LONG TIME ESTIMATES FOR THE VLASOV-MAXWELL SYSTEM IN THE

NON-RELATIVISTIC LIMIT

DANIEL HAN-KWAN, TOAN T. NGUYEN, AND FREDERIC ROUSSET

ABSTRACT. In this paper, we study the Vlasov-Maxwell system in the non-relativistic limit, that
is in the regime where the speed of light is a very large parameter. We consider data lying in the
vicinity of homogeneous equilibria that are stable in the sense of Penrose (for the Vlasov-Poisson
system), and prove Sobolev stability estimates that are valid for times which are polynomial in
terms of the speed of light and of the inverse of size of initial perturbations. We build a kind of
higher-order Vlasov-Darwin approximation which allows us to reach arbitrarily large powers of the
speed of light.
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1. INTRODUCTION

We study the relativistic Vlasov-Maxwell system
1
8tf+®-fo+(E+E@><B)-va:(),

1
(1.1) OBV xE=0,  Vi,-E=| fdv-1,
R3

1 1
—8tE+VI><B_/ ofdv, V- -B=0,
C R3

\ C

describing the evolution of an electron distribution function f(¢,z,v) at time ¢ > 0, position
r € T3 := R3/Z3, momentum v € R? and relativistic velocity

v

1+

Here, T3 is equipped with the Lebesgue measure which is normalized so that Leb(T%) = 1. The
three-dimensional vector fields E (¢, x), B(t, x) are respectively the electric and magnetic fields. The
background ions are assumed to be homogeneous with a constant charge density equal to one. We
endow the system with initial conditions (f,_,, E|,_,, B),_,) satisfying the compatibility conditions

’Z):

Va - E|t:0 - /R3 f‘t:o dv—1, Vg- B\t:o =0.

Remark 1.1. We recall that the existence of global smooth solutions to the Vlasov-Maxwell system
in three dimensions is at the time of writing still an open problem: see [15], [21], [8], and [26], [23]
(and references therein) for recent advances for the equations set on the whole space R?. However,
global existence is known for the case of lower dimensions, when the space domain is R?, see [13} [14],
as well as for small data (i.e., close to 0) when the space domain is R3, see [16].

In the relativistic Vlasov-Maxwell system (1.1)), the parameter ¢ is the speed of light; we focus
in this work on the regime where ¢ — 400, that is known as the mnon-relativistic limit of the
Vlasov-Mazwell system. The formal limit is the following classical Vlasov-Poisson system

Of+v-Vuf +E-V,f=0,
(1.2) V. x E=0, Ve -E= [ fdv—1.
R3
This formal limit was justified on finite intervals of time in the independent and simultaneous works
of Asano-Ukai [I], Degond [I1], and Schaeffer [27]. In the recent work [20], it was proved that in
the non-relativistic limit, instabilities may show up in times of order log ¢, due to instabilities of
the underlying Vlasov-Poisson system.

In this work we continue the investigation of large time behaviour of the solutions in the non-
relativistic regime. More precisely, we shall study the case of data lying in the neighborhood of stable
homogeneous equilibria, proving, in sharp contrast with the unstable case, that the approximation
by the equilibrium is valid in times which are polynomial in ¢ and with respect to the inverse of
the size of the initial perturbation.

For convenience we shall set throughout this text

E =

)

1
c
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which has to be seen as a small parameter. We therefore study the stability properties of the
Vlasov-Maxwell system in the regime of small €

Ofe+0-Vufs+ (E°+e0x B%)-V,f*=0,
(13) gatBE+vm XEE:O7 vﬂiEs:p(fE>_17
—eO E° + V, x B* =¢j(f°), V. B =0,

Y . Here and in what follows, we use the following notation, for any distribution

function g(t, z,v):

in which v =

po)t) = [ gdv. o)t = [ ogan
R3 R3
In this paper, we shall focus on equilibria that are

e radial, that is to say pu = u(|v[?);

e smooth (i.e. CF, with k > 1) and decaying sufficiently fast at infinity (i.e. integrable
against a high degree polynomial in v);

e normalized in the sense that ng u(v)dv = 1. Note also, pu being radial, that we have
Jgs p(v)odv = 0, for all € > 0.

We study solutions of the form

f*=n+f,
(1.4) E° = 0E,
B° = 6B,

in which § < 1 is to be seen as a small perturbation parameter; typically one may consider § = ",
for some r > 0. The perturbation (f, E, B) then solves

Wf+0-Vuf+(E+edx B)-Vy(u+4df) =0,
(1.5) €0iB+V,xE=0, V. E=p(f),
—eOE +V, X B=c¢j(f), V. -B=0,
together with initial conditions
(1.6) fit=0 = fo, Ej—o = Eo, Bjy—o = Bo.

Although we do not write the dependance explicitly, (fo, Fo, Bo) may depend on §,e. We assume
that (fo, Fo, Bo) is normalized so that

// Jodvdz =0, // fov dvdz = 0,
T3 xR3 T3 xR3

VI'EOZ f(]d’U, VEB():O
R3

(1.7)

Remark 1.2. The constraint on the average of the current density could be relaxed, for instance,

to the condition
‘ / / fov dvdx
T3 xR3

We first recall the aforementioned instability result of [20].

<6 a>1/13.

Theorem 1.3 (Instability in the non-relativistic limit; [20]). There is a class of unstable equilibria
w(v) (see [20] for a precise description) such that the following holds. For any m,k, K,p > 0, there
exist a family of smooth solutions (f¢, E¢, B®).so of (L.3)), with f¢ > 0, and a sequence of times
te = O(]logel) such that

(1.8) 1L+ Jof?)

2 (f%,_y — W)l e (s xm3y < €7,
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but
(1.9) lim inf || f(te) = pll gr-re (3 xcmsy > 0,

o .
(1.10) luen_:élf 17 (te)ll g2 (rsy > 0.

In the present paper, we consider equilibria p that are stable in the sense of Penrose (for the
Vlasov-Poisson system). We shall rely on the formulation used for example by Mouhot-Villani [24]
for the study of Landau damping. This stability condition for u reads as follows:

(1.11) inf

o0 )
1 +/ e~ 0TS h(ks)s ds| > 0,
~v>0,7€R,kEZ3 0

where 11(§) = ﬁ Jgs #(v)e®? dv is the Fourier transform of . Such a stability assumption

is actually automatically satisfied for any radially symmetric and non-negative equilibrium g in
three (and higher) space dimensions; see [24, Section 2.2]. This in particular includes the typical
normalized Mawellian M (v) := Ws"”'g/ 2
We also refer to [12), [6, B, B, BI), 32, B0, 4] for other works related to Landau damping for

Vlasov-Poisson equations.

, and the equilibria p = p(|v|?) studied in this paper.

1.1. Main results. Our first result in this paper is as follows.

Theorem 1.4. Let u(v) be a radial, smooth, fast decaying, and normalized equilibrium. Let n > 4,
k> %, and Mo > 0. There are 9,09 > 0 and g > 0, such that for all € < g9, < dg and for all
normalized data (fo, Fo, Bo) satisfying

1L+ ) follzn, + |(Eo, Bo)llap < Mo,

there is a unique smooth solution (f¢, E°, B%) of the Viasov-Mazwell system (1.3)), in the form of
—, on the time interval I, 5 = [0, Ag min(s_a,é_g/(2”+5))], where o = 1/2 if n < 6, and
a=1ifn>6. In addition, we have
sup || (14 [0])*(f°(s) = @)llap,, S 6(1+ ") My,
(1.12) [0.]
I(ES, B )| 2(0.60m) < 6(1 + )Mo,

fortel.s.

Remark 1.5. Two general remarks are in order:

e This is, at least to the best of our knowledge, the first instance of long time estimates for
any singular limit in which the Vlasov-Poisson system is the target equation. As a matter
of fact, polynomial times were also reached in the context of the mean field limit, see [10, 9],
but for the case of smoother interaction potentials. A stability condition on the equilibrium
also has to be imposed in these works, as instabilities may show up in the case of unstable
configurations [19].

e For what concerns long time estimates for non-relativistic limits for other models, we refer
to the recent work of Lu and Zhang [22] in which they obtain results in polynomial times
for Klein-Gordon type systems. No stability condition is necessary for initial data, as the
system satisfies a kind of transparency condition and a long time WKB analysis turns out
to be possible.

Observe that we obtain, in Theorem an improved order in terms of the speed of light
¢ = 1/e (namely times of order ¢) assuming extra smoothness for the initial condition. The
improvement comes from the following fact: in the proof we will have to estimate some norms
of integro-differential operators. A treatment of these using the Cauchy-Schwarz inequality yields

4



some growth in time, which accounts for the limitation in 1/ el/2. Tt is possible though to use more
elaborate tools (see [I8, Proposition 5.1 and Remark 5.1] and Proposition [5.3| below) to tame this
growth, at the expense of asking for high regularity of the solutions (that corresponds precisely to
the requirement n > 6).

To prove Theorem the general idea is to rely on the fact that the Vlasov-Poisson system
is a good approximation of the relativistic Vlasov-Maxwell system in the limit ¢ — 0. The order
of the approximation is, at least formally, in O(e), which accounts for the time 1/e that we reach
(the aforementioned derivations of [II, [I1], 27] also show that on finite intervals of time, the order
of convergence is O(¢) — we will not use this information in the proof though). We will then be
able to use some linear tools devised by Mouhot and Villani [24] in the context of Landau damping
for Vlasov-Poisson to reach the large times of the statement. The analysis is also inspired by the
methodology introduced in [18] for the study of the quasineutral limit of the Vlasov-Poisson system.

It is actually possible to go beyond the scale 1/e and dramatically improve the admissible orders
in terms of 1/¢, at the expense of considering initial data which are well-prepared (in a sense to be
defined). The idea is to rely on the so-called Darwin approximation of the Maxwell equations, that
corresponds to a higher order approximation than the Poisson approximation. The Vlasov-Darwin
system, which we now recall, reads as follows:

Ofe+0-Vaofs+ (E°+evx B%)-V,f° =0,
Ef = —V,¢° —€0,A°, B =V, x A°,

— Dgd” =p(f7) — 1,

— ALA® =¢j(f°) —ed V¢, V- A°=0.

It was studied per se in [7, 25, 28, 29]. In [2], Bauer and Kunze proved that on fixed finite interval of
times, the Vlasov-Darwin system is an approximation of order O(e?) of the Vlasov-Maxwell
system ([1.3)). This result (which we will not rely on) supports the idea that this system is indeed
a higher order approximation than Vlasov-Poisson.

The procedure we follow is based on the fine structure of the linearized Vlasov-Maxwell system,
and ultimately we obtain an arbitrarily high order approximation of the linearized Vlasov-Maxwell
equations by a kind of higher-order linearized Vlasov-Darwin equations. Loosely speaking, com-
pared to the standard Vlasov-Darwin system , the idea is to consider a potential vector A®
having the form of an asymptotic expansion

(1.13)

N
A=A, V. AS=0, N>1,
j=1

where A5 corresponds to the usual Darwin approximation, i.e. —AzA] = €j(f¢) — €0, V,¢° and the
other A; are roughly of size O(¢2/11) and taken as solutions of elliptic equations with sources given
by higher order moments of f¢. The key point is that for such Vlasov equations, we can obtain
similar estimates as those of Mouhot and Villani for the linearized Vlasov-Poisson equations. As
a consequence of this theory (that we shall develop in this work), we are able to reach times with
arbitrarily high order in 1/e.

Our result, which can be seen as the main result of this work, is gathered in the following
statement.

Theorem 1.6. Let ju(v) be a radial, smooth, fast decaying, and normalized equilibrium. Let N > 2,
p>2,n>6,k>2N+11/2, and My > 0. There are 9,09 > 0 and \g > 0, such that for all
e < e0,0 < 09 and for all normalized data (fo, Eo, By) that are well-prepared of order p and
satisfying
1L+ [o)* foll g, + | (Eo, Bo)llmn < Mo,
5



there is a unique smooth solution (f¢, E°, B%) of the Viasov-Mazwell system (1.3), in the form of
([TA4)-(1.6), on the time interval I. 5 := [0, Ao min(e~ ™NF1/2p} 5=/ (3] [ addition, we have

sup [|(1+ [o])*(£°(s) — )|l ap, S 0(1+ "2 My,
(1.14) [0.4]
(B, B¥) || 20.mmy S 0(1+eP/2 e+ e8(1 + t"T/2) 4+ 2V (1 + ¢2)) My,

fortel.s.

This theorem asks that the initial data is well-prepared (of order p);we chose to postpone the
precise definition of this notion to Definition [8.6] in Section [8.3] since we need additional material
for it. Loosely speaking, we ask that

<Bo, FEo— V. (-A)"t </Rg fo dv)>

satisfies a high order expansion (in terms of €). As we shall see, for a given initial condition
(fo, Eo, Bo), it might be difficult to check this assumption in practice, for high values of p. However,
it is possible, at least for small values of p, to easily write down what it means, see ([8.20)) for p = 4,

(8.21)) for p =6, (8.22) for p = 8.

Remark 1.7. The linear estimates given in Theorem can be interpreted as linearized Landau
damping for the Vlasov-Maxwell system on T2, for times of order O(cP), for initial data that are
well-prepared of order p (for any p € N).

The rest of the paper is dedicated to the proof of Theorems [[.4] and [I.6] We will start with
Theorem focusing first on the general case n > 4 in Sections [2] to [6] and then indicate in
Section [7] the required modifications in the case n > 6 in order to get the improved order in
terms of the speed of light. Finally we handle in Section [§] the case of Theorem by developing
the aforementioned higher-order linearized Vlasov-Darwin approximation. We end the paper with
two appendices where we discuss scaling invariances of the Vlasov-Maxwell system and the radial
assumption for the equilibrium.

2. PRELIMINARIES

The fields E and B can be constructed thanks to the electromagnetic potentials (¢, A) via the
relations

(2.1) E=-V¢—cdA, B =V x A,
with A satisfying the Coulomb gauge

V-A=0.
The scalar and vector potentials ¢, A are asked to solve
~8o=p(). [ode=0,
2024 — AA = cj(f) — ed Vo,

(2.2)

together with an initial condition (A};—g, 9A|;—g), chosen so that
By =V x Ao, Eo=VA " p(fl—0) — €0tA)0.
Note that without loss of generality, we can impose the normalization

(2.3) Ay dz = 0.
T3

6



As a consequence, (F, B) obtained with (2.1]) and (2.2)) satisfy the Maxwell equations in the system
)

We note that in view of standard energy estimates for the wave equation (see in particular ([3.7))
below), the term €0, A is not small in terms of e. As in [20], this motivates us to introduce the
shifted distribution function

(2.4) g(t,z,v) := f(t,z,v) —A(t,x) - Vyu(v).

As a matter of fact €A is not small either, but of order 1. However, this shift allows to replace a
kind of reaction term of order 1 by a small term in the Vlasov equation.
It is clear that p(f) = p(g), since

A-Vyp(v)dv=0.
R3

As for j(f), we compute

[ oA Vanteyde == [ 3 (0,0 ()

J=1

1+ 2e2|v|?
= o )

= _)‘(M7 ‘E)A
which gives a non-trivial contribution. This yields
(2.5) 3(f) = i(g) — eAlpn,e)A

in which we note that for all e > 0, 1 < A(u,e) < 5/3.
The shifted distribution function g then satisfies the equation

(2.6) g+ 0-Veg+d(E+edxB)-Vyg—Vid-Vyu=R
with the remainder R defined by
(2.7) R:=—¢c0-V (A-Vyu) —6e(E+e0x B)-Vyu(A-Vyu).

Note that we used the fact that (0 x B) - V,u = 0 since p is radial. This remainder is expected to
be small, or at least to be controlled in polynomially growing times in terms of § and e.
The scalar and vector potentials ¢, A satisfy as well

(2.8) —Ap=plg),  ELHA-ANA+ N e)A=cj(g) — OV

3. SET UP OF THE BOOTSTRAP ARGUMENT

We set up a bootstrap argument. We introduce the key norm for our analysis
(3.1) N (@) = (p(9), 5 (@)l L2(0,1;1m)

for some integer n > %, which is fixed until the end of Section
Let M > 1 be a large real number to be fixed later, independently of ¢ and §. We impose in
particular that A/(0) < M. Let

(3.2) T. == sup {T >0, N(T) < M}.
7



By the standard local existence theory for Vlasov-Maxwell, we already have that T, > 79, for some
10 > (] If T. = +o0, there is nothing to do; see Section [6] directly. We therefore assume in the
following that T is finite.

The goal from now on is to prove the following key proposition:

Proposition 3.1. Assume all requirements of the statement of Theorem[I.J) There exists M > 0
so that the following holds. There are g,89 > 0 and Ao > 0, such that for all € < ¢, < dg,

T. > X\ min(gflﬂ?572/(2n+5))7
where T is defined in (3.2).

In the following, we study the Vlasov-Maxwell system on the interval of time [0, 7] and shall rely
on a kind of bootstrap/continuity argument. In the proofs, we use the symbol < for inequalities
A < B, which will systematically mean that there is C' > 0 independent of €,0 and M such that
A < CB. For the estimates, we will also need the fact that ¢ < g9 and 6 < §g for £g, dg small
enough; however we will track down this dependance explicitly.

Let us start with estimates for the electromagnetic potentials and fields ¢, A, E, B on [0, T;].

Lemma 3.2. Fort € [0,T;], we have

(3:3) V@l 2(0,mm) < M,
(3.4) (4, 20,4, Vo A) ()| o 0.0y S (14 2)M,
(8:5) 1B, Bl 20y S (1+ )M,

Proof of Lemma[3.4 The estimate follows from standard elliptic estimates for the Poisson
equation satisfied by ¢, with the zero average source p(g), and the bound ||p|z2(0 mm) < M
on [0,T%].

For what concerns , we proceed with standard Sobolev energy estimates for the wave equa-
tion on the vector potential A; this yields

1d

) 5£(||gat14||i,£ + Vo All3m + A(u,e)lleAll?{;)

< lledeAll sy (15(@)lzp + 10Vl )
We have the local conservation of charge

Op(f)+ V- j(f) =0,
obtained by integrating in velocity, which together with yields for the shifted distribution
function g:

9ip(g) + Va - j(g) = eMp,€)Va - A =0,

since A satisfies the Coulomb gauge. Differentiating with respect to time the Poisson equation for
¢, we thus get

—A;00 = =V - j(9),
from which we deduce using standard elliptic estimates that

10:Vadllp S N3 (9)]p-
Injecting these into , we thus get

= (10 AIy + 192 Al + M)Ay ) £ 120 Allme 13(0) L

*This follows from instance from [I7, Proposition 3.2] combined with the uniform (with respect to €) estimates
for the electromagnetic field contained in (3.7)) and (3.8)
8



which implies

d .
@H(E@t& VoA, VA, €)e A) O e S 15(9) -
Since 1 < A(p,e) < 5/3, the above yields

t
(3.7) 1(eA,e0:A, Vo A) ()| Lo 0,611 S/O 179 [y dT + || (€A, €0, A, VA) =g 1z -
Taking M large enough so that

(A, 0t A, VA)ji—ollup < 1|(Eo, Bo)llmp + || fodvlap < M,
we obtain at once (3.4)), upon using

t
/0 139 1z dr < €21 (9) 20 41y < /2 M.

Next, looking at the definition of the electromagnetic field (E, B) in terms of the electromagnetic
potentials, and using again the elliptic estimate ||V, ¢|gn < ||p(g9)||gr from the Poisson equation,
we get

12l 20,687y S Mo 20,687y + 1€0: Al 20,45y < (1 + )M,

(3.8)
1Bl 2(0,6mm) < I VeAll 20450 S (1+1)M,
for t € [0,T¢]. This proves (3.5). O

4. WEIGHTED SOBOLEV BOUNDS

For all n,k € N, let H}! be the Sobolev space with polynomial weights in velocity, associated

with the norm »
. n — a B V|2 2\k
[P > (/T /R 10908 ()21 + |v]?) dvdm) .

|a|+[8]<n
We will also use the notation L7 := Hy. The main goal of this section is to derive some L®H
bounds for g on [0, T;].

Lemma 4.1. Let k > 15/2 and an integer n > % There is A\g > 0, such that for all t <
min(7%, A\gd—2/"+3))  we have

(4.1) sup lglly S (L+EV2)M 4 e(1+7+3/2) .
[0,¢]

Proof of Lemmal[{.1 The proof follows from standard high-order energy estimates (as done in [20]),
making use of the “triangular” structure in the system satisfied by the derivatives of g. Precisely,
we shall derive weighted L2 estimates for 0285 g, with |a| + || = n, starting from || = n down to
|a] = 0. Setting for convenience F(t,x,v) = E(t,x) 4+ €0 x B(t,z), the function 0?859 solves the
following transport equation

(at 4 Va4 6F - vv) 0298 = 0°0°R + V,0%¢ - V,0° 1
—[00,0- V4|09 — 810505, F - Vg

T v

(4.2)

in which the bracket denotes the usual commutator terms:

02,0-Vaotg= S 9o v.opdl,
T+72=8,72#8
[8?85, F- vv]g = Z 8;,1’UF : an;?Ug'

T+y2=atpBy2Fatp
9



Standard (v-weighted) L? estimates yield

00,9

DOOPR + V,0% - V080 — (08,6 - V,]0%g — 8[0208, F - V] )L2
k

T v

Ly~ ‘
S AL(t) + Aa(t) + As(t) + Aa(?),

in which A;(¢) denotes the weighted L? norm of each term of the above sum.

il

Term Ajp. Recall that the remainder R is defined by
R:=—¢c0-V4(A -Vyu) —0e(E+etdx B)-Vyu(A-Vyu).

Relying on the rapid decay of V,u at infinity to absorb polynomial weights in v and using the
bounds |e0| < 1 and |057| S 1, for a # 0, we obtain

IRy S I9urillgpes [e1V2A@) 1z + 5B, B)le Ay
< el VoAl + 811 (B B) g le Al

in which the last line used the algebra structure of the Sobolev space H™(T?), since n > % By
Lemma we end up with

(4.3) / Ay(s) ds _/ 10202 R(s) 17 ds S (1 + E¥/2)M + 6(1 + £2) M2
for all t € [0, T].

Term As. Likewise, thanks again to Lemma we obtain

t t t
[ sy ds < [1V.020- V.00l £ [ 196l S 0+ VoM
0 0 0
Term As. Clearly A3 =0 when 3 = 0. For 8 # 0, since |97'6| < 1 for 71 # 0, we have

dy= S oo Vaopatls S 10200 Vgl s,
Y1+v2=8,72#08

Term Ay. For v + 793 = o, y2 + 4 = B, with |y3| + |74| < n, we estimate
10257 (E + €0 x B) - Vo057 gll 2 S 1107 (B, B)0*0)* Vgl 12
For |v1| < 2, since n > %, the standard Sobolev embeding over T? yields
02 (B, BYOROF Vagliz S N(E, By 1< 10204V ol 2
S W, B)llagllgl ap,
since |v3| 4 |v4| + 1 < n. Similarly, for |y1| > 3, we have |y3] < |a| — 3 and
107 (B, B)OF O3 Vgl 12 < II(E, Bl 1ot |07 03 Vg (1 + [0])*2] 2 e

S ICE, By 1034 Vg (L + o)
S, B)axllgl ey

—1
L2He

These prove

t t
/0 Aq(s) ds < 5/0 1(E, B)(s)lep lg(s)l| ap ds < 6(1 + t3/2)MS[$11}3 llg(s) | p-
it

10



To conclude, in the case when 8 = 0 (in which case there is no A3 term), we obtain

sup [|05g] 12 S e(1+¥%)M +5(1+ ) M* + (1 + Vi) M
[0.¢]

+0(1 + t3/?)M sup lg(s)llzp =2 B(t)
[0,¢]

for all a so that |a| < n. Next, we proceed with the case when |5| = 1, and |a| < n — 1. In this
case, Az < HVL;a'H qll £z, which has been already estimated in the previous step. We thus obtain

t
up 10207 gll.2 < B(t) +/O IVE g (s)l 12 ds < (1+)B(D)

for |8] = 1. By induction, we obtain for || < n — ¢ and |5 = ¢,
up 10507 gllz2 < (1 +t)B(),
t

)

which proves

(4.4) s lgllzp S (1 +2")B().
0,t

In view of the definition of B(t), there is A\g > 0, small enough such that, for ¢ < min (7%, A\gd—2/(27+3)),
we can simplify the estimate by absorbing supyy 4 [|gl[sp on the right hand side. By noting in par-
ticular that 6(1 +#2) < 1, this yields

ol lgllp S (14" F2)M 4 e(1+¢"732) M,
t

)

as claimed. g
Remark 4.2. It may have been natural to introduce the distribution function
h(t,xz,v) = g(t,x + to,v)
and derive high-order estimates directly on h. Indeed, h satisfies
(45) Oh+ §(F(t,x +td,v) - Vy — tF(t,x +td,v) - (Vyd - Va))h
= Vod(t,z +9) - Vo + R(t, z + td,v),

denoting F(t,z,v) = E(t,x) + v x B(t,z). However, because of the growth in time of several of
the source terms in the equation, such an approach would yield extra growth in time in the final
estimates, when translating these back in terms of g.

Thanks to the estimates of Lemma [£.I] when applying z derivatives to the transport equation
satisfied by g, the contribution of R defined as in (2.7)) can indeed be seen as a remainder, and so
is that of all commutators, as shown by the next result.

Lemma 4.3. For all a such that || < n, we have
0:05g+0-V, 009+ 6(E+¢et x B) V059 — 05Ved- Vi = Ry
with
Ry :=03R —6[0y, (E+¢e0 x B)-V,g.
Moreover, for all t < min(T., \g0~2/"+3)) we have

(46) 1 Rall 2022y S 801+ 92)M2 4 e(1+ )M,
11



Proof of Lemma[{.3 The remainder term R, consists of Ay and A4 terms (keeping the same no-
tations as in the proof of Lemma [4.1]). As already estimated in the previous lemma, we have

t
/ 103 R(s)I[7 ds < (1 + %) M? +6%(1 + £%) M*
0
and for § +v = a, |7 # |af,

t t
| W@2E -+ e x 02B) - V000l ds < [N BN la(s)y ds

< (L + M2 Sup lg ()72

)

Using the bound on g in Lemma we obtain at once
1Rallz2(02) S 8L+ "33 M? 4 e(1 4+ )M + (1 + 452 M?,
in which the last term can be directly bounded by the second term on the right, since t <
min (7%, \gd~%/7+3)). The lemma follows. O
5. ELECTROSTATIC PENROSE STABILITY AND CONSEQUENCES

We now aim at studying L? estimates for the moments p(G) and j(G) associated to a solution
G (which has to be thought of as 9%¢, || = n) of the linearized equation

(5.1) G +10-V,G+6(E+¢e0xB) -V,G—V39[G]- Vyu=TR,
with ¢[G] solving

—A;0|G] = G dv.
R3
Here, R satisfies the same estimate as in (4.6)), that is
(5.2) IRl 20422y < 6(1+ 2 M2 4 e(1+ )M,

and (F, B) stands for the electromagnetic field associated to the distribution function f.

5.1. Straightening characteristics. A first step consists, as in [I8], of performing the change of
variables v — ®(¢,z,v) in order to straighten characteristics to go from (5.1)) to

(5.3) HF + O(t,2,v) - Vo F — Vo[G] - Vou(D(t, x,0)) = R,
5 P
where & = =TT and

F(t,z,v) = G(t,z,®(t,z,v)), R'(t,z,v):=R(t x, O, x,0)).
To achieve this, we define ®(¢,x,v) as solving the Burgers equation

5.0 {8t<1>+<i>-V$<D:5(E+5<f> x B),
®(0,z,v) =v.
It is straightforward to check that such a change of variables indeed allows to obtain :
OF + ®(t,z,0) - Vo = (8,G + 0 - VoG)(t, x, ®(t, x,v))
+ (8D + D - V@) - Vo, G(t, 2, B(t, z,v))
= (0G4 0-V,G+ (E+¢e0 x B)-V,G)(t,z, ®(t, z,v))
= Vo8[G] - Vou(®(t, z,v)) + R(t, z, D(t, z,v)).
12



In this section, we shall always use the notation * = . We have the following deviation

Viter[?

estimates for @, inspired from [I8, Lemma 4.6].
Lemma 5.1. There is A1 > 0 depending only on M such that the following holds. We have for all
t < min(T., \102/5) that there exists a unique solution ®(t,z,v) € CO([0,t];Was®) of (B.4) and
the following estimates hold.

In addition, for all t < min(T., A\;62/%), we have

(5.5) up 1© = vl 20 S 61+ 1°2)M,
0,t ’
(5.6) sup |[(1+ €2u)3 (@ = 0|, S o1+t

[0,¢]

Proof of Lemmal5.1 We focus on the proof of (5.5]), since the existence and uniqueness of ® then
follows by standard arguments.
Set n = ® — v. Then 7 solves

8t77+v/—|—\77-vx77=5(E+6(m) x B)

with zero initial data. The L® bound for n is straightforward from the L* estimate for the
transport equation, Lemma [3.2] and the Sobolev embedding in the x variable:

t
InllLge, < 6/ (B, B)| 1o ds < 6(1 + t3/2) M.
0

We focus more on the estimate for the derivatives. Taking derivatives of the equation yields

80,® + B - V,0,® =00,(E + £® x B) — 8,® - V, &

OO +v+n-V0un =0(E+0,(v+n) X B) —0y(v+n) - Vun.
— o(v 2(v v O(v
Note that d(v+n) = 7 fEQT:inlz _£ ((11776)2(‘1}173’)'2);;77)7 and so
10:®| o0 < 2[[0:D|| Lov, [0u(v +n)l[Lee < 2(1 + [|Oun]| Lo ).

We first focus on the x derivative. Using L*° estimates for the transport operator and noting that
e|®| < 1, we obtain from (5.7)) that

IVan(t)llLge, = [IVa® ()]l L,
S /Ot (HV;C(P(S)H%g?U +6(1+ 5||vxq)(5)||L%?v)||(EvB)(S)le,oo) ds.
By Lemma m and Sobolev embedding in the z variable we get that
[ 1B e ds 5 01+ 220

Hence, we have

SUp ||V, ® 150, S tSUl| Vo ®] 1z, 17 + 6(1 + 42 M (1 + 2 5up [V, 0 125, )
[0,¢] [0,2] [0,t]

and by a continuity argument, we obtain

(5.8) sup |V ®| ree, < (1 + %)M,
[0,¢] ’
13



as long as 6(1 + t5/ 2) < A1, for some small Ay > 0. For what concerns the v derivative, we have

VanOliz, < [ (0 90622 19206,
+ (1 + & Vun(s)l2zx, (B, B)(s)ll o< ) ds.

and thus, using (5.8)), as long as ¢ < min(7%, A\;6~2/%), we have

s[uI]) IVonllLee, < 6(1+7/2)M.
0,t

The W2 bound for ® — v can then be obtained exactly as for the estimate for V,®, noticing that
8;“85(@ —v) = 8;‘85@, as soon as |a| 4+ |3 > 2. This yields ({5.5)).
For what concerns (5.6)), we use a Taylor expansion to write

.
<I>v—/0 (® —v)-Vx(s®+ (1 —s)v)ds,

where x(u) = u/+/1 + €2|u|? and thus

€; €2ui

—u .
V14 e2|ul? (14 £2|ul?)3/2

where e; is the i-th vector of the canonical basis of R3. Therefore, using ([5.5)), we deduce

Oix(u) =

sup [|(1+ £2|v]?)2 (& — )
[0,]

2o S 0(1+7/2)M.

The lemma is finally proved. O

We now introduce the characteristics associated to ®, defined as the solution to

(5.9) hX(t,s,x,v) = @(t,X(t, $,x,v),0),
. X(s,s,z,v) =,
and study the deviation of X from the (relativistic) free transport flow, following [I8, Lemma 5.2].

Lemma 5.2. There is 0 < Ay < Ay such that the following holds. For every 0 < s,t < T <
min (7%, A0~ %/7), we may write

(5.10) X, s,z,v)=x+(t—s) (ﬁ—l—f((t,s,m,v))

with X that satisfies the estimate

(5.11) sup [|X (¢, 5,2,0) |2 S O(1+TY2)M.
’ t,s€[0,T] v

Moreover, the map x — x + (t — s)X (t, s, x,v) is a diffeomorphism, and there exists U(t, s, x,v)
such that the identity

(5.12) X(t,s,z,Y(t, s,z,v)) =x+ (t —s)0

holds. Finally, we have the estimate

(5.13) sup [ W(t,s,2,0) — vl 200 S (1 +TY2)M.
’ t,s€[0,T] ©v

14



Proof of Lemma[5.5 Set Y (t,s,x,v) = X(t,s,2,v) —x — (t — s)0. Note that we have
t
(5.14) Yt 5, 2,0) = / (& —0) (7,2 + (7 — 8)0 + Y(r, 5,3,0),v) dr,
we deduce from Lemmathat for |a| < 2, we have for 0 < s, t <T < min(7, )\16_2/5),

t
sup 11+ 20]?)202,Y (t, )| 10, g/ 6(1+T5/2)M(1+|s1|1p 11+ 20]?)2 02, (7, 5)| 10, ) dr.
<2 s <2

This yields, for 0 < s, ¢t < T < min(7x, )\15—2/7),
(5.15) sup [|(1+20]?)202,Y (¢, )| 10, S |t — s[8(1 + T>?) M.

<2
Finally, we set X (t,s,z,v) = Y (t,s,2,v)/(t — s) and deduce that X satisfies (-11).
From we also deduce that z — x + (t — s)X(t, s, 2,v) is a diffecomorphism. Finally, let
us prove that we can choose ¥ such that is verified. From , we first observe that the
map v — v+ (1+ €2|v|2)%)~((t, s,x,v) is a diffeomorphism. This allows to choose ¥y (t, s, z,v) that

satisfies (5.13)) such that

Uy (t,s,2,0) + X(t,s, 2,V (t, s, 2,0)) = v — = H(t,s,z,v).
(1+e2|W1(t, s, 2,0)[?)2
Next, we want to prove that we can find Wq(t, s, x,v) such that H(t,s,z, Va(t, s, z,v)) = 0. Again,
we observe that for every v € R3, there exists a unique w = Wy(t, s, z,v) in R3 such that

w
(1+ €2|W (¢, 5,2, w)[2)2
Indeed, this amounts to prove that there exists a unique fixed point for the map
w s 04/1 4 2|0y (t, s, 2, w) 2.
By using that ¥, satisfies , we get that
)vw (@\/1 2Lt s, w)y2) ‘ < ela]6(1 + TY?)M < (1 + T52)M

= 7.

and thus that w — 91/1 + €2V (¢, s, 7, w)|? is a contraction for every v for Ay small enough. The
estimates for ¥y follow easily. We finally get (5.12)) by setting (¢, s, z,v) = V1 (¢, s, z, Va(t, s, x,v)).
U

5.2. Averaging operators. For a smooth vector field U(t, s, x,v), we define the following integral
operator Ky acting on functions H (t, x)

)(t, ) / (VoH)(s,z — (t —s)v) - U(t,s,z,v) dvds.
R3
The integral operator K can be seen as relativistic version of the operator K
t
H)(t,x) = / (VoH)(s,z — (t —s)v) - U(t,s,z,v) dvds
R3

that was studied in [I8]. We have the following proposition which is a consequence of [I8, Propo-
sition 5.1 and Remark 5.1].
Proposition 5.3. Let k > 4 and o > 3/2. There holds, for all H € L*([0,T); L2),

Ky(H)||r2 12y < osu Ul(t,s,- 2 12Y-

| Kv (H) | L2 (j0,13;2.2) NOSS’tPSTH (55w, M 22 o,r52)
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Remark 5.4. In [18], this kind of estimate is used as a way to overcome the apparent loss of
derivative in x in the expression of the operator K. In the context of this work, Proposition will
be useful to gain powers in time; indeed a use of the Cauchy-Schwarz inequality yields an additional
factor t. However we shall not apply it systematically as it is a bit costly in terms of regularity.

Proof of Proposition[5.3. The idea is to come down from the relativistic to the classical operator
by using the change of variables p := 9. We have

Ky(H)(t,x

1
(VoH)(s,z — (t —s)p) - U(t,s,z,v(p)) ————5—= dpds
//01/5) (=) Ol v Ty
= Ky(H)(t, ).

with U(p) = \/#W and

LyeB(0,1/¢)
(1 —e2[p[?)5/?

Let o > 3/2. By [18, Proposition 5.1 and Remark 5.1], we get

U(t, S, ﬂﬁ,p) = U(tv 5, U(p))

| Kv (H) 2 0,m;22) = IKu(E) 22 (j0,1522) S ,Sup U, s, ) el HI L2 o, 77:22) -

<s,t<T

Observing that [0y v(p)| <

1
| ~ (1_82|p|2)1/2+|o¢"

U s Mgz S NUE s, )l

2ktotl’

we have

hence the claimed estimate. O

5.3. The closed intregro-differential equation for the density. The key algebraic step is
the obtention of an integro-differential equation for p that can be established from , using the
averaging operators introduced in Section [5.2| and the estlmates of Lemmas [5.1] and [5.2 -

Let us first proceed with the first reductlon in solving (|5 .

Lemma 5.5. For all t < min(T., \o6~2/7), there holds the identity

(5.16) p(G) = Ku((=A)"'p(G)) + So + 81,
in which
“ 17 U(t,s,z,v) := Vyou(P(s,x — (t — )0, U(s,t,z,v)))
(5.17) X | det V, ®(t, z, U(s,t,x,v))||det V, (¢, x, v)],
and
So :=/ Gli—o(X(0,t,7,v),v)|det V,@(t, z,v)| dv,
(5.18) R

t
S = / R/ (s, X (s,t,2,v),v)| det V,®(t, z,v)| dvds,
0 JR3

and the remainder R'(t,x,v) :== R(t,z, (¢, z,v)) is defined as in (5.3).
Proof of Lemmal5.5 We start from (5.3)), which we recall reads

(5.19) OF + &(t,x,0) - Vo F — V,8[G] - Vo (®(t, z,0)) = R/,
16



with F' (t, a:, v) = G(t,z, ®(t,x,v)). We integrate along the characteristics (recall the definition of
to

X in obtain
¢
F(t,z,v) = / V20[G)(s, X (s,t,2,v)) - Vou(®(t, X(s,t,2,v),v))ds
0
t
+ [ R, X5, t2,0),0)ds + Fio(X(0.8.,0).0).
0

We then multiply by the Jacobian |det V,®(¢,x,v)| and integrate with respect to the velocity
variable. Upon making a change of variables and introducing Sy, Sy as in (5.18)), we obtain

p(G) = G(t,z,v)dv
R3

:/ F(t,z,v)|det V, @ (¢, z,v)| dv
R3
=S +&

t
+ / V0[G)(s, X (s,t,2,v)) - Vou(®(t, X (s,t,2,v),v))| det V, (¢, 2, v)| dvds.
0 JRr3
Using the change of variables v — W¥(¢, s, z,v) introduced in Lemma we have

/t V20[G](s, X (s,t,2,0)) - Vou(®(t, X(s,t,z,v),v))| det V,D(t, z,v)| dvds
RS

t
= / V20|G](s,x — (t — 5)0) - Vou(®(t,x — (t — )0, V(s,t,x,v)))
0 JR3
X | det V,®(t,z, U(s,t, z,v))|| det V, ¥ (¢, z,v)| dvds.

This ends the proof of the lemma. O

We further simplify the equation on p(G) with the next reduction.
Lemma 5.6. For all t < min(T%, \od=2/7), the identity reduces to
(5.20) p(G) = Kv,u((=2)"'p(G)) + So + S1 + Ry
with Sy + S1 defined as in Lemma and the remainder R satisfying the estimate
(5.21) IRl 20722y < 61+ T M p(G) 207382
for all T < min(Ts, A0~ /7).
Proof of Lemma[5.6. We write

U(s,t,x,v) = Vyu(v)
+ (Vop(®(s, 2 — (¢ = 8)0, ¥(s, t,2,0))) = Vyu(v))
+ Vo (P(s,x — (t — 8)0, V(s t,z,v ))(| det V,¥(t,z,v)| — 1),
+ Vo (P(s,x — (t — 8)0, V(s t,z,v)))| det V, ¥ (¢, x,v)]
x (| det V@ (t, 2, (s, t,z,v))| — 1)
=: Vyu(v) + U(s, t,z,v).
17



We therefore set accordingly Ry := Ky[(—A)™1p[G]]. Let us estimate the L?(0,7T; L2) norm of R.
We have
2

Raliy < [ [ [ 9006006 ¢~ )0 + Pt oo

<[, ufﬁmJ“

St [ IVIGIGR: [+ 1ot ) s

dv

S tHVm¢[G]H’L2(0,T;Lg) 0<SufiT /]1%3(1 + o)1 U(s, ¢, 2, U)H%;O dv.

By the estimates of Lemmas [5.1] and [5.2] we have
sup [V, (s,z— (£ — )i, W(s,t,2,))) — )z, < 61+ TV2)M

0<s,t<T
sup ||| det V, U (t, 2, v)| — 1], S (1 T2 M
0<5,t<T
sup ||| det V@ (L, 2, ¥(s, ¢, 2,v))| — 11, S 0(1 +T5/2)
0<s,t<T

for T < min(T., \20~%/7). Therefore, using a Taylor expansion and using the fast decay of u at
infinity, we obtain

1/2
< sup /(l—l—|v|2)2‘u(s,t,x,v)|’%wdv> < §(1+T5/?)M.
R3 2

0<s,t<T

We deduce
IRz 0/7502) S 8(1+T)(A+T*) M| p(G) | L2(0,7:12)

which corresponds to (5.21)). O

5.4. Penrose inversion. The final step consists in an inversion of the integro-differential equation
using the Penrose stability condition. We end up with:

Lemma 5.7. For all T < min(T;, A\26—%/7), we have

(5.22) oG L20,r,12) S (IS0 + St + Rallrzorir2)-
Proof of Lemma|5.7. Using the change of variables p := 0, we note that we can write
Ky, = Ky,
with )
U(p) = (Vo) (0(p)) =250 o(p) = ——==

(1~ 20p2)7%
According to [24], one can invert the operator Id — Ky in LZL2 if

V1-epP?

(5.23) inf
~v>0,7€R,kEZ3

+oo NP
1+/ e~ sy (ks) - —sds > 0.
0

|[?
We note, using the smoothness and the fast decay of y at infinity, that
+o00 ) R o k
sup / e~ (rHim)s (U(ks) = Vv,u(ks)> TS ds
~v>0,7€R,k€Z3 |J0 |k|

Since p is stable in the sense of Penrose recall - this implies that for € small enough, -
is verified. We end up with estimate

<C£
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Using ((5.21]), we can absorb the contribution of R; into the left hand side of (5.22]). Indeed, for
t < min(Tz, )\3(5*2/7), with a small A3, the estimate (5.22)) reduces to
(5.24) Ip(G 220,72y S ISoll 220,72y + 1S1l 22(0,7:2.2)

with S; being defined in (5.18)). It remains to estimate these norms. This will be done in the next
two lemmas.

Lemma 5.8. Let Sy be defined as in (5.18), and set A = min(\g, A2, A3). For all T < min(T., \6—2/(27+3)),
we have the bound

(5.25) ISt 20,712y S (1 +T2)M? +e(1+T%) M>.

Proof of Lemma[5.8 By Cauchy-Schwarz (recall k& > 2) and the estimate (5.5)), we first get the
bound

t
/ R/ (s, X (s,t,7,v),v)| det V,@(t, z,v)| dvds
0

IStz = |
L2(0,T;L2)

R3
t 1/2
< tl/Q(// |R’|2(s,X(s,t,x,v),v)(1+\vl2>’“dvdwd8)
0

L2(0,T)
The strategy consists in applying successive changes of variables. We start with v — (¢, s, z,v),
x — x + (t — s)v and use estimate ({5.13)); this procedure yields

' 1/2
t1/2</ // "R/|2(3,x —(t—98)0,¥(s,t,x,v))(1+ ’\I](S7t’x,v>‘2>k dvdl‘ds)
0

L2(0,T)

S .

¢ . 1/2
t1/2<// (R (s, 2, W(s, b+ (¢ = 8)0,0))(1+ [o])* dvdads)
0

12(0,T)
We then apply v — W=1(s,t, 2+ (t — 8)d,v), v — (¢, 2,v) and use at multiple times the estimates

(5.5) and (5.13)); we end up with a bound by

¢ 1/2
02 / / R/ (s, 2, 0)(1+ [0]2)*| det VWt + (¢ = 5)6,0)| " dudads)
0

L2(0,T)
S

' 1/2
t1/2</ / |R‘2(8,$,¢)(t,$7v))(1 + ‘U’Q)k d’l)d.%'ds)
0

t 1/2
tl/z(/ / IR (s, 2,v)(1 + |[v]*)* dvd:cds) /
0

< THRHL?(O,T;Li)v

in which we recall R'(t,x,v) := R(t,z, ®(t,x,v)). As R satisfies the estimate (5.2]), the lemma
follows. O

Lemma 5.9. Let Sy be defined as in (5.18), with G|,_, = 039),_, for |a| < n. For all T <
min(7;, \6~2/C+3) X\e=2), we have the bound

L2(0,T)

S

L2(0,T)

S0l 20,72 S 119100l Hp
with k > 13/2.
Proof of Lemmal5.9. We first eliminate the case of small times, for which we have, arguing as in

Lemma [5.8]

S llgle=oll -

H/ 07 91t=0(X (0,2, z,v),v)| det V, ®(t, z,v)| dv
R3 L2(0,70;L2)
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Then, by the change of variables v — (0, ¢, z,v), we have

/ 0% gu—o(X (0, 1,2, v), v)| det Vo (¢, 2,v)| dv
RS

:/ 02 gj—o(z — 10, ¥(0,t, 7,v))| det V, @ (¢, z, W(0,t, x,v))|| det V, ¥ (0,,v)| dv
R3

and we write the identity (using the notation ¢ = (01, 02, 03) and 9% = 3xk3§‘l):
02 gj—o(x — t0, U(0,t,2,v)) = 0y, 0% gp—o (@ — 10, ¥(0, ¢, z,v))
1 , )
= 0,0k (avk (02 gje=o(@ — t0, W(0, 8, 2,0))]

v Vk
+ 0, ¥(0,t,z,v) - [vvag'g|t:0] (x —t0,¥(0,t,x, v)))
+ gvk?j
ik Tk
=11+ 1o+ Is.
Let us consider the contribution of I3, for which we observe that
b — 1+e? 305
Uk (14 &2jv|2)3/2’

so that, we have for j # k, for all v € R3,

0, 0% gj—o(x — 10, 9(0, 1,7, v))

EQUk’Uj

Ol = = 22

1

| <)
5| S 0+ P)

|00, 05] S €lvl,

and arguing again as in Lemma [5.8] we get

/ I3| det V, @(t, z,v)| dv
R3

< eVitllgj—ollmp
L%(70,t;L2)

for ¢t < min(7., \6~2/(?*+3)) in which k > 13/2 is used. This term accounts for the limitation
T < &2 For what concerns the contribution of I, we can directly use the extra 1/t factor to
integrate in time and obtain with a similar strategy as in the previous lemmas

T ds 1/2
\ < ( / ) lgollzz < lgre—ollap-
L2(70,t;L2) T

&2
, S
For I} we use an integration by parts (in v) argument. We get

1 /
/ L det V, ®(t, z,v)| dv = t/ Oy Gp—o(x — 0, ¥ (0,t,2,v))n(t, z,v) dv,
R3 R3

/ Ir|det V,@(t, z,v)| dv
R3

with

n(t,x,v) = Oy, <

It follows from a straightforward computation that

1
Oy, | =—— )| S *ol?,
" (avk@k'>‘ ~ ’ ‘
so that using also Lemma for all v, there holds
sup [n(t, z,0)| < (|v]> +efof?).
x

)

| det V,U(0,t,v)]
O, U
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Therefore, using the estimates and the extra 1/t factor, we deduce

/3 | det Vo (¢, 2, 0)| dv < 9ol
8

L2(70,t;L2)

The lemma is finally proved. t

5.5. Conclusion. Gathering all pieces together, we are ready to deduce the following L?(0,t; H?)
estimates for the densities p(g) and j(g).

Lemma 5.10. For n > 4, there is a small A > 0 such that the following holds:
(5.26) 1p(9): 5l L20:17) S Ngje=ollzry + (1 + ) M> 4+ 6(1 + ¢+5/%) 2
for any t < min(T., \6—2/(2nH3) \e=2).

Proof of Lemma[5.10, We start with the L?(0,t; H?) estimate for p. The estimate for j will be
considered afterwards.
According to Lemma for all |a| = n, 0S¢ satisfies an equation of the form (5.1). Therefore

(5.24) holds for G = 9%g. Using Lemmas and we obtain at once
1Pz 9 L2(0,6:02) S IS0l 22(0,6522) + [1S11l 20,6522
S lgpemollmp + 6(1+t"5/2) M2 + e(1 + t3) M2

Since p(g) has zero average (recall the normalization (1.7])), the above yields
(5.27) o(9) | 20.417) S Nga=ollzry + (1 + )M + (1 + ¢"+>/2) M2,

We now estimate j(g). We argue as in the beginning as the proof of Lemma except for the
fact that we now integrate against the weight . We end up with

t
i) = [ [ Veolozgl(sia ~ (¢~ 95) - Vun()odeds + &,
0 JR3
where G is a remainder satisfying
16 L20.22) S 61+ ¢72)M? + t|| Rallz2(0 4,22 + 9=l

upon mimicking Lemmas and and with k£ > 15/2. Recalling the bound on Ry,
the remainder & satisfies the same bound as that of p(9%g).

Next, we use Proposition to bound the main contribution in the expression of j(9%g) as
follows. There holds

H /OT /Rg Va0[079](s,x — (1 = 8)0) - Vypu(v)d dvds‘

S Cullp(@79) 200.02) S 1907 9) 20,152

L2(0,t;L2)

That is, we have proved
(5.28) 15059 L20,:2) S gl + (1 +3) M + (1 +¢"+5/%) M2,

In order to estimate the H} norm of j(g), there remains to compute the contribution of the average
of j(g)-

Lemma 5.11. For any t < min(T:, A2/ ?"+3)) " we have

(5.20) | [

SO+ t"F2)M? + 5e(1 + "3 M2,
L2(0,t)
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Proof of Lemma[5.11 From the Vlasov equation ([2.6]) satisfied by g, we have

J Br(f (90, 0)g dv) da
j(g)da::/Rﬁdvda:—i—é [ Ea([(00,0)g dv) da +5e/j(g) x Bdx
J E3([(8y50)g dv) da

which we rewrite, after integrating in time, as

/j(g) de=:J1+ Jo+ J3+ /j(gtzo) dx.
For Ji, we apply Cauchy-Schwarz and estimate (4.6) to get

TSP NR pago 2y S 01+t M?

Note here that we actually used the fact that the contribution of —¢0 - V(A - V,u) in R vanishes
thanks to the integration in x. This observation will be useful later for the improvement in terms
of e for higher regularity; see Section [7}

For Js, using |0,,0] < 1, we have

qa
dt

J2 S 5t1/2||E”L2(0,t;Hg)||9||Lo<>(0,t;L§)
SO+ ") M? + Se(1 + "3 M2

according to Lemma
For Js3, we argue exactly as for Js, which yields

J3 S 55751/2’|B||L2(0,t;H;1)||g||Loo(o,t;L§)
< Oe(1+ ") M? + (1 + "3 M2

Finally for the contribution of the initial condition, we have, recalling the definitions (2.5 and ([2.3))
and the fact that the initial condition is normalized so that [ fy0 dvdz =0,

[itaumo)da = [ (0 do+exu2) [ Agdo =0,
=0 =0
and we deduce ([5.29)). O
Applying Lemma for t < 1/e, we deduce
<51+t M2

H / j(g) dz on

Gathering all pieces together, we obtain the claimed bound on j(g). Lemma is finally proved.
O

We are finally in position to close the bootstrap argument. Indeed by Lemmas and
there is Cp > 0 depending only on u, such that, for all ¢ < min(7%, A2/ (2n+3) Ae?),

N(8) < Co (ol + el Bolluy + (1 + E)M2 + 5(1 445/ 112)

Now, choose M large enough so that

1
Coll follmp < oM.

There are A > 0 and &g, d9 > 0 (all small enough) such that for all § < g, € < e,

1
Co(2e + A2 M? + Co (6 + NP2 M2 < SM.
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As a consequence if we had T, < min()\a_l/ 2 N2/ (2”+5)), we would have

N(T:) < M,
which cannot be by definition of T.. This therefore implies that
(5.30) T. > min(Ae /2, \g—2/(2n+9))

and the proof of Proposition is complete.

6. PROOF OF THEOREM [L.4]

Starting from Prop osmon the proof of our main theorem is now straightforward. Indeed,
applying Lemmas 3 and for all t < min(Ae™ 1/2 '\6=2/(2n+5)) " we estimate
pplying

ICES(8), B*) |l 204317y S 61+ )M

and
If@ONep S gy + [leAllmr
5 (1 +tn+1/2)M—|—6(1 +tn+3/2)M
so that
1£2(t) — pllmp = SN F @) lap S 61+ " T2 + de(1 + " T3/2) M
S (5(1 + tn+1/2)M
Theorem [L.4] follows.

7. PROOF OF THEOREM (CASE n > 6)

For the case n > 6, we apply as well the same bootstrap argument, based on Sobolev norms of
order n, with the aim to prove the improved proposition:

Proposition 7.1. Let n > 6. Assume all requirements of the statement of Theorem[1.] There is
M > 0 so that the following holds. Define
T: = sup{T > 0, |[(p(9), ()l L2(0,r;rp) < M }.
There are €p,09 > 0 and A > 0, such that for all € < ¢, < dy,
T. > Amin(e!, 672/ @nt5)y,
where T is defined in .

Note the improvement is precisely for what concerns the order in e, compared to Proposi-
tion The beginning of the argument remains the same. The only significant change appears
for Lemma in which we do not bound directly the contribution of the remainder term

R = —ct- V(A -Vyp).

We will treat it in a specific way in the computation of the densities by applying Proposition [5.3}
this is how we will improve from times of order e=*/2 to order e~! in the case n > 6.

In order to use Proposition we will need a slightly more precise version of the estimates of
Lemmas and To obtain these bounds, one may also exactly proceed like we did before to
prove the aforementioned lemmas.

Lemma 7.2. With the same notations as in Lemmas|5. and we have for all T < min(T., \;6~2/7)

sup || — v|yyr.ee <61+ t°2)M, Vr <n-—3/2,
t€[0,T) ’
sup sup ||® — v||gr <6(1+t9%)M, Vr <mn,
telo,T] v
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and

sup || ¥ —vflyroe SO(L+H2M,  Vr<n-—3/2,
$,t€[0,T] ’

sup sup ||V — v gr < 6(1+ 2 M, Vr < n.
s,tel0, 7] v

The following of the bootstrap argument remains unchanged, except for the key improvement
which corresponds to

Lemma 7.3. For all T < min(T%, A\6~2/7) we have the bound

Se(l+T)M.

t
/ R(s, X(s,t,x,v),P(t,x,v))| det V,@(t, z,v)| dvds
0 R3 L2(07T§L%)

Recall that in the previous proof, we could only obtain a bound by e(1+T?)M (see Lemma
which accounted for the limitation of order e~'/2.

Proof of Lemma[7.3. We use the change of variables v — W(s,t,z,v) to write

t
/ R(s, X (s,t,x,v), D(t,z,v))| det V, (¢, x,v)| dvds
0 JR3

t
:/ R(s,z — (t— 8)0, Ot 2,0 (s, 1, 7,v)))
0 Jr3
X | det V,®(t, z, U(s,t,z,v))|| det V, ¥ (s, t,z,v)| dvds

— 5/ / vaAj(s,fU — (t—5)0) - 1 (®(t, x, ¥(s,t,z,v)))
0 JrS 5

X | det V, ®(t, x, ¥ (s, t,z,v))||det V, (s, t, z,v)| dvds

3
=) Ky, (Va4)),

j=1
setting
ﬁj(v) = —778%#(”)’
Ui(s,t,x,v) == fj(P(t,z, V(s,t,2,v)))|det Vo, &(t, 2, V(s,t,z,v))|| det V, ¥ (s, t,x,v)]|.

Finally, we can use Sobolev bounds, the smoothness and fast decay of u, Proposition [5.3] and
Lemma [7.2] to get the estimate

t
/ R (s, X(s,t,z,v), d(t,z,v))| det V, ®(t, z,v)| dvds
0 JR3

L2(0,T;L2)

S Do Illg, o I VaAll 2.2
J

Se(1+T)M,
which ends the proof of the lemma. ]
Consequently, this leads to the following improved form of Lemma [5.10}
Lemma 7.4. Forn > %, there is a small A > 0 such that the following holds:
(7.1) 1p(9), 5@ L20s;m) S lgjemollap + (1 +)M? + 5(1 4 7+5/2) M?

for any t < min(Ty, A\o—2/n+3) \e=2).
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Concluding as before, we end up with the proof of Theorem [I.4]in the case n > 6.

8. BEYOND POISSON: THE DARWIN APPROXIMATION (PROOF OF THEOREM |1.6])

To go beyond the scale 1/e, we develop a high order linearized Vlasov-Darwin approximation of
the linearized Vlasov-Maxwell system.
To implement this idea, we also need to modify the bootstrap norm. Let us first define the high

order moments
VA
j=1

i1, ,10€{1,2,3}
and introduce a notation for space averages. For any function or vector field (), we set

W)= [ wiw)de

Let N > 2. We introduce the new bootstrap norm 9t (compare to the previous one in (3.1)))

2N+1

(8.1) N(1) = (p(9), ()| 20,rzy + Y melg) — (el 2oy
(=2

We shall prove

Proposition 8.1. Assume all requirements of the statement of Theorem [1.6. There is M > 0 so
that the following holds. Define

T. = sup{T > 0, N(t) < M}.
There are €p,09 > 0 and A > 0, such that for all € < ¢, < dy,
T. > Amin(e~™n(NV+1/2p) 5=1/(n+3)),

8.1. Darwin approximation. The Darwin approximation (see e.g. [2]) consists in introducing
the vector potential A; with average (A1) = 0, solving

(8.2) (—A+ N4 =<Pjlg),  (g) = i(g) — (i(g))-
where [P denotes the Leray projector on divergence free vector fields, and A = \(u, ¢) is defined as

in ([2.5). By construction, Ay satisfies the Coulomb gauge V - A; = 0. For convenience, we shall set
in the following

—Ap = —A+ 2N
We set R ~
A, :=A— Ay, A:=A—-(A).
By construction, 2, satisfies the wave equation
(8.3) 202 — Ay = —£29% Ay, (A1) =0,

upon noting that 2(9? + \)(A) = €(j(g)) and Pj(g) = j(g9) — O Vo.
Let us start by analyzing the source term €297 A; in the wave equation ({8.3).

Lemma 8.2. For t < min(T%, \g6~2/("+3)) there holds
(5.4 26241 — M) | xgogany S 2501+ 742) 007
in which

M) = B8 [ 666 V.21 d.
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Proof of Lemma[8.9 Recalling (8.2)), we first compute 6,521[”3(g). From the Vlasov equation (|1.5),

we have

8j(f) = —/@(@-vz)fdv+x(g,u)E+543F-vv@fdv

with F' = E + 0 x B. We note that PE = —c0;A. Recalling that j(g) = j(f) + eA(e, n)A, the
above yields

(8.5) aPj(g) = _p/@(a Vo) fdv + 51@/ F-V,of dv.
R3
Therefore, we obtain
OMPj(g) = —}P’/@(ﬁ - V2)ouf dv + 5P/ F-V,00: f dv + 5IP’/ O F - Vo f dv
R3 R3
= J1+ Jo + Js.

Using again the Vlasov equation we compute

Ji :P/@(@.vx)zf dv+PV$-/ﬁ®ﬁVU - (uE) dv

—5PVI-/F~VU(ﬁ®ﬁ)fdv.
Since p = p(|v|?), we remark that
/ﬁ ® 00y;pdv =0, Vj=1,2,3,

and therefore we have

Ji —P/@(@-vxﬁfdv—apvx./F-vv(f)@@)fdu

=:Ji1 + Jio.

Note that the terms Ji2, Jo, J3 have a factor of § in their expression. For ¢ < min(7, >\06_2/(2”+3)),
these terms can be handled using the crude weighted Sobolev bounds of Lemmas [3.2] and (.1}
Namely, we have

112 = (r2) |1 oitm—2) S OI(E, B)lLro,smzm—1) 1 f | oo 0,71
SO+ (1+ 47712 o1+ )| a2
<51+ ") M2,

Similarly, using the Vlasov equation, we have

Jy=—0P [ F-V,ofdv —5]?/ F V0V, - (LE) dv
R3 R3

3
+6ZIP>/RS > (02, 0)FyFif do.
g.k=1
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Consequently, using Lemmas [3.2] and we estimate

[ J2 = (J2)l| L1 (0,4;7-2)

S ONCE, Bl o o.mm-2) | f | o (0, m -1y + Ol (B, B) 720 4,102
+8°|(E, B)||i2(0,t;Hn72)HfHLoo(o,t;Hg‘Q)

<O(1+ 132 [(1 ) g1+ t"“/?)}M2 +6(1+12)M
+ 621 +1?) {(1 +1"2) 4 (14 t”*l/z)} M?

<61+t M.

Next, using the Maxwell equations

8tE:§V$><B—j(f), 8tB:—%V$><E,

we compute

J3:61P’/RS EVJCXB—j(f)—@x(VQCxE)]-va)fdv

and hence, using Lemmas [3.2] and we get

1
||J3 - <J3>HL1(O,t;H"*2) 5 5\/Z[EHE= B”L2(0,t;H"*1)HfHLoo(o,t;H;;*?)
(52 + 1Bl 2 szl o o st
5 6_15(1 + tn+2)M2.

Finally, we recall that

207 A1 = X (—A.) TPl (g).
The above estimates on Jyo, Jo, J3 yield
(8.6) ’|620§A1 - 53(_AE)_1J11HLl(O,t;H") 5 625(1 + tn+2)M2.
This proves the lemma with M;(f) = (—=A¢) 1. O

Lemma proves that the remainder 2y = A— A; solves the wave equation
(8.7) 07U — Ay = —*Mi(f) + R,

with || Rl 11 04m7) S e26(1+t"*+2)M?2. Recalling f = g+ A -V, u, the remaining term on the right
of the wave equation can be estimated, using

(8.8) M (f) = EP(-A.) ™! /@(@ V)2 (g+eA- Vo) dv

where the first term is bounded by 3v/#91(¢) in L(0,¢; H") in view of the definition of 91(¢). This
term may thus reduce the times of validity (although stopping here would already actually allow
to go beyond the scale 1/¢). To reach arbitrary high order, a higher-order Darwin approzimation
is needed.
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8.2. Higher-order Darwin approximation. We start again with the wave equation (8.7)), having
the leading remainder e3M;(f) as in (8.8)). First, observe from (8.8)) and the fact that u = u(|v|?)

that we can write

M) = Mifg) + 22((-80 7 [ ()22

V14 e2|v)?

The operator applied to A is symmetric and bounded in L2. It is therefore natural to introduce
another potential vector Ao, solving a similar elliptic problem to , to absorb the contribution
of the moment M;(g).

For k > 1, let us set

(0 V)2 dv)A.

(.9) M) = B8 [ 660 Vs do
and
_ , vRv .
(8.10) S = 2(—AL) ’f/ﬂ(yv\%m(v-vﬁk dv.

Clearly, Sy, is a symmetric and bounded operator on L2. In addition, directly from f = g+cA-V,u
and p = u(|v|?), there holds the relation

(8.11) My (f) = My(g) +eSpA,  VEk>1.
We note for later use that for all distribution functions h and any s > 0,

(8.12) My (P) ||z S Ik (h) = (maky1(h)) || g

We will define a sequence of high order approximation (A;);>2 using these “twisted” high order
moments. We shall check eventually that the remainder

(8.13) U= A—Y A
j=1

is indeed better than the previous one in (8.7)).
The key algebraic lemma is the following statement.

Lemma 8.3. Let My(f) and Sk be defined as in and (8.10). Fort < min(T., \gd—2/(nH3)),
there holds

(8.14) (—A:) 107 Mi(g9) = My (f) + Ry,
with Ry satisfying the bound
Rkl Lt 0m) S €701+ E"F2) M2,

Proof of Lemma[8.3 Using the Vlasov equation for f, we compute
at/@(@-vx)%f dv = /@(@-Vm)%atf dv

:/@(@-vx)%[—@-vxf—E-vvu—évv.(Ff) dv
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and hence

af/@(@ V)2 f dv = /@(@ : vx)%[— b VaOif — OE - Vo — 6V, - 8t(Ff)] v

oy

- /@(@ V2)ROE - Vou

>

V)2 f du + /@(@ Vo) ME .V dv

+ 6/@({) : va:)2k |:(6 : V:B)vv : (Ff) - vv . at(Ff):| dv

= Ig+ 11 + 1+ Is.

By definition of My(f) in (8.9), we therefore have
RM(f) = (~A) (I + 11 + I + Iy).
By definition of My1(f), it follows that
(=A:) Pl = —A-Myya(f).
Moreover, since p = p(|v|?), we have
/@(@ V)0, pdv =0,  Vj=1,23,

and thus
I =0.

The term (—A.)"*I3 has a prefactor J in its expression and thus can be estimated in the same way
as done for Jyo, J2, J3 in the previous lemma; we get

1(—=Ae) FIs] 10 -2y S €710 (1 +£"+2).

As for I, using again p = u(|v|?) and PE = —£0; A, we can write

L= 26P/u’(|vl2) Loy

V1+eu?
By definition of Sy in , we note
(=A)7F I = 8,02 A = 5,0} A.
The lemma follows, upon recalling . O

(0- V) k02 A do.

We are ready to introduce the higher-order Darwin approximation, built with an inductive
construction.

Lemma 8.4. Let My(f) and Sk be defined as in and (8.10). Fort < min(T., \gd—%/(27+3)),
the following holds. For each k > 1, there are symmetric and bounded operators {Sj ;}j=1,... k such
that

k
(8.15) SR — A p Ay, = 2! Zsk,ij(f) + N,
j=1

k
where we recall Ay, = A— ZAj and Ry satisfies the bound

J=1

1R85l 20,1y S €20(1 + ") M2
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The vector fields Ay and the operators Ay and Sy ; are constructed inductively, following for all
k>1,

k
2k+2
Acjpr = Dcp + 2N 7558,
=1

k k
Apyq = €2k+1(—A57k+1)71 Z SkJ' {Mj (g) + ES]‘ Z Ag} ,
(8.16) j=1 (=1

kok
Skt = —(—Deprn) ' [(—A)Skjo1 + > Y ¥ SkiSe;Si|

i=1 4=j
\V/jzl,,k+1,

with Azq = Ag, S11:= —1Id, Spo:=0 for all k > 1, and Ay is defined in (8.2).
Proof of Lemma[8.} We start from the equation (8.7)), which reads, using (8.11)),
e202U; — Ay = —3 My (f) + Eo.

Here and in what follows, the remainder & may change from line to line, but satisfies the uniform
bound

(8.17) 1€0ll L1 (0, 0rmy S €76(1 + t"F2) M.
Since Mi(f) = Mi(g) + eS1A = M1(g) + eS1 A1 + 5121, we introduce
Ag = —3(=Ac2) L (Mi(g) + 51 A1), Acg:=A. —£4Sy,

and set Ao = Ay — Ay. Note that since S; is bounded in L?, for € small enough, —A¢ 2 is invertible.
It then follows that 2l solves the wave equation

e207As — A 2%y = —£%07 Ao + &.
From Lemma [8:3] and Lemma [8.2] we have
€20/ Ay = —€"(=Ac0) "1 (O Mi(g) + 28107 Ay)
= =& (=Ac2) (A Ma(f) — " (=Ac2) ' SIM(f) + £*&o.
Consequently, we obtain

207Uy — Acpp = £° [E2(—As2) 'SIML(f) + (—Acp) (A Ma(f)] + &
2
=) SpMi(f) + &o,
j=1

setting
So1 = X(—Ac2) 'Sy,
Sog = (A1) H=AL),

which proves the lemma for k = 2.
By induction, we pick k£ > 2 and assume that 2(; solves the wave equation

K
207U, — Acpp = Y S M (f) + &
j=1
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where the Sy ; are symmetric and bounded operators and we assume that (8.16) is verified up to
k — 1. In particular —20? Ay is equal to the source in the above wave equation, up to a term of
the form &y. To proceed further, it is natural to introduce the operator

k
. 2k+-2
Acir = Doj + 2N 858,
i=1

that is invertible for € small enough, and define the next order approximation

A1 = (A k1) Z Sk,j [ ) +eS; Z Ae}

Set A1 = A — Ag1. It then follows that
207 W1 — Dc o1 UApy1 = =707 Ay + &o,

and by the induction assumption we compute,

k
202 Aps1 = 23 (=Ar 1) Zs,w [at ) + &S, Zang}

N ZSM[BM )+S; ngzg@, ()]

4 e2hH3g

Therefore by Lemma we have

k ¢
20} A1 = XT3 (— AL y1)” Zsk,j[ 41 ( )+3j26%25£,iMi(f)]
=1 =1
4 e2k3 g,
k1
_ _€2k+3 Z’Sk—l-l,ij(f) + €2k+3(¢;07
=1

setting for j =1,--- ,k+ 1,

k&
Skt = — (A1)t | (—A)Sk -1 + Z Zéysk,z’&z,j&

i=1 =]
The lemma follows at once. O]
We finally justify in the following lemma that 2l is indeed a high order remainder.
Lemma 8.5. For k > 2, define 2y, as in (8.13). Then, for t < min(Tx, A0~/ 2nH3)) “we have

sup || (eg, €0y, Voli) || n < Ro + e6(1 + ") M? + 28 (1 + ¢3/2) M2,
[0.¢]

in which Ry := [|(e¥x]i=0, €0Ax|t=0, VU |t=0) || = -
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Proof of Lemma[8.5. Taking the H™ scalar product with 9,20, in (8.15]), we obtain

d
2 ek, 20k, (= A, )2 G < % Z Sk, M () ||z | € O e ||

+ g”iRkHH" ||58tQLkHHn

We used the fact that by construction, —A.j = —A + &7 for some symmetric and bounded
operator T, and thus —A.;, is a self-adjoint non-negative operator. Thus, integrating in time, we
deduce

sup (=25, €0, Vag )| n S Ro + 8(1 + "+2) 4 &2 Z M5 (P L1 (0,651
0,t

in which Ry accounts for the initial data as written in the statement of the lemma. As for M;(f),
we use the identity (8.11)), Lemma and the definition of M(¢) to conclude that

1M 0sm) S 1M () 0,0m) + €118 Al 1 0.5m)
SVINE) + (1432 M
SA+82)M
for t < min(T%, \gd~2/(?**+3)). The lemma is finally proved. O

8.3. The well-prepared assumption. Now that the A; are properly defined, it is time to define
what we mean by well-prepared initial conditions. Take &k = .

Definition 8.6. We say that the initial condition (fo, Eo, Bo) is well-prepared of order p if

N
(~28)7'V x By =" Ajlemo + OE* ) o

(8.18) !
Vx(—A)_l (/ fo dv) — Eo = Z EatAj‘tzo + O(é‘pm_l)H;z.
R3 ,
7j=1
Recall that Aly—o = (—=A)7'V x By and €0, Alj—o = —Eo + Va( ng fodv.

Remark 8.7. Like in Remark we can slightly generalize Definition |8.6 - by allowing in (8.18))
additional errors of order O(&), with b > 1/18.

From the very definition of 2y in (8.13)), we therefore get
Lemma 8.8. Assume that the initial condition is well-prepared. There holds
(8.19) [(ex, €02k, Vo) e—ol| e S P/

It can be complicated in practice to check the well-prepared assumption for arbitrary values of
p. However it is possible to write down explicitly the required conditions for p = 4,6, 8.

e For p = 4, we note that

||ZA lt= 0,Z€3tAj|t=o||Hg+1ng S e
j=1

so that (8.18)) reads

(8.20) [(Ali=0, Eo + Vo)l gn+1y pn S €
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e For p = 6, we note that

N N
1D Ajli=0, > 20 Ajlemoll grt gy S €°
=2 =2

and using the Vlasov equation, that
(= 2) "1 (34 (F))e=ollrry < €,
so that reads
(8.21) [ Ale=0 = (=) i (fle=o) I gn 1 S €%,
| Eo + Vado|lar S £2.
e For p =38, reads
1Ali=0 = e(=2) " (fle=o)ll o1 S €7,
1(Eo + Vado) = e*(=A) " (0uj (/) le=ollmz < €%,

where 9,j];—¢ can be computed using the trace of the Vlasov equation at time 0.

(8.22)

8.4. The closed equation on high order moments. Take k = N and set

A:=An

with 20 being defined as in (8.13). We now start over the analysis of Sections to except
that we do not treat the contribution of the term

N
(8.23) — &bV, <Z Ay - vvu>
/=1

as a remainder. The main difference with the previous treatment comes from the fact that we
have to study the system for (p(g),7(g), me(g) — (me(g))) instead of (p(g),j(g)) alone. Let us first
introduce the new remainder term (compare with ([2.7))

(8.24) Ri=—¢cb-Vy(A-Vyu) — 6e(E +ed x B) - Vy(A-Vyu).
For ¢ = 1, according to (8.2), we have
(8.25) A; = e(—A) 7P (g).

For ¢ > 2, according to , we have
1 1
A= =Ac) D Siay [Mj(g) +e8; ) Ar] :
j=1 r=1
By a straightforward induction (recalling )7 it follows that we can write Ay as

(8.26) Ap =1 =A )

20—1
Fiii(9) + > Ff(mr(g))] :
r=2

where the Ff are linear bounded operators on Lf’z. We consider the same notations as in Section
G +0-V,G+0(E+¢etx B) -V,G

N
(8.27) — V28[G] - Vyp 40 -V, (Z Ay[G - VW) =R,
/=1
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with ¢[G] solving —A,¢[G] = [zs G dv and the Ay[G] are defined as in (8.25)) and (8.26), with G

replacing g. The remalnder R has to be tought of as OO‘R for |a| = n.
We follow the same approach as in Lemma [5.5] to obtaln

Lemma 8.9. For all t < min(T%, \26~2/7), we have

2N+1
P(G) = Kv,u((—A) 1 p(G)) + €2 + 3 Lm(@)| +R,
2N+1 T
(8.28) J(G) = Ly(p(@)) LiG@) + Y Lim (@) | + R,
v
m(G) = Li(p(G)) LiG(@) + D Li(m(G)| +R,, £=2,--- 2N +1.
r=2

The operators (Lf)gﬂ« are bounded operators on L%,a:: with norm of order 1, uniformly in €. The
remainders are defined as
R:=8)+ 81 +Ri,

(8.29) ~t
REZSS"_SI +R€’ VEZ]_,,QN—’—].,

where

e Sy is defined as in Lemmal[5.5 and corresponds to the contribution of the initial conditions,

° 81 is defined as 51 in Lemma except that we impose that R replaces R,
e Ry is defined as in Lemma[5.6 and satisfies the estimate

(8.30) IRl z2(0,:02) S (1 +t7/%) M2,

0 —
o St 81, RS are defined in the same way as Sy, Si1, Ri, with additional multiplications by
0 1

U4, -+ 03, 1n the integrals, and satisfy similar estimates.

Proof of Lemma[8.9. We proceed exactly as in Lemma except that we do not consider the
contribution of the term as a remainder. The operators Lf; are similar to Ky, except that
they include multiplications by ¥;, - - - ?;,. Likewise, using and recalling the definition of the
M; in , the operators Lg can be defined similarly to Kv,,. ]

We then note that the map

2N+1
p(G) = Kv,u((—=A)"'p(G)) — € ['—?(j(G)) + ) L(m (@

2N+1
(G) j(G)—L(%(p(G))—a?[ + 3 L@ ]
j(%) M 2N+1
P ma(G) - L(p(G)) — 2 |L3G(G) + Y L2(m, (G
man+1(G) i =
- 2N+1
man1(G) — LV (p(G)) — € [BVHGE) + Y LN (@)
L r=2

can be decomposed into the sum of
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e the map

(G p(G) ~ Kv,u((~2)"1p(G))
J(@) J(G) = Li(p(G))
ma(G) | ma(G) — L%(p(G))

man11(G) man1(G) — LN (p(@))

which is invertible, using the Penrose stability condition as in Lemmal5.7/and the underlying
triangular structure,
e and another bounded map, of size < £2.

It is therefore invertible for € small enough.
We therefore deduce
Lemma 8.10. For t < min(T:, A6~2/7), we have the bound
2N+1

831)  11p(G), J(G), (me(@reo, anenyl0ssz2) S IRIzoaizzy + D R
/=1

L2(0,t;L2)

in which R and R are defined as in (8.29).

For what concerns the contribution of Sy and Sg , an improvement of Lemma is required in
order to reach arbitrary orders of time in e. We can prove Lemma [5.9 holds with the sole constraint
t < min(T., A6—2/@n+3)),

Lemma 8.11. For all t < min(Tz, A6—%/2"+3)) we have the bound
2N+1

1S0ll 220,402 + Z HS{;‘
e

S N91ezollay
L2(05L2) ~ =0

with k > 2N +11/2.

Proof of Lemma[8.-11. We focus only on Sy (the analysis being identical for Sz). We follow the
beginning of the proof of Lemma [5.9 which remains unchanged. To get rid of the constraint in €,
it is useful to apply the change of Varlables p = U, which yields

/ g0l — tp, (0, 1,2, 0(p)))
(0,1/¢)

1
det V& (t, 7, (0, ¢, 7, det V,¥(0, ¢, —  _dp,
x |de (t, 2, 9(0,t,z,v(p)))|| de ( 7)(19))\(1_8%‘2)5/2 p

with v(p) = ——£—. We can write the identity
\/7

e2|p|?
aa:g\t:()(l' - tpa \II(Oatv'T?U(p)))
- aﬂfka:(: g|t:0(x —tp, \I/(O,t,.%', U(p)))

1

=77 (apk (02 =0l = tp, W(0, t,2,(p)))]

+ 8pkq}(07 l,x, U(p)) ’ [Vva?/gu:o] (x - tp, \11(07 t,x, U(p))))

=: I + I).
We note that there is no analogue of the term I3 that appears in the proof of Lemma and

accounts for the limitation in terms of . We study the contributions of I and I} exactly as we did
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as for that of Iy and I in the proof of Lemma [5.9] using bounds similar to those used in the proof
of Proposition We conclude as before. a

~ ~ —~
We treat the terms involving —e0 -V, (A-V,u) in §; and S as in Lemma (7.3, Combining with
the high order estimates of Lemma [8.5] and the fact that the initial condition is well-prepared of
order p (so that Lemma applies), this results in
Lemma 8.12. Fort < min(T:, A6~2/43))  there holds
2N+1

—~ ¢
IS 2062y + D IS lr2(os22)
1=

S EP2VE4+25(1 + "2 ) M2 4+ 2N (1 + 2 M2
Therefore we obtain (recalling Lemma to handle the average of j(g)),
Lemma 8.13. For t < min(T, A6—2/7+3)) we have
10(9),7(9),(Me(9))eeta, 2an+1y 20,507

8.32
(8.52) < Mo + P2Vt + 6(1 + "3 M? + 2N (1 + ¢2) M2,

with my(g) = me(g) — (me(g))-

Using (8.32)), we can conclude the bootstrap argument as we did at the end of Section showing

that
T. > Amin(e~mn(V+1/2p) 5=1/(n+3)y

for A > 0 small enough. This concludes the proof of Proposition [8.I] and thus, arguing like in
Section [6] to that of Theorem
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APPENDIX A. SCALING INVARIANCES

We exploit here some scaling invariances of the relativistic Vlasov-Maxwell system in order to
express our result in the setting where the speed of light is considered as fixed. The price to pay is
that we consider data with special scaling.

A.1. Slow variation in velocity. Let A > 0. We note that (f, E, B) is a solution to the relativistic
Vlasov-Maxwell system with ¢ = 1 if and only if (f*, E*, B}) defined as

Pt @) = AT 2,0/,
(A1) EAMNt,x,v) = NE(\, z),
B (t,z,v) = N2B(\t, z)

is a solution to the relativistic Vlasov-Maxwell system with the speed of light ¢ = 1/A. It therefore
follows that it is possible to translate the results of this paper into the following setting: we consider
that the speed of light is fized, set to 1 for simplicity, and we consider special initial data (fo, Eg, Bo)
such that

fo(z,v) = X (u(Av) 4+ fo(z, v)),
(A.2) Eo(x) = A2 Ey(x),

Bo(z) = 6A"2By(x),
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with o and (fo, Eo, Bo) satisfying the assumptions of Theorem with ¢ = A. We deduce from
Theorem the following statement (which just consists in a translation in these new variables),
which can be understood as a stability property of the homogeneous equilibrium Au(Av) for small
values of A. Note that [ps Au(Av)dv = 1/A?, which means that such data are large to this extent.

Corollary A.1. Let N > 2, p>2. Letn > 6 and k > 2N + 11/2. For initial data (fo, Eo, Bo)
satisfying the above requirements, there are Ag,dy > 0 such that for all A < Ao and § < dg, the
following holds. There is a unique smooth solution (f,E,B) of the Viasov-Mazwell system (|1.1))
with ¢ = 1, starting from (fo, Eg, Bg), on the time interval

I\ :=1[0,comin(A~ min{N—1/2,p—1} )\(5*1/(7”3))].
In addition, we have
sup ||f(s, z,v) — /\/L()\U)HHQYU < OAT2(1+ t"*l/Q)Mo,

(A.3) [0:1]
(B, Bl L2(o.r:mmy S OAT2(L + MW/ 27N/E 4 XS(1 + t"F5/2) + X2V (1 + 12)) Mo,

f07‘ t e I)\75.

Here we may for instance choose § = A\, with a > n + 3.

A.2. Slow variation in space and time. Let A > 0. As in [2], we note that (f, E, B) is a solution
to the relativistic Vlasov-Maxwell system set on the torus T3, := R3/(}Z?), with ¢ = 1 and if and

1A °
only if (f*, E*, B") defined as

Az, 0) = XT3t /N3, 2 /02, M),
(A.4) EMNt,x,v) = ANTAE(t/N3, 2/ )02),
BMt,x,v) = NTAB(t/A%, 2/)\?)

is a solution to the relativistic Vlasov-Maxwell system (set on the torus T3) with the speed of light
¢ = 1/X. As before it is possible to translate the results of this paper into the following physical
setting: we consider that the speed of light is fized, set to 1 for simplicity, and we consider special
initial data (fo, Eg, Bg) such that

fo(z,v) = X3 (w(v/X) + (5f0(/\2x,v/)\)) ,
(A.5) Eo(z) = A Ey(\2x),
Bo(z) = 6" Bo(M\2x),

with p and (fo, Eo, By) satisfying the assumptions of Theorem with ¢ = A. We deduce from
Theorem the following statement (which just consists in a translation in these new variables),
which can be understood as a stability property of the homogeneous equilibrium A3u(v/)) for small
values of A\, with respect to perturbations on ']I‘? X R3.

Corollary A.2. Let N > 2, p>2. Letn > 6 and k > 2N + 11/2. For initial data (fo,Eo, Bo)
satisfying the above requirements, there are Ag,dy > 0 such that for all A < Ao and § < dg, the
following holds. There is a unique smooth solution (f,E,B) of the Viasov-Mazwell system (|1.1)) on
T‘rf/)\ x R3 with ¢ = 1, starting from (fo,Eg, Bo), on the time interval

Iy s :=1[0,co min(A™ min{N+7/2,p+3} A3/ (3
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In addition, we have
sup [[f(s, z,v) — p(v/N)||gz, < OAT (L + "2 M,
(A.6) [0.¢] ’
(B, B)ll p2q.mmy S 0(1+ X27IE+ A(1 4+ ¢"T5/2) + 22V (1 4 %)) My,

fort € I, 5, with the Sobolev norms being taken on ']I“rf/)\ x R3.

APPENDIX B. NON-RADIAL EQUILIBRIA

Without the radial assumption on the equilibrium p(v), we mention that the results and proofs
of this paper can be adapted (for other stable equilibria). We require that p(v) is an equilibrium
for the relativistic Vlasov-Maxwell system, that is we ask in addition that

(B.1) / opdo = 0.
R3

For instance select three even non-negative smooth and fastly decaying functions on R, w1, po, pis
(with p; # p; for some 4, j), that are normalized so that Jg ti dv = 1 and take p(v) = [, pi(vi). We
ask for the assumption ([1.11]) instead of the radial one. Then p is non-radial, stable, and satisfies
all requirements, including (B.1)) for all € > 0.

B.1. Theorem without the radial assumption. Theorem [1.4]still holds, as we can modify
the proof as follows. When p is not assumed to be radial, the algebraic relation (2.5)) between j(f)
and j(g) does not hold anymore. However we note that we have

(B.2) J(f) = jlg) — eXA + e%p(A),
setting

~ 1
A= /R (1 2y ) v

3
o) ==3 4 L o st
The main outcome concerns the analogue of Lemma in this context.
Lemma B.1. The conclusions of Lemma hold for t < min(T.,e2).
Proof of Lemma[B.1]. By the relation , we have the wave equation
(B.3) 202A — AA+ 2XA = £Pj(g) + £*Pyp(A),

with P denoting the Leray projection. We use similar estimates which results in the following
analogue of the key bound (3.7):

t
(A, 0, A, Vi A) ()| oo 0,:112) SVENT ()| L2 (0,850) + /0 | A(s)| mp ds
+ H(&A,EatA, VA)\t:OHHQ

using [|Pp(A)(s)||gr S ||A(s)||gn. There is Ag > 0 small enough so that for ¢ < \pe™2, we can
absorb the contribution of fg e2||eA(s)| ds, which yields

I(eA, €0, A, Vo A) )| Lo 0,:0m) S VT L2(0,0:5mm) + (€A, €0, A,V A) o 1z
from which we conclude as for Lemma [3.2 O

The end of the argument also applies without further modification.
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B.2. Theorem without the radial assumption. Theorem that is the extension to
arbitrary orders of 1/e, does not hold anymore. One first obstruction comes from the requirement
t < 1/ in the new Lemma Furthermore, we note for what concerns the Darwin approximation
that the contribution of the main linear terms cancels by symmetry when p is radial symmetric (see
Lemmas and . As a result, this has to be taken into account without the radial assumption
and we have to stop at first order in the Darwin approximation. However, we can see that this
procedure still allows to improve the order with respect to ¢ to 1/g2.
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