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Résumé. L’objectif de cette note est de présenter les résultats récents concernant la
contrôlabilité du système de Vlasov-Maxwell, qui sont prouvés dans le papier [10] écrit
en collaboration avec Olivier Glass.

Quelques résultats de contrôlabilité pour le système de Vlasov-Maxwell relativiste

Abstract. The goal of this note is to present the recent results concerning the con-
trollability of the Vlasov-Maxwell system, which are proved in the paper [10] by Olivier
Glass and the author.

1. Introduction

We consider the relativistic Vlasov-Maxwell system set in the two-dimensional torus T2 :=
R2/Z2, with a source supported in an open subset ω ⊂ T2:



∂tf + v̂ · ∇xf + divv
[
(E + 1

c
v̂⊥B)f

]
= 1ωG, t > 0, x ∈ T2, v ∈ R2,

∂tE1 − c∂x2B = −
∫

R2
fv̂1dv, ∂tE2 + c∂x1B = −

∫
R2
fv̂2dv,

∂tB + c rotE = 0,

divE =
∫

R2
fdv −

∫
R2×T2

fdvdx,

f|t=0 = f0, E|t=0 = E0, B|t=0 = B0,

(1.1)

where
v̂ := v√

1 + |v|2
c2

is the relativistic velocity and c > 0 is the speed of light. The distribution function f(t, x, v)
describes the statistical distribution of a population of electrons in a collisionless plasma:
the quantity f(t, x, v) dx dv can be interpreted as the density at time t whose position is
close to x and velocity close to v. As usual, E(t, x) stands for the electric field (here, this is
a two-dimensional vector) and B(t, x) for the magnetic field (here this is a scalar quantity).
They are solutions to the Maxwell equations, with some sources (ρ :=

∫
f dv, j :=

∫
fv̂ dv),

which means that the electromagnetic fields are induced by the electrons themselves.
The electromagnetic fields act on the motion of the electrons through the Lorentz force
E + 1

c v̂
⊥B (where v̂⊥ stands for v̂ rotated of π/2).

Finally, 1ωG is a source in the Vlasov equation, which can be interpreted as an absorp-
tion or creation of charged particles.

We are interested in the controllability properties of the Vlasov-Maxwell system, by
means of an interior control localized in ω. The basic control question is the following:

Mots-clés: Vlasov-Maxwell equations, controllability, geometric control condition.
Classification math.: 35Q83, 93B05.
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given (f1, E1, B1) a target and some control time T > 0, is it possible to choose G such
that the (non-linear) dynamics can be driven to:

f|t=T = f1, E|t=T = E1, B|t=T = B1 ? (1.2)
The investigation of such a question for other non-linear kinetic equations has already

been done in the context of the Vlasov-Poisson equation by O. Glass [8] and for the
Vlasov-Poisson equation with external force fields by O. Glass and the author [11]. The
latter case can be somehow considered as a toy model for the Vlasov-Maxwell case, and
will play an important role for one of our next results.

As it is well-known, the Maxwell equations are basically a system of two coupled (lin-
ear) wave equations. Concerning the controllability of wave equations, we have a famous
result of Rauch-Taylor [14], and Bardos-Lebeau-Rauch [3], which involves some geometric
condition on the control set ω, that we can introduce now:
Definition 1.1. The open subset ω of T2 satisfies the Geometric Control Condition (GCC)
if:

There exists T > 0 such that for any x ∈ T2 and any direction e ∈ S1,

there exists y ∈ [0, T ] such that x+ ye ∈ ω. (1.3)
Loosely speaking, this means that any ray of light meets the control set in finite time,

and that all the information can be “observed” from ω. We have:
Theorem 1.2 (Rauch and Taylor). Assume that ω ⊂ T2 satisfies GCC. Let (ϕ0,Ψ0),
(ϕ1,Ψ1) ∈ H1(T2) × L2(T2) some initial and final data. Then there exists G ∈ L2(T2)
such that the solution ϕ to the wave equation:{

∂2
t ϕ−∆xϕ = 1ωG,

ϕ|t=0 = ϕ0, ∂tϕ|t=0 = Ψ0,

satisfies:
ϕ|t=T = ϕ1, ∂tϕ|t=T = Ψ1.

As shown in [3] and [4], GCC is not only a sufficient condition to get controllability for
the wave equation, it is also necessary. In view of these facts, it is natural for our problem
(whose structure is transport + waves) to assume GCC on the control set ω. Indeed, we
have the following result:
Theorem 1.3 (Glass and Han-Kwan). We assume that ω satisfies the geometric control
condition. There exists T0 > 0, such that for any T > T0 if for i = 0, 1, (fi, Ei, Bi) ∈
H3(T2 ×R2)×H3(T2)×H3(T2) are such that fi is compactly supported in v and satisfy
the compatibility conditions:

divEi =
∫

R2
fi dv −

∫
T2×R2

fi dvdx, (1.4)∫
T2×R2

f0 dvdx =
∫

T2×R2
f1 dvdx, (1.5)

as well as the smallness assumption
‖(fi, Ei, Bi)‖H3 ≤ κ, i = 0, 1, (1.6)

for κ small enough, then there exists a control G ∈ H2([0, T ]× T2 × R2), supported in ω,
which drives the Vlasov-Maxwell system from (f0, E0, B0) to (f1, E1, B1).

This theorem is a small data result: one speaks of a local controllability property. The
limitation on the control time is expected, because of the finite speed of propagation of
information in the Maxwell equations. It would be interesting though to find the minimal
time of control in this result.
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The following of this note is organized as follows: Section 2 is first devoted to a sketch
of the proof of this latest result. In Section 3, we will present and explain another result,
maybe more surprising, for a control set ω which does not satisfy the geometric control
condition.

2. Sketch of the proof of Theorem 1.3

2.1. Preliminary 1: The return method
In order to prove the Theorem, which concerns small data, the first natural idea is to
follow the proof scheme:

• Linearize the equations around the trivial state (0, 0, 0) and prove some controlla-
bility properties of these linear equations.

• Show that these properties are somehow preserved after some small perturbation
and finally prove by a fixed point argument that this allows to give a solution to
the non-linear problem.

Unfortunately, we are in a situation where this usual proof scheme fails. Indeed, after
linearization around the trivial state, we obtain the following relativistic free transport
equation: {

∂tf + v̂ · ∇xf = 1ω(x)G(t, x, v),
ft=0 = f0,

which fails to be controllable in general. By Duhamel’s formula, we have the representation
(characteristics are straight lines):

f(t, x, v) = f0(x− tv̂, v) +
∫ t

0
1ω(x− (t− τ)v̂)G(τ, x− (t− τ)v, v) dτ.

To be able to influence the value of f at some time T > 0, it clearly necessary that
1ω(x− (T − τ)v̂) is different from 0 for any (x, v) ∈ T2 × R2, at least for some τ ∈ [0, T ].
From this remark, we deduce that there is an obstruction to controllability coming from
the geometry of the trajectories. It could be that for any t ∈ R, x+ tv̂ never meets ω: this
is the bad direction obstruction. Of course, this does not occur when ω satisfies GCC, but
we have to keep in mind this problem, in view of the second result that will be discussed
in the last section. Another obstruction comes from the fact that the velocity v can have
an arbitrarily small modulus, so that even if x + tv̂ always meets ω for some t ∈ R, this
can be only for extremely large values of |t|: this is the slow particles obstruction.

In order to circumvent this difficulty, we shall rely on the return method of J.-M. Coron
(we refer to the book [5] for many other applications, especially for the incompressible
Euler equations, and to [9] for another pedagogical presentation). The principle of this
method is the following: instead of linearizing around the trivial state, we look for a partic-
ular homoclinic solution to the full Vlasov-Maxwell system (with some source supported
in ω), starting from (0, 0, 0) and reaching again (0, 0, 0) after some time T > 0, but which
can be highly non-trivial inside the interval of time. We ask that the linearized equations
around this solution enjoy nice controllability properties.

In the kinetic context, we look for a solution (f,E,B) to Vlasov-Maxwell system, with
a suitable source supported in ω, starting from (0, 0, 0) and returning to (0, 0, 0) such that
the characteristics

dX

dt
(t, x, v) = V̂ (t,X(t, x, v)) and X(0, x, v) = x,

dV

dt
(t, x, v) = E(t,X) + V̂ ⊥

c
B(t,X) and V (0, x, v) = v,
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satisfy, for some large enough T > 0:

Any trajectory X meets the control zone ω during [0, T ].

This will be sufficient for proving some results for the full non-linear equations. In view
of the future fixed point scheme, we will actually need a slightly stronger property: let
ω′ ⊂ ω′′ ⊂ ω where ω′, ω′′ are open sets still satisfying GCC, then we ask that

Any trajectory X meets the zone ω′ during [0, T ].

2.2. Preliminary 2: Control of the Maxwell equation with GCC

In order to implement this strategy, we will rely on some controllability results for the
Maxwell equations. As already mentioned, Maxwell equations can be recast as a system
of coupled linear wave equations:{

∂2
tE − c2∆xE = −c2∇ρ− ∂tj,
∂2
tB − c2∆xB = c rot j.

Control is expected to be obtained by the source (ρ, j), which is supported in ω. One
difficulty is that this control has to satisfy, for consistency reasons, the local conservation
of charge:

∂tρ+∇ · j = 0. (2.1)
This was overcome by Phung in [13], who showed that it is possible to control the system
by using only divergence free currents j:

Theorem 2.1. Assume that ω satisfies GCC. Let us assume that the control time T > 0 is
large enough. Let k ∈ N∗. For any (E0, B0, E1, B1) ∈ Hk(T2)4, with divE0 = divE1 = 0,
there exists a control function j̃ ∈ ∩ks=0H

s([0, T ], Hk−s(T2)) satisfying jt=0 = jt=T = 0,
such that for all t ∈ [0, T ], div j̃ = 0 and such that the solution (E,B) to the system:

∂tB̃ + c rot Ẽ = 0, ∂tẼ + c rot B̃ = −j̃1ω,
div Ẽ = 0, div B̃ = 0,
Ẽ|t=0 = E0, B̃|t=0 = B0,

(2.2)

satisfies Ẽ|t=T = E1, B̃|t=T = B1.

Actually, Phung deals with the much more complicated case of domains of R3 with
boundaries, and with low regularity data. In our problem, it is important to deal with
smooth electromagnetic fields and with a smooth control function: this follows for instance
from arguments developped in [7].

2.3. Step 1: Construction of the reference solution

We can now describe the formal construction of a relevant reference solution:
1. As a first step, we take (0, 0, 0) as reference solution. Observing that straight lines

with “large” velocities have to “quickly” meet ω′, we find some time T0 > 0 such that:

∀x ∈ T2, ∀v ∈ R2, |v| � 1, X(t, x, v) meets ω′ during [0, T0].
There remains to take care of particles whose initial velocity is not large enough.

2. To that purpose, we use Theorem 2.1: we accordingly find a smooth j1 such that
∇ · j1 = 0, supported in ω, which drives the Maxwell equations from (0, 0) to (E1 :=
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(1, 1), 0) in some time T1. From that current, it is easy to find a solution to the Vlasov-
Maxwell equation, with some source supported in ω. Indeed, let Zi(v) ≥ 0 (for i = 1, 2)
be a smooth function such that

∫
Zi(v) dv = 0 and

∫
Zi(v)v̂ dv = (δi=1, δi=2). We set:

f(t, x, v) := Z1(v) j1
1(t, x) + Z2(v) j2

1(t, x), with j1 = (j1
1 , j

2
1)

and (E,B) the solution to Maxwell with sources given by ρ = 0 and j = j1. Then we
observe that (f,E,B) is a solution to Vlasov-Maxwell with a suitable source in ω. Note
indeed that

G := ∂tf + v̂ · ∇xf + (E + v̂⊥

c
B) · ∇vf

is supported in ω, by definition of f and j1. Note then that the state reached at time
T0 + T1 is exactly (0, E1, 0), which happen to be a stationary solution to the Vlasov-
Maxwell system (without any source). The effect of the electric field E1 is to accelerate all
particles; because the solution is stationary, we can wait enough time so that the velocity
of particles exceeds that needed in the previous step. This implies that for some large
T2 > 0, we have the property:

∀x ∈ T2, ∀v ∈ R2, X(t, x, v) meets ω′ during [0, T2].

3. Finally, with a similar procedure as before, we bring back the system to the trivial
state (0, 0, 0).

2.4. Step 2: Absorption and fixed point procedure

The last step consists of a relevant fixed point scheme. Let us first describe how we define
our fixed point operator V. Let g ∈ H3 be some distribution function close to the reference
solution (f,E,B) and satisfying the local conservation of charge.

We first define (Eg, Bg) the solution to the Maxwell equations with initial conditions
(E0, B0) and some sources (ρg, jg) := (

∫
g dv,

∫
gv̂ dv). Then we define f1 in the following

way: 
f1(t = 0) = f0,

∂tf1 + v̂ · ∇xf1 +
(
Eg + v̂⊥

c
Bg

)
· ∇vf1 = 0,

Absorption procedure on ∂ω′′.

(2.3)

For the sake of simplicity, we have chosen not to write precisely the absorption procedure
(but it can be found in full details in [10]). Loosely speaking, the principle is to absorb
certain particles who enter ω′′ . This creates some new difficulties compared to the way
the “usual” Cauchy problem is solved (see [16, 17, 1, 12] and many others).

Then, we only consider the restriction of f1 on T2\ω′′ and use an extension theorem to
fill in smoothly the data inside ω′′. In this procedure, we have to be careful of preserving
the local conservation of charge inside ω′′. One finally obtains a distribution function f2
defined on T2 × R2. We finally define:

V(g) := f + f2. (2.4)
The goal is then to use Schauder’s theorem to obtain a fixed point to this operator. To
this end, we need in particular to get H3 estimates for V(g). The main difficulty comes
from the discontinuity of gradients across ∂ω′′, which is created because of the absorption
procedure. We therefore have to perform H3 estimates for the restriction of f1 in ω′′ and
in T2\ω′′ separately. When doing so, it turns out that many boundary terms coming from
integration by parts have bad signs in view of energy estimates. To cure this problem, we
have to make the sum of the estimates for each region, which allows to kill all terms with
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a bad sign. In this procedure, we use several times the Vlasov equation satisfied in each
region to trade normal derivatives (to [0, T ]×ω′′×R2) for tangential derivatives. We refer
to the paper for more details.

Let us now denote (f,E,B) a fixed point to V: this is a solution to Vlasov-Maxwell
with a suitable source supported in ω, which is by construction close to the reference one.
By a Gronwall argument, this implies that the characteristics (X,V ) associated to (E,B)
satisfy also:

Any trajectory X meets ω′ during [0, T ].

Because of the absorption procedure, this means that f ≡ 0 outside ω′′. After some minor
further manipulations (inside ω, we can do anything to modify the solution), this yields a
solution which goes from (f0, E0, B0) to (0, 0, 0) with a source supported in ω.

Likewise we can build a solution which goes from (f1, E1, B1) to (0, 0, 0). Relying on
the reversibility of the equations (if f is a solution, then f(−t, x,−v) also is), this gives
a solution which goes from (0, 0, 0) to (f1, E1, B1). We finally obtain a solution which
goes from (f0, E0, B0) to (f1, E1, B1), with a source supported in ω (which is the control
function). This puts an end to the proof of Theorem 1.3.

3. Another control result without Geometric Control Condition

Without GCC, it seems hopeless to be able to prove any controllability property for the
full system, because of the Maxwell part in the equations. The idea behind the following
result is that actually, we have more flexibility for what concerns the Vlasov equation.
Thus, if we focus on the distribution function only (and abandon the idea of controlling
the EM fields), the following result can be proved:

Theorem 3.1 (Glass and Han-Kwan). Assume that ω contains a strip. Let (f0, E0) ∈
H3(T2×R2)×H3(T2) be some initial data and f1 ∈ H3(T2×R2) a target such that f0, f1
are compactly supported in v and satisfying the compatibility conditions:

rotE0 = 0, divE0 =
∫

R2
f0 dv −

∫
T2×R2

f0 dvdx, (3.1)∫
T2×R2

f0 dvdx =
∫

T2×R2
f1 dvdx. (3.2)

Let b0 ∈ H3(T2) be a magnetic field of the form b0 such that
∫
T2 b0 6= 0. There exist T0 > 0

such that for any T > T0, there exists cT > 0 such that for any c > cT , if the following
holds

‖(f0, E0)‖H3 ≤ κ, ‖f1‖H3 ≤ κ, (3.3)
B0 = c b0, (3.4)

with κ small enough, then there exists a control G such that the solution (f,E,B) to the
Vlasov-Maxwell system with initial data (f0, E0, B0) satisfies:

ft=T = f1. (3.5)

The strategy to prove this result is different to that of the previous theorem. The main
difference lies in the construction of a reference solution. Indeed, in the absence of GCC,
no exact controllability result is available for the Maxwell equations. Instead, the strategy
we follow is inspired by the behaviour of the Vlasov-Maxwell system as the speed of light c
goes to infinity. Some famous results (see [2, 6, 15]) indeed state that in the limit c→ +∞,
solutions to the Vlasov-Maxwell system are solutions to the Vlasov-Poisson system. The
condition (3.4), which may seem strange otherwise, corresponds to the right scaling if one
wants to recover a non-trivial magnetic field in the limit.
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3.1. An approximation lemma
The key result is the following lemma, which states that the solutions to the Maxwell
equations are well approximated, as c gets large by an electric field which is solution to a
Poisson equation and the initial magnetic field (actually a more general version is proved
in [10]).

Lemma 3.2. Let d = 2, 3. Let E0, j, ρ some C∞ functions and B0 a constant and uniform
magnetic field. Let us consider the solution (E,B) to the Maxwell equations:

∂tB + c rotE = 0, ∂tE + c rotB = −j,

divE = ρ−
∫
ρdx, divB = 0,

E|t=0 = E0, B|t=0 = B0.

(3.6)

At initial time we assume that the compatibility conditions are satisfied:

rotE0 = 0, divE0 = ρ(0)−
∫
ρ(0)dx. (3.7)

For all times we assume that the local conservation of charge is satisfied:
∀x ∈ Td, ∂tρ+∇x · j = 0, (3.8)

as well as the zero-mean current property:∫
Td
jdx = 0. (3.9)

Let E∞ be the solution to the Poisson equation:
rotE∞ = 0

divE∞ = ρ−
∫
ρdx.

(3.10)

Then, we have:
‖B −B0‖L∞([0,t]×Td) ≤

Cρ,jt

c
,

‖E − E∞‖L∞([0,t]×Td) ≤
C ′ρ,jt

c
,

(3.11)

where Cρ,j and C ′ρ,j are explicit constants depending only on ρ and j.

3.2. The reference solution in the Vlasov-Poisson case
This suggests that instead of the Maxwell case, we should first study the Poisson case,
which is much more tractable (for instance, there is an infinite speed of propagation of
information). We look for a reference solution (f,E) to the Vlasov-Poisson system with an
external magnetic field B0, such that the characteristics (X,V ) associated to E+ v̂⊥B0/c
satisfy:

Any trajectory X meets the control zone B(x0, r0) during [0, T ].

where B(x0, r0) is a small ball contained in ω.
The construction is very similar to that of [11], except from the fact that some additional

consistency relations have to be satisfied in order to apply our approximation lemma (this
leads to some serious technical difficulties).

As before, there is a first obstruction coming from slow velocities. This can be solved
as follows in the Poisson case. We denote by D a line of T2, which does not cut the
control zone ω (reduce ω if necessary) and n a unit vector, orthogonal to D. We have the
proposition:
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Proposition 3.3. If ω contains a strip, there exists θ ∈ C∞(T2; R) such that

∆θ = ρ in T2,

Supp ρ ⊂ ω,
∀x ∈ T2 \ ω, |∇θ(x)| > 0,∫

D
∇θ · ndx = 0.

The proof of this result, which can be extrapolated from [8], relies essentially on complex
analysis tools. The third condition expresses that the electric field ∇θ allows to accelerate
particles. The fourth condition will be actually crucial to impose some consistency relations
and is obtained thanks to the strip contained in ω.

Contrary to the case with GCC, we also have to cure the obstruction coming from bad
directions. Fortunately, one can first observe that there is only a finite number of directions
vi of S1 such that :

∃x ∈ T2, ∀t ∈ R+, x+ tvi 6∈ B(x0, r0).
To circumvent that defect, we will rely on an effect provided by the magnetic fields

satisfying the bending condition (which was first exhibited in [11]). This “bending effect”
can be easily understood in the baby-model where c = +∞ and b0 ≡ 1. In that simple
case, the equations of characteristics read

dX

dt
= V,

dV

dt
= V ⊥, Xt=0 = x, Vt=0 = v.

and the solutions are explicit:

V =
(

cos t − sin t
sin t cos t

)
v, X =

(
sin t cos t− 1

1− cos t sin t

)
v + x.

We are concerned here with large enough velocities. We distinguish between the two
possibilities:

• Good initial direction: v 6= vi

Loosely speaking, when |v| is very large, the curvature of the circles is very small
and the trajectories look very much like straight lines. One can show a good ap-
proximation by straight lines during a time of order O( 1

|v|), which means that X
meets B(x0, r0).

• Bad initial direction: v = vi

The idea is to rely on the rotation induced by the magnetic field. After some time
τ of order O(1), we observe that Vt=τ is not a bad direction anymore. At this
point, we are as in the previous case, which means that X meets B(x0, r0).

This effect holds for quite general magnetic fields, which satisfy a property which we
call the bending condition.

Definition 3.4. We say that a magnetic field b satisfies the bending condition if b or −b
satisfies the conditions 1) and 2).

1) Geometric control condition. We assume that there exists a compact set K of
T2 on which b > 0 and which satisfies the geometric control condition:

For any x ∈ T2 and any direction e ∈ S1,

there exists y ∈ R+ such that x+ ye ∈ K. (3.12)
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By compactness, we can define D the maximal time a geodesic can spend outside of
K and d the minimal time a geodesic spends inside K. This allows us to introduce the
second condition on the magnetic field:

2) Bound from below. We assume that there exists b̃ ∈ R such that

b ≥ b̃ on T2,

Db̃+ d

2b > 0.
(3.13)

We refer to [11, 10] for detailed proofs of the cases where b0 only satisfies the bending
condition. Very roughly, we have bending in the zone where b0 ≥ b. Condition 1) implies
that trajectories “often” meet this zone. In the other hand, Condition 2) allows to be sure
that the bending effect is not too much affected in the zone where b0 can be negative,
which could be annihilated otherwise.

With these ingredients in hand, it is quite straightforward to build a relevant reference
solution (f,E) for the Vlasov-Poisson system with external magnetic field B0, for some
source supported in ω. Such a solution can be constructed so that the two first moments
(charge and current) are independent of c.

3.3. The reference solution in the Vlasov-Maxwell case

We call (Ẽ, B̃) the solutions to the Maxwell equations with sources given by (ρ, j :=∫
f dv,

∫
fv̂ dv). Clearly this is a solution to the Vlasov-Maxwell system with a source in

ω. We would like to apply Lemma 3.2 to show that this is a relevant solution as c gets
large. Unfortunately, the local conservation of charge and zero mean current condition are
for the moment not satisfied by f . The idea is to add a correction g to f which does not
modify the local density of charge ρ but only modifies the current, so that all conditions
are satisfied. To this end, using the fourth condition in Proposition 3.3 is crucial. The
new reference solution is still relevant since in the Poisson case, the electric field is only
affected by the local density of charge which has remained unchanged.

3.4. Scaling invariance of the Vlasov-Maxwell system

To conclude, we mention that using some scaling invariance of the relativistic Vlasov-
Maxwell equation, it is possible to deduce another result where the speed of light is fixed
(say c = 1) and in which the condition (3.4) is replaced by a more conventional smallness
condition. We refer to [10] for the statement and proof of such a result.
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