya argument, again following [22] (see also [23]).

4.1. Weak in ξ and strong in x solutions

We will consider in the following a particular class of the more general
solutions we handled previously in Definitions 1.1 and 1.3. It concerns weak
solutions that are regular in x, at least C1, for which another convenient
definition can be given, following Baradat [5].

Let T > 0. We consider a function f : [0, T ]×T3 → P(R3), such that for
any test function ϕ ∈ C1

b (R3), the hydrodynamic observable corresponding
to ϕ:

〈f, ϕ〉(t, x) :=
∫

R3
ϕ(ξ)f(t, x, dξ),

is a smooth function, namely in C1([0, T )×T3).

Definition 4.1. — We say that f : [0, T ]×T3 → P(R3) is a weak in ξ
and strong in x solution to (VP) if it satisfies in the classical sense, for all
test functions ϕ ∈ C1

b (R3) the system
∂t〈f, ϕ〉(t, x) +∇x · 〈f, ξϕ〉(t, x) +∇xφVP · 〈f,∇ϕ〉(t, x) = 0,

−∆xφ
VP = 〈f, 1〉 − 1,

f(0, x, dξ) = f0(x, dξ).
(4.1)
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Definition 4.2. — We say that f : [0, T ]×T3 → P(R3) is a weak in ξ
and strong in x solution to (VM) if it satisfies in the classical sense for all
test functions ϕ ∈ C1

b (R3) the system

∂t〈f, ϕ〉(t, x) +∇x · 〈f, v(ξ)ϕ〉(t, x)

+ E · 〈f,∇ϕ〉+ ε

3∑
i=1

Bσ2(i)〈f, vσ(i)(ξ)∂iϕ〉 −Bσ(i)〈f, vσ2(i)(ξ)∂iϕ〉 = 0,

−∆xφ = 〈f, 1〉 − 1,

ε2∂tA−∆xA = εP(〈f, v(ξ)〉),

f(0, x, dξ) = f0(x, dξ),

ε∂tA|t=0 = E0 +∇xφ|t=0,

∇×A|t=0 = B0 − 〈B0〉, 〈A|t=0〉 = 0,
(4.2)

where σ stands for the permutation σ = (1, 2, 3).

4.2. A multifluid representation

In this section we will set another formulation of the Vlasov-Maxwell
system of equations, which we refer to as the multifluid representation, as
introduced in [22] to prove a small time uniform existence result and ana-
lyze the quasineutral limit for Vlasov-Poisson type systems. It has also been
used in [5] for studying nonlinear instabilities around rough velocity profiles
in Vlasov-Poisson systems. We will be able to prove the existence of strong
solutions to this system which in turn will provide some weak in ξ and strong
in x solutions to the Vlasov-Maxwell system.

We look for solutions f under the form

f(t, x, dξ) =
∫
M

ρθ(t, x)δ(ξ − ξθ(t, x))µ(dθ), (4.3)

where (M,µ) is (fixed) a probability space, δ stands for the Dirac mass at
0, (ρθ)θ∈M , (ξθ)θ∈M are families of smooth functions and vector fields on
T3. This is a representation where the whole set of particles in the plasma
can be divided into several phases, each of them characterized by its point-
wise macroscopic density ρθ(t, x) and its pointwise momentum ξθ(t, x). Each
density will be transported by the relativistic velocity v(ξθ) according to a
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continuity equation and each phase will be accelerated by the same electro-
magnetic field, producing a Lorentz force FL that is computed by taking into
account all the different phases.

More precisely, given smooth initial data (ρ0
θ)θ∈M , (ξ0

θ)θ∈M we consider
the following system:

∀θ ∈M, ∂tρθ(t, x) +∇x · (v(ξθ(t, x))ρθ(t, x)) = 0 ,
∀θ ∈M, ∂tξθ(t, x) + (v(ξθ(t, x)) · ∇x) ξθ(t, x)

=
(
−∇xφ− ε∂tA+ εv(ξθ)× (∇x ×A+ 〈B0〉

)
(t, x) ,

ε2∂2
tA−∆xA = εP

(∫
T3
v(ξθ(t, x))ρθ(t, x)µ(dθ)

)
,

−∆xφ =
∫
M

ρθ(t, x)µ(dθ)− 1 ,

∀θ ∈M, ρθ|t=0 = ρθ(0), ξθ|t=0 = ξθ(0),

− ε∂tA|t=0 = E0 +∇xφ|t=0,

∇×A|t=0 = B0 − 〈B0〉, 〈A|t=0〉 = 0,
(4.4)

to which we can add a definition of the electric fields Eε and Bε

Eε := −ε∂tA−∇xφ ,

Bε := ∇x ×A+ 〈B0〉.
(4.5)

Note that this corresponds to an initial condition

f0(x, dξ) =
∫
M

ρθ(0, x)δ(ξ − ξθ(0, x))µ(dθ).

As explained in [22], this allows to model a variety of initial conditions,
including

• continuous functions in x and ξ, taking (M,µ) =
(

R3, λ dθ
1+θ2

)
(where λ > 0 is chosen in order to normalize the measure),

ξθ(0, x) = θ, ρθ(0, x) = π(1 + θ2)f(t, x, θ);

• finite sums of Dirac masses in velocity supported on v1, · · · , vn ∈
R3, that corresponds to a sum of monokinetic data, in which case
(M,µ) is a discrete probability space with uniform measure.
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Assuming that we are able to solve this system, we can define the measure
f(t, x, .) according to (4.3). Given a smooth test function ϕ, we have then

〈f, ϕ〉(t, x) =
∫
M

ϕ(ξθ(t, x))ρθ(t, x)µ(dθ).

This is a straightforward computation to check that if (ρθ)θ∈M , (ξθ)θ∈M
solve (4.4) then the measure valued function f defined above is a strong in
x and weak in ξ solution to (4.2).

As System (4.4) does not seem to possess any hyperbolic structure, we
are forced to solve it for initial data with analytic regularity, using a Cauchy-
Kovalevskaya type scheme. The precise analytic spaces we work with are as
follows.

Definition 4.3. — For δ > 1, Bδ is the space of real functions f on T3

such that
|f |δ :=

∑
k∈Z3

|Ff(k)| δ|k| < +∞,

where (Ff(k)) are the Fourier coefficients of f . We will designate by Bδ the
space of the vector-valued real functions h on T3 whose components are in
Bδ. We keep the notation |h|δ to designate the sum of all the |.|δ norms of
the components of h.

We are now able to state the second main result of our paper.

Theorem 4.4. — Let (M,µ) the probability space used to define the mul-
tifluid system (4.4), let δ0 > δ1 > 1, let C0 > 0 and let (ρθ(0))θbe a family
of Bδ0 , and (ξθ(0))θ and (E0

ε , B
0
ε ) be families of Bδ0 satisfying

∇ · E0
ε =

∫
M

ρθ(0) dµ(θ), ∇ ·B0
ε = 0,

and such that
sup
θ
|ρθ(0)|δ0 6 C0,

sup
θ
|ξθ(0)|δ0 6 C0.

(4.6)

Assume also that for some γ ∈ [0, 1],

|E0
ε |δ0 + |B0

ε |δ0 6 C0ε
−γ . (4.7)

Then there exist a constant ε0 > 0, and a constant T > 0, such that for
any ε ∈ (0, ε0), there exist functions (ρεθ)θ in C ([0, T ], Bδ1) , and (ξεθ)θ in
C ([0, T ],Bδ1), solutions to (4.4) with initial conditions (ρθ(0))θ, (ξθ(0))θ,
(E0

ε , B
0
ε ).
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Moreover the solutions enjoy the following uniform estimates. There ex-
ists C > 0 such that for all ε ∈ (0, ε0],

sup
θ
|ρεθ|L∞(0,T ;Bδ1 ) + sup

θ
|ξεθ |L∞(0,T ;Bδ1 ) 6 C (4.8)

|Eε|L∞(0,T ;Bδ1 ) + |Bε|L∞(0,T ;Bδ1 ) 6 Cε
−γ . (4.9)

The sequence of solutions that we have obtained thanks to Theorem 4.4
are so regular in x (see Lemma 5.2 below) that all requirements of Defi-
nition 1.3 are of course satisfied. The uniform initial controls required in
Theorem 1.7 also follow: (1.8) with γ1 = γ2 = γ is a consequence of (4.9)
(and of Lemma 5.2). We also have, by (4.8),∥∥ρVM

ε

∥∥
L∞(0,T ;L∞(T3)) =

∥∥∥∥∫
M

ρεθ(t, x)µ(dθ)
∥∥∥∥
L∞(0,T ;L∞(T3))

6 sup
θ
‖ρεθ‖L∞(0,T0;L∞(T3)) 6 C,

and likewise, for α = 1,∥∥∥∥∫
R3
|v(ξ)|fVM

ε (t, x, dξ)
∥∥∥∥
L∞(0,T ;L1(T3))

6

∥∥∥∥∫
R3
|ξ|fVM

ε (t, x, dξ)
∥∥∥∥
L∞(0,T ;L∞(T3))

=
∥∥∥∥∫

M

ρεθ(t, x)|ξεθ(t, x)|µ(dθ)
∥∥∥∥
L∞(0,T ;L∞(T3))

6 sup
θ
‖ρεθ‖L∞(0,T ;L∞(T3))sup

θ
‖ξεθ‖L∞(0,T ;L∞(T3)) 6 C,

that corresponds to β = 0.

Section 5 is dedicated to the proof of Theorem 4.4. In order to be able
to apply Theorem 1.7, we need to check that the associated Vlasov-Poisson
solution is suitable, which is done in Theorem 5.11 in Section 5.5.

5. Proof of Theorem 4.4

In this section we prove an existence result to the multifluid system (4.4)
by adaptating the proof of Grenier in the paragraph 2 of [22], which is itself
an adaptation of a simplified proof of the Cauchy-Kovalevskaya Theorem
due to Caflisch [12].
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5.1. Definitions, notations and preliminary results

To set up our Cauchy-Kovalevskaya argument we first need to consider
a scale of Banach spaces Bηδ .

Definition 5.1. — Let 0 < β < 1, δ0 > 1 and η > 0 be fixed, we
consider the following Banach space

Bηδ0
:=
{
u ∈ C0([0, η(δ0 − 1)]×T3), ∀ 0 6 t 6 η(δ0 − 1), u(t) ∈ Bδ0− t

η

}
,

endowed with the norm:

‖u‖δ0 =: sup
16δ6δ0,

06t6η(δ0−δ)

(
|u(t)|δ +

(
δ0 − δ −

t

η

)β
|∇xu(t)|δ

)
.

The space Bηδ0
is a space of functions that are continuous with respect to

time with values into the set of analytic functions over the torus T3 which
takes into account loss of analyticity (in other words, the shrinking of the
analyticity domain) as time goes by. Time is as a result bounded by the
parameter η(δ0− 1). In the following we are going to prove a local existence
result thanks to an iteration scheme, and will consider the parameter η as a
small parameter.

We list some lemmas that are useful for the analysis, whose proofs except
the very last one are detailed in Section 2.2 of [22]. The proof of the last
lemma is postponed to the Appendix.

Lemma 5.2. — For all δ, δ′ > 1,

• Bδ ⊂ Bδ′ if δ′ 6 δ,
• ∀s ∈ R, Bδ ⊂ Hs, the map being compact.
• Bδ is a Banach algebra. Moreover, for f, g ∈ Bδ, we have

|fg|δ 6 |f |δ|g|δ.

The advantage of the norms |.|δ lies in particular in the following lemma:
loosely speaking, the |.|δ′ norm of the derivative of a function f in Bδ, 1 <
δ′ < δ, can be controlled by the |.|δ norm of f .

Lemma 5.3. — Let δ > 1, if f ∈ Bδ then for any 1 < δ′ < δ, i ∈ {1, 2, 3},

|∂if |δ′ 6
δ

δ − δ′
|f |δ.
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We have related results around the space Bηδ0
.

Lemma 5.4. — • If f and g are in Bηδ0
, then fg is in Bηδ0

as well
and

‖fg‖δ0 6 ‖f‖δ0‖g‖δ0 ,

and in particular if δ + t
η < δ0,

|∇(fg)|δ 6 ‖f‖δ0‖g‖δ0

(
δ0 − δ −

t

η

)−β
.

• if f is in Bηδ0
, and if δ + t

η < δ0,

|∂2
i,jf(t)|δ 6 C‖f‖δ0δ0

(
δ0 − δ −

t

η

)−β−1
.

Finally, we have

Lemma 5.5. — If h is analytic and can be written as

h(z) =
+∞∑
n=0

anz
n,

for z in the disk of center 0 and radius R, B(0, R), and if f is in Bδ with
|f |δ < R, then h(f) is in Bδ, and

|h(f)|δ 6
+∞∑
n=0
|an||f |nδ .

5.2. Estimate on the force field FL

Ultimately, we are going to set up an iterative scheme, therefore we will
need some a priori analytic bounds on the different quantities that show up
in the equation. We begin with the Lorentz force.

Before starting, let us state a useful consequence of Lemma 5.5.

Lemma 5.6. — If

sup
06t6η(δ0−δ)

sup
θ∈M
|ξθ|δ0 6

1√
2ε

then there is C > 0 such that for all θ ∈M ,

‖v(ξθ)‖δ0 6 C‖ξθ‖δ0 . (5.1)
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Proof. — We have for δ ∈ (1, δ0], by Lemma 5.2,

|v(ξθ)|δ =

∣∣∣∣∣
+∞∑
n=0

1/2× (1/2− 1)× ...× (1/2− (n− 1))
n! ε2n|ξθ|2nξθ

∣∣∣∣∣
δ

6
+∞∑
n=0

∣∣∣∣1/2× (1/2− 1)× ...× (1/2− (n− 1))
n!

∣∣∣∣ ε2n|ξθ|2n+1
δ

6
|ξθ|δ

(1− ε2|ξθ|2δ)
1/2

6
√

2|ξθ|δ,

where we have used the bound on (ξθ) to conclude.

The other part of the estimate likewise follows, according to the formula

∂xv(ξθ) = ∂xξθ
(1 + ε2|ξθ|2)1/2 −

ε2ξθ(ξθ · ∂xξθ)
(1 + ε2|ξθ|2)3/2 .

�

In the following we shall accordingly systematically assume the following
uniform bound:

sup
06t6η(δ0−δ)

sup
θ∈M
|ξθ|δ0 6

1√
2ε
.

We recall that each phase labeled by θ is accelerated by a Lorentz force
FL(t, x, ξθ) produced by the electromagnetic field (E,B), produced collec-
tively by all the phases, and we have

FL,θ(t, x, ξθ) := −∇xφ(t, x)− ε∂tA(t, x) + εv(ξθ)×
(
∇×A(t, x) + 〈B0〉

)
,

with
−∆xφ =

∫
M

ρθµ(dθ)− 1, (5.2)

and
ε2∂2

tA−∆xA = εP
(∫

M

v(ξθ(t, x))ρθ(t, x)µ(dθ)
)
. (5.3)

We introduce the quantity

GL,θ(t, x, ξθ) =
∫ t

0
FL(s, x, ξθ)ds,

because to obtain a priori estimates on the phase density ρθ and the phase
momentum field ξθ, if we have a closer look at the equations (4.4), one can see
that we need to control the force field integrated with respect to time. This
is reminiscent of the characteristic equations (3.3) for the Vlasov-Maxwell
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system where the time derivative of the velocity of the particles are driven
by the Lorentz force FL.

Lemma 5.7. — Assume sup
06t6η(δ0−δ)

sup
θ∈M
|ξθ|δ0 6

1√
2ε . There exists a pos-

itive constant C depending only on the parameters β and δ0 (and not on ε

nor η) such that
‖GL,θ‖δ0 6 Cη sup

θ
‖ρθ − 1‖δ0

+ Cη

(
1 + sup

θ
‖ξθ‖δ0

)(
sup
θ
‖ξθ‖δ0sup

θ
‖ρθ‖δ0

)
+ Cε

(
1 + sup

θ
‖ξθ‖δ0

)(
|B0|δ0 + |E0|δ0 + sup

θ
|ρθ(0)|δ0

)
.

(5.4)

and such that if we consider two solutions (ρ1
θ, ξ

1
θ) and (ρ2

θ, ξ
2
θ) to (4.4), we

also have the following stability estimate
‖G1

L,θ −G2
L,θ‖δ0 6 Cη sup

θ
‖ρ1
θ − ρ2

θ‖δ0

+ Cη

(
1 +

(
sup
θ
‖ξ1
θ‖δ0 + sup

θ
‖ξ2
θ‖δ0

))
×
[(

sup
θ
‖ξ1
θ‖δ0 + sup

θ
‖ξ2
θ‖δ0

)
sup
θ
‖ρ1
θ − ρ2

θ‖δ0

+
(

sup
θ
‖ρ1
θ‖δ0 + sup

θ
‖ρ2
θ‖δ0

)
sup
θ
‖ξ1
θ − ξ2

θ‖δ0

]
+ Cεsup

θ
‖ξ1
θ − ξ2

θ‖δ0

(
‖B0‖δ0 + ‖E0‖δ0 + sup

θ
‖ρθ(0)‖δ0

)
.

(5.5)

The rest of the section 5.2 will be devoted to the proof of Lemma 5.7 and
done in several steps. In the following δ is a fixed constant in [1, δ0).

5.2.1. Estimates on ‖
∫ t

0 ∇φ‖δ0 .

First from (5.2), we have for any k in Z3 \ {0}:

|F(φ)(k)| = 1
|k|2
F
(∫

M

ρθµ(dθ)− 1
)

(k).

Lemma 5.4 implies then that for any t 6 η(δ0 − 1),∣∣∣∣∫ t

0
∇xφ

∣∣∣∣
δ

6
∫ t

0

1(
δ0 − δ −

s

η

)β ds∥∥∥∥∫
M

ρθµ(dθ)− 1
∥∥∥∥
δ0

. (5.6)
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Likewise, for any j in {1, 2, 3}, for any t ∈ [0, η(δ0 − 1))∣∣∣∣∫ t

0
∂j∇xφ

∣∣∣∣
δ

6
∫ t

0

1(
δ0 − δ −

s

η

)β+1 ds

∥∥∥∥∫
M

ρθµ(dθ)− 1
∥∥∥∥
δ0

. (5.7)

Moreover one has∫ t

0

ds(
δ0 − δ −

s

η

)β = −η
[

1
1− β

(
δ0 − δ −

s

η

)1−β
]t

0

6
η

1− β

(
δ0 − δ −

t

η

)1−β
6

η

1− β δ
1−β
0 ,

(5.8)

and∫ t

0

ds(
δ0 − δ −

s

η

)β+1 = −η
[
−1
β

(
δ0 − δ −

s

η

)−β]t/η
0

6
η

β
(δ0 − δ − t)−β .

(5.9)
Therefore we have proved∥∥∥∥∫ t

0
∇xφ

∥∥∥∥
δ0

6 Cη sup
θ
‖ρθ − 1‖δ0 . (5.10)

Likewise, if we consider two solutions (ρ1
θ, ξ

1
θ , φ

1, A1) and (ρ2
θ, ξ

2
θ , φ

2, A2) to
(4.4), it comes ∥∥∥∥∫ t

0

(
∇xφ1 −∇xφ2)∥∥∥∥

δ0

6 Cη sup
θ
‖ρ1
θ − ρ2

θ‖δ0 . (5.11)

5.2.2. Estimates on
∥∥∥∫ t0 εv(ξθ)×B

∥∥∥
δ0
.

Using Lemmas 5.2 and 5.6, we obtain∣∣∣∣(∫ t

0
εv(ξθ)×Bds

)∣∣∣∣
δ

6 Cε sup
θ
‖v(ξθ)‖δ0‖B‖δ0

∫ t

0

6 Cε sup
θ
‖ξθ‖δ0‖B‖δ0
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Likewise, for i in {1, 2, 3}, using Lemma 5.4, the formula (5.9), and proceed-
ing as for the estimation of ∂j∇φ in (5.7):∣∣∣∣∫ t

0
ε∂i (v(ξθ)×B) ds

∣∣∣∣
δ

6 Cε sup
θ
‖ξθ‖δ0‖B‖δ0

∫ t

0

(
δ0 − δ −

s

η

)−β
ds

6 Cεη sup
θ
‖ξθ‖δ0‖B‖δ0

(
δ0 − δ −

t

η

)1−β
.

In other words, we have∥∥∥∥(∫ t

0
εv(ξθ)×Bds

)∥∥∥∥
δ0

6 Cε sup
θ
‖ξθ‖δ0‖B‖δ0 . (5.12)

The next natural step consists in estimating ‖B‖δ0 .

Lemma 5.8. — Assume sup
06t6η(δ0−δ)

sup
θ∈M
|ξθ|δ0 6

1√
2ε . The following esti-

mate holds:
‖B‖δ0 6 Cηsup

θ
‖ξθ‖δ0sup

θ
‖ρθ‖δ0

+ |B0 − 〈B0〉|δ0 + 2|〈B0〉|+ |E0|δ0 + sup
θ
|ρθ(0)|δ0 .

(5.13)

Proof. —

We first solve the wave equation (5.3) in the Fourier variable k ∈ Z3\{0}:

F(A)(t, k) =
∫ t

0

1
|k|
F
(

P
(∫

M

v(ξθ)ρθµ(dθ)
))

(s, k) sin
(
|k|
ε

(t− s)
)
ds

+A|t=0(k) cos
(
|k|t
ε

)
+ ε

|k|
sin
(
|k|
ε
t

)
F (∂tA|t=0) (k).

(5.14)
Consequently, for any k ∈ Z3 \ {0},

F(∇x ×A)(t, k)

=
∫ t

0

1
|k|
F
(
∇x ×P

(∫
M

v(ξθ)ρθµ(dθ)
))

(s, k) sin
(
|k|
ε

(t− s)
)
ds

+∇x ×A0(k) cos
(
|k|t
ε

)
+ ε

|k|
sin
(
|k|
ε
t

)
F (∇x × ∂tA|t=0) (k).

(5.15)

– 40 –



NON-RELATIVISTIC LIMIT WITH UNIFORM MACROSCOPIC BOUNDS

Let us study the ‖·‖δ0 norm corresponding to these terms. For the first term
in (5.15), we use the fact that (see e.g. the appendix)

|F(P(∗))(k)| 6 2|F(∗)(k)|.

We can then argue as for the previous estimates to bound its contribution
by

Cηsup
θ
‖ξθ‖δ0sup

θ
‖ρθ‖δ0

The treatment of the contributions of the initial data is straightforward,
yielding a bound by

C
(
|A0|δ0 + |ε∂tA|t=0|δ0

)
6 C|B0 − 〈B0〉|δ0 + |E0|δ0 + sup

θ
|ρθ(0)|δ0 ,

where we have used Lemma 3.5. Recalling that

B = ∇x ×A+ 〈B0〉,

the proof of the lemma is finally complete.

�

Gathering (5.12) and (5.13), we finally obtain∥∥∥∥∫ t

0
εv(ξθ)×

(
∇×A+ 〈B0〉

)∥∥∥∥
δ0

6 Cεη

[
sup
θ
‖ξθ‖2δ0

sup
θ
‖ρθ‖δ0

]
+ Cεsup

θ
‖ξθ‖δ0

(
|B0|δ0 + |E0|δ0 + sup

θ
|ρθ(0)|δ0

)
.

(5.16)

Similarly, considering two solutions with the same initial data to (4.4) in-
dexed by i ∈ {1, 2}, we moreover obtain the stability estimate∥∥∥∥∫ t

0
εv(ξ1

θ)×
(
∇×A1 + 〈B0〉

)
− εv(ξ2

θ)×
(
∇×A2 + 〈B0〉

)∥∥∥∥
δ0

6 Cεη

((
sup
θ
‖ξ1
θ‖2δ0

+ sup
θ
‖ξ2
θ‖2δ0

)
sup
θ
‖ρ1
θ − ρ2

θ‖δ0

+
(

sup
θ
‖ρ1
θ‖δ0 + sup

θ
‖ρ2
θ‖δ0

)(
sup
θ
‖ξ1
θ‖δ0 + sup

θ
‖ξ2
θ‖δ0

)
sup
θ
‖ξ1
θ − ξ2

θ‖δ0

)

+ Cεsup
θ
‖ξ1
θ − ξ2

θ‖δ0

(
|B0|δ0 + |E0|δ0 + sup

θ
|ρθ(0)|δ0

)
.

(5.17)
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5.2.3. Estimates on
∥∥∥∫ t0 ε∂tA(s, x)ds

∥∥∥
δ0
.

As we do not need to estimate directly ε∂tA(s, x) but its integral over
(0, t), we actually need to study∫ t

0
ε∂tA(s, x)ds = ε

(
A(t, x)−A0(x)

)
.

We can then use the formula (5.14) to obtain

F
(
A−A0)(t, k) =∫ t

0

1
|k|
F
(

P
(∫

M

v(ξθ)ρθµ(dθ)
))

(s, k) sin
(
|k|
ε

(t− s)
)
ds

+A0(k)
(

cos
(
|k|t
ε

)
− 1
)

+ ε

|k|
sin
(
|k|
ε
t

)
F (∂tA|t=0) (k).

(5.18)
We study this term exactly as in the proof of Lemma 5.8. It follows that∥∥∥∥ε ∫ t

0
∂tA(s, x)ds

∥∥∥∥
δ0

6 Cεη

(
sup
θ
‖ξθ‖δ0‖ρθ‖δ0

)
+ Cε

(
|B0 − 〈B0〉|δ0 + |E0|δ0 + sup

θ
|ρθ(0)|δ0

)
.

(5.19)
Again if we consider two solutions with the same initial data to (4.4), we
obtain ∥∥∥∥∫ t

0
ε∂tA

1 ds−
∫ t

0
ε∂tA

2 ds

∥∥∥∥
δ0

6 Cηε
[(

sup
θ
‖ξ1
θ‖δ0 + sup

θ
‖ξ2
θ‖δ0

)
sup
θ
‖ρ1
θ − ρ2

θ‖δ0

+
(

sup
θ
‖ρ1
θ‖δ0 + sup

θ
‖ρ2
θ‖δ0

)
sup
θ
‖ξ1
θ − ξ2

θ‖δ0

]
.

(5.20)

Remark 5.9. — The gain of a power of ε in (5.19) and (5.20) which is
due to the integration in time is somehow reminiscent of the treatment of I ′3
in Theorem 1.7 (see Section 3.2.3).
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Gathering (5.10), (5.16) and (5.19), we find that

‖GL,θ‖δ0 6 Cη sup
θ
‖ρθ − 1‖δ0

+ Cη

(
1 + sup

θ
‖ξθ‖δ0

)(
sup
θ
‖ξθ‖δ0sup

θ
‖ρθ‖δ0

)
+ Cε

(
1 + sup

θ
‖ξθ‖δ0

)(
|B0|δ0 + |E0|δ0 + sup

θ
|ρθ(0)|δ0

)
.

(5.21)

and by (5.11), (5.17) and (5.20) , we deduce the stability estimate

‖G1
L,θ −G2

L,θ‖δ0 6 Cη sup
θ
‖ρ1
θ − ρ2

θ‖δ0

+ Cη

(
1 +

(
sup
θ
‖ξ1
θ‖δ0 + sup

θ
‖ξ2
θ‖δ0

))
×
[(

sup
θ
‖ξ1
θ‖δ0 + sup

θ
‖ξ2
θ‖δ0

)
sup
θ
‖ρ1
θ − ρ2

θ‖δ0

+
(

sup
θ
‖ρ1
θ‖δ0 + sup

θ
‖ρ2
θ‖δ0

)
sup
θ
‖ξ1
θ − ξ2

θ‖δ0

]
+ Cεsup

θ
‖ξ1
θ − ξ2

θ‖δ0

(
‖B0‖δ0 + ‖E0‖δ0 + sup

θ
‖ρθ(0)‖δ0

)
.

(5.22)

This concludes the proof of Lemma 5.7.

5.3. Estimates for ρθ and ξθ

In this section, we prove some a priori analytic bounds on ρθ and ξθ. As
in the previous subsections we assume that

sup
06t6η(δ0−δ)

sup
θ∈M
|ξθ|δ0 6

1√
2ε
,

which we recall by Lemma 5.6 implies that

sup
θ
‖v(ξθ)‖δ0 6 Csup

θ
‖ξθ‖δ0 .

We consider ξ̄θ the solution to

∂tξ̄θ + (v(ξθ) · ∇x) ξθ = FL,θ, ξ̄θ(0) = ξθ(0).
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By Lemma 5.2, Lemma 5.4 and Lemma 5.6, it comes that

|ξ̄θ(t)|δ 6
∫ t

0
|∂tξ̄θ(s)|δds+ |ξ̄θ(0)|δ

6 ‖ξθ(0)‖δ0 + C

∫ t

0

(
δ0 − δ −

s

η

)−β
‖ξθ‖2δ0

ds+ ‖GL,θ‖δ0

6 ‖ξθ(0)‖δ0 + Cη‖ξθ‖2δ0
+ ‖GL,θ‖δ0 .

The same argument holds for the estimate bearing on |∂iξ̄θ(t)|δ and it comes

‖ξ̄θ‖δ0 6 ‖ξθ(0)‖δ0 + Cη‖ξθ‖2δ0
+ ‖GL,θ‖δ0 . (5.23)

Similarly, considering two solutions to (4.4), this analysis provides the sta-
bility estimate

‖ξ̄θ
1 − ξ̄θ

2‖δ0 6Cη
(
‖ξ1
θ‖δ0 + ‖ξ2

θ‖δ0

)
‖ξ1
θ − ξ2

θ‖δ0 + ‖G1
L,θ −G2

L,θ‖δ0 .

(5.24)

Now working on the equation for ρθ, we consider the solution ρ̄θ to the
equation

∂tρ̄θ +∇x · (v(ξθ)ρθ) = 0, ρ̄θ(0) = ρθ(0).

By a similar argument it turns out that

‖ρ̄θ‖δ0 6 ‖ρθ(0)‖δ0 + Cη‖ξθ‖δ0‖ρθ‖δ0 , (5.25)

and
‖ρ̄θ1 − ρ̄θ2‖δ0 6 Cη

(
(‖ξ1

θ‖δ0 + ‖ξ2
θ‖δ0

)
‖ρ1
θ − ρ1

θ‖δ0

+ Cη(‖ρ1
θ‖δ0 + ‖ρ2

θ‖δ0)‖ξ1
θ − ξ2

θ‖δ0 .
(5.26)

5.4. The iterative scheme

We define inductively (ρnθ )n∈N, (ξnθ )n∈N, (GnL,θ)n∈N as follows.

For n = 0 we set
F 0
L,θ = 0,

ξ0
θ(t) = ξθ(0),

and
ρ0
θ(t) = ρθ(0),
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for all 0 < t < η; for n > 1, we rely on the induction relation

∂tρ
n+1
θ +∇x · (v(ξnθ )ρnθ ) = 0,

∂tξθ
n+1 + (v(ξnθ ) · ∇x) ξnθ ) = FnL,θ,

with ρn+1
θ (0) = ρnθ (0) and ξn+1

θ (0) = ξnθ (0),

in which

FnL,θ(t, x, ξθ) := −∇xφn(t, x)−ε∂tAn(t, x)+εv(ξnθ )×
(
∇×An(t, x) + 〈B0〉

)
,

where φn and An solve

−∆xφ
n =

∫
M

ρnθµ(dθ)− 1,

and

ε2∂2
tA

n −∆xA
n = εP

(∫
θ∈M

v(ξnθ (t, x))ρnθ (t, x)µ(dθ)
)
,

with the initial condition

∇×An|t=0 = B0 − 〈B0〉, −ε∂tAn|t=0 = E0 +∇xφ0.

5.4.1. Contraction estimates for n > 1

Lemma 5.10. — There exist η > 0, C1, C2 > 0 and ε0 > 0 such that if
ε ∈ (0, ε0], then:

• for all n > 0:
sup
θ
‖ρnθ ‖δ0 6 C1,

sup
θ
‖ξnθ ‖δ0 6 2C1,

sup
θ
‖GnL,θ‖δ0 6 C1;

(5.27)

• for all n > 1:

sup
θ
‖ρnθ − ρn−1

θ ‖δ0 6
C2

2n ,

sup
θ
‖ξnθ − ξn−1

θ ‖δ0 6
C2

2n ,

sup
θ
‖GnL,θ −Gn−1

L,θ ‖δ0 6
C2

2n+2 .

(5.28)
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Proof. —

Let us first focus on the first item, that is (5.27). We argue by induction.
For n = 0, we can choose

C1 := 4C0,

which enforces (5.27) according of the assumptions on the initial data. We
then pick ε0 > 0 such that ε0 6

1√
2C1

, which will enable us to apply

Lemma 5.6 and thus all the estimates of the previous subsections are valid.

Let assume that (5.27) holds for some n > 0. Then using (5.4) and (5.27),
it follows that
‖Gn+1

L,θ ‖δ0 6 Cη sup
θ
‖ρnθ − 1‖δ0

+ Cη

(
1 + sup

θ
‖ξnθ ‖δ0

)(
sup
θ
‖ξnθ ‖δ0sup

θ
‖ρnθ ‖δ0

)
+ Cε

(
1 + sup

θ
‖ξnθ ‖δ0

)(
‖B0‖δ0 + ‖E0‖δ0 + sup

θ
‖ρθ(0)‖δ0

)
6 ηC

(
C1 + 1 + (2C1 + 1)2C2

1
)

+ 3ε1−γ
0 C(1 + 2C1)C0.

(5.29)
Recalling that γ ∈ [0, 1), choosing η and ε0 sufficiently small, we get

‖Gn+1
L,θ ‖δ0 6 C1.

Similarly, using (5.27) and the estimates (5.23), we obtain

‖ξn+1
θ ‖δ0 6‖ξ0

θ‖δ0 + Cη‖ξnθ ‖2δ0
+ ‖GnL,θ‖δ0

6C0 + ηCC2
1 + C1

62C1,

(5.30)

up to taking η small enough. We omit the treatment of ‖ρn+1
θ ‖δ0 which is

completely similar. We have therefore proved by induction (5.27).

We now prove (5.28) by induction. The case n = 1 requires a special
treatment. We actually use the rough bounds

sup
θ
‖ρ1
θ − ρ0

θ‖δ0 6 sup
θ
‖ρ1
θ‖δ0 + sup

θ
‖ρ0
θ‖δ0 6 2C1,

sup
θ
‖ξ1
θ − ξ0

θ‖δ0 6 sup
θ
‖ξ1
θ‖δ0 + sup

θ
‖ξ0
θ‖δ0 6 4C1,

sup
θ
‖G1

L,θ −G0
L,θ‖δ0 6 sup

θ
‖G1

L,θ‖δ0 6 C1,

and we choose C2 := 23C1, so that (5.28) holds for n = 1.
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Assume now (5.28) holds for some n > 1. Using (5.27) and (5.5) we obtain

‖Gn+1
L,θ −G

n
L,θ‖δ0

6 Cη sup
θ
‖ρnθ − ρn−1

θ ‖δ0 + Cη

(
1 +

(
sup
θ
‖ξnθ ‖δ0 + sup

θ
‖ξn−1
θ ‖δ0

))
×
[(

sup
θ
‖ξnθ ‖δ0 + sup

θ
‖ξn−1
θ ‖δ0

)
sup
θ
‖ρnθ − ρn−1

θ ‖δ0

+
(

sup
θ
‖ρnθ ‖δ0 + sup

θ
‖ρn−1
θ ‖δ0

)
sup
θ
‖ξnθ − ξn−1

θ ‖δ0

]
+ Cεsup

θ
‖ξnθ − ξn−1

θ ‖δ0

(
‖B0‖δ0 + ‖E0‖δ0 + sup

θ
‖ρθ(0)‖δ0

)
6 ηC(1 + (1 + 2C1)2C1 + 2C1)C2

2n + 3ε1−γ
0 CC0

C2

2n

6
C2

2n+3 ,

(5.31)
up to taking η and ε0 small enough. Likewise, using (5.27), (5.28) and (5.24)
we obtain

‖ξn+1
θ − ξnθ ‖δ0 6 Cη

(
‖ξnθ ‖δ0 + ‖ξn−1

θ ‖δ0

)
‖ξnθ − ξn−1

θ ‖δ0 + ‖GnL,θ −Gn−1
L,θ ‖δ0

6

(
4ηCC1 + 1

2

)
C2

2n

6
C2

2n+1 ,

up to taking η small enough. We argue similarly for ‖ρn+1
θ − ρnθ ‖δ0 , which

allows to close the induction argument.

�

To conclude, Lemma 5.10 proves that for all θ ∈ M , (ρnθ )n, (ξnθ )n are
Cauchy sequences in the Banach spaces Bηδ0

for a suitable small parameter
η. As a result, they converge to functions ρθ and ξθ belonging to Bηδ0

. Letting
n tend to infinity one can check that the pair (ρθ, ξθ)θ is a solution to the
system (4.4). Now let δ1 ∈ (1, δ0). We pick T = η(δ0 − δ1) to conclude the
existence part of the theorem.

There remains to derive the claimed uniform in ε estimates. The uniform
bound in ε for (ρθ)θ, (ξθ)θ is a consequence of (5.27). The control of (E,B)
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is a consequence of the formula (5.14), of the formula for ε∂tA

F(ε∂tA)(t, k) =∫ t

0

ε

|k|
F
(

P
(∫

M

∇ξv(ξθ) : ∂tξθρθ + v(ξθ)∂tρθµ(dθ)
))

sin
(
|k|
ε

(t− s)
)
ds

+ 1
|k|

sin
(
|k|
ε
t

)
F
(

P
(∫

M

v(ξ0
θ)ρ0

θµ(dθ)
))

(k)

+ F(A|t=0)(k)|k| sin
(
|k|t
ε

)
+ cos

(
|k|
ε
t

)
F(ε∂tA|t=0)(k),

(5.32)
of the assumption on the initial electromagnetic field (4.7) and of the above
uniform bounds for (ρθ)θ, (ξθ)θ.

5.5. The Vlasov-Poisson case

In order to be able to apply Theorem 1.7, we also need to check that
there exists a suitable weak solution to the Vlasov-Poisson system (in the
sense of Definition 1.5) associated to the initial condition

f0(x, dξ) =
∫
M

ρθ(0, x)δ(ξ − ξθ(0, x))µ(dθ).

We recall that according to [33], such a suitable weak solution is then unique.
As in the Vlasov-Maxwell case, we look for the solution under the form

fVP(t, x, ξ) =
∫
M

ρθ(t, x)δ(ξ − ξθ(t, x))µ(dθ),

with (ρθ, ξθ) solving the multifluid system

∀θ ∈M, ∂tρθ(t, x) +∇x · (ξθ(t, x)ρθ(t, x)) = 0 ,
∀θ ∈M, ∂tξθ(t, x) + (ξθ(t, x) · ∇x) ξθ(t, x) = −∇xφ,

−∆φ =
∫
M

ρθ(t, x)µ(dθ)− 1 ,

∀θ ∈M, ρθ|t=0 = ρθ(0), ξθ|t=0 = ξθ(0).

(5.33)

We can obtain the following result.
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Theorem 5.11. — Let (M,µ) the probability space used to define the
multifluid system (5.33), let δ0 > δ1 > 1, let C0 > 0, and (ρθ(0))θ, (ξθ(0))θ
be families of Bηδ0

such that

sup
θ
|ρθ(0)|δ0 6 C0,

sup
θ
|ξθ(0)|δ0 6 C0.

(5.34)

Then there exists a time T0 > 0, and functions (ρθ)θ, (ξθ)θ in C ([0, T0], Bδ1),
solutions to (5.33) with initial conditions (ρθ(0), ξθ(0))θ.

We will not give the proof of this result as it is already contained in that
of Theorem 4.4 (see also [22]). We can check that this solution is suitable.
Indeed, ∥∥ρVP∥∥

L∞(0,T0;L∞(T3)) =
∥∥∥∥∫

M

ρθ(t, x)µ(dθ)
∥∥∥∥
L∞(0,T0;L∞(T3))

6 sup
θ
‖ρθ‖L∞(0,T0;L∞(T3)) < +∞,

and likewise∥∥∥∥∫
R3
|ξ|4fVP(t, x, dξ)

∥∥∥∥
L∞(0,T0;L1(T3))

=
∥∥∥∥∫

M

ρθ(t, x)|ξθ(t, x)|4µ(dθ)
∥∥∥∥
L∞(0,T0;L1(T3))

6 sup
θ
‖ρθ‖L∞(0,T0;L∞(T3))sup

θ
‖ξθ‖4L∞(0,T0;L∞(T3)) < +∞.

This finally shows that we can apply Theorem 1.7 to such solutions (note
though that to completely enter the framework of Theorem 1.7, one also
needs to enforce all conditions on the initial data of Definition 1.6).

6. Appendix

6.1. On the Leray projection P

We gather in this paragraph some remarks on the Leray projection P :
L2(T3) → L2(T3), its Fourier transform and its continuity properties with
respect to any norm Hs, s ∈ [0,+∞).
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More generally let us explain how a vector field can be decomposed in a
divergence free part and an irrotational part (the Helmholtz decomposition).
Given F ∈ C1

c (T3,T3) one can define P(F ) as follows:

P(F )(x) = F (x) +∇ψ(x), for anyx ∈ T3,

with ψ satisfying the equation

−∆ψ = ∇ · F.

One can check that it implies that

∇x ·P(F ) = 0.

Applying the Fourier transform, one obtains for any k ∈ Z3:

F(P(F ))(k) = F(F )(k) + ikF(ψ),

and
F(ψ)(k) = i

|k|2
k · F(F )(k),

which implies

F(P(F ))(k) =
(
Id− k ⊗ k

|k|2

)
F(F )(k). (6.1)

Therefore
|F(P(F ))(k)| 6 C|F(F )(k)|,

and by the Plancherel Theorem P extends to a continuous operator on
L2(T3) characterized by the formula (6.1). From the same formula we have
the continuity with respect to any Sobolev norm Hs, s ∈ [0,+∞).

6.2. Proof of Lemma 5.5

We recall that all the proofs concerning the properties of the analytic
norms we use can be found in Section 2.2 of [22]. Let us however explain
Lemma 5.5.

One can define the function h(f) over T3 by the power series:

h(f)(x) =
+∞∑
n=0

anf(x)n.
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Then we have the following inequality, thanks to Lemma 5.2 according to
which the space Bδ is a Banach algebra,

|h(f)|δ 6
+∞∑
n=0
|an| |fn|δ ,

and we can conclude.
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