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Abstract. We study a two-fluid description for high and low temperature components of the
electron velocity distribution in an idealized tokamak plasma evolving on a cylindrical domain, and
taking into account nonlinear drift effects only. We refine previous results on the laminar steady state
stability and include viscosity. Taking the temperature difference as the primary parameter we show
that linear instabilities and bifurcations occur within a finite interval and for small enough viscosity
only, while the steady state is globally stable for parameters sufficiently far outside the interval. We
find that primary instabilities always stem from the lowest spatial harmonics for aspect ratios of
poloidal vs. radial extent below some value larger than 2. Moreover, we show that any codimension-
one bifurcation of the laminar state is supercritical, yielding spatio-temporal oscillations in the form
of travelling waves, hence locally stable for such bifurcations destabilizing the laminar state. In the
degenerate case, where the instability region in the temperature difference is a point, these solutions
form an arc connecting the bifurcation points. We also provide numerical simulations to illustrate
and corroborate the analysis, and find additional bifurcations of the travelling waves.

1. Introduction. Existence of coherent states and their stability are fundamen-
tal questions in tokamak plasma theory and application, see, e.g., [3, 7, 10, 16–18].
We study stability and bifurcations in a simple model for high and low temperature
phases near the plasma edge, which appears in [20] and is a viscous variant of the
model derived in [10]. It captures nonlinear effects due to electric drift in the mag-
netic field, the ‘E ×B’ drift, and the electron temperature gradient only. Our results
highlight the role of these selected effects and give detailed information, which seem
currently not possible for the much more accurate Vlasov-Maxwell or Vlasov-Poisson
models considered in, e.g. [3, 18].

A fundamentally important effect in tokamaks is the confinement for strong E×B-
drift, the so-called H-mode [4]. In accordance with this effect, the laminar conducting
state of the model we study turns out to be globally (in phase space) stable for suf-
ficiently large temperature difference, analogous to the result in [10]. In agreement
with numerically observed spatio-temporal oscillations in [20] we show that for mod-
erate temperature difference, the linear instabilities generically create dynamically
stable periodic travelling waves, which attract all perturbations of the laminar state
at least near onset. Hence, in this model, the loss of confinement is associated initially
with transport through travelling waves. Concerning the more complicated dynam-
ics mentioned in [20], we conjecture these result from secondary bifurcations, which
arise when decreasing viscosity from large values that suppress all instabilities: Un-
folding the emergence of an unstable parameter region initially gives an arc of stable
solutions, which connects the bifurcations at the interval endpoints. Numerical com-
putation show that increasing viscosity can generate secondary instabilities on the
continuation of this arc, and also the co-existence of the stable laminar state with
(unstable) oscillations.

We believe the analysis in this paper is also interesting from a mathematical per-
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spective, providing a non-trivial case of a nonlocal (after solving the Poisson equation)
spatially two-dimensional parabolic evolution equation transitioning from global sta-
bility to pattern forming local bifurcations, which we analyze by PDE estimates, and
spectral analysis combined with center manifold reduction, respectively. We provide
a much more detailed analysis compared to the hyperbolic model variant with unit
aspect ratio studied in [10], and apply different techniques.

Mathematical model. The model equations for the miscible phases ρ± of ‘hot’ and
‘cold’ plasma with constant temperatures T+ > T− > 0, and the electric potential V
read 

∂tρ
+ = T+∂x2

ρ+ − E⊥ · ∇ρ+ + ν+∇2ρ+,

∂tρ
− = T−∂x2

ρ− − E⊥ · ∇ρ− + ν−∇2ρ−,

E = −∇V,
−∇2V = ρ+ + ρ− − 1,

(1.1)

where ν+, ν− > 0, E⊥ =
(
E2,−E1

)T
. The equations are posed on the cylindrical

domain

x = (x1, x2) ∈ [0, L1]× R/L2Z,

subject to the Dirichlet boundary conditions

V (0, x2, t) = V (L1, x2, t) = 0,

ρ±(0, x2, t) = ρ±ss(0) , ρ±(L1, x2, t) = ρ±ss(L1),
(1.2)

that respect the ‘laminar’ steady state

ρss = (ρ+
ss, ρ

−
ss), ρ

+
ss(x1) := 1− x1

L1
, ρ−ss(x1) :=

x1

L1
(1.3)

of (1.1) for which the electric potential and field vanish.
System (1.1) derives from a drift kinetic model, describing the interaction between

drifts for plasma of different temperatures in a slab with one periodic direction. See
[10, (1.5)] and (up to a reflection) equivalently [20, (1)]. Here the configuration space
is 2D in position and 1D in velocity and we refer the reader to [19], [20] for a discussion
of the physics. Concerning equations for the potential we refer to the introduction
of [11].

There are at least two possibilities to obtain the two-fluid model from the kinetic
equations. The first one, following [10], approximates the distribution function of
electrons by two Dirac-distributions in 1D velocity space, that is,

f(x, v, t) ≈ ρ+(x, t)
δ(|v| −

√
2T+)

2π
√

2T+
+ ρ−(x, t)

δ(|v| −
√

2T−)

2π
√

2T−
, (1.4)

which yields (1.1) for ν± = 0 as a hyperbolic system of PDE, whose nonlinear terms
stem from the electric field driving ρ± via the ‘E × B drift’ of all charged particles.
Accounting for viscosity gives (1.1) with ν± > 0 as a parabolic PDE system.

The second possibility to derive (1.1), following [20], is to consider a certain
moment closure of the fluid hierarchy. The resulting equations have the form of a
two-fluid system with equal viscosity coefficients, which agrees with (1.1) for ν+ = ν−:
the fluid equations in (1.1) and [20, (6)] are equivalent in that case. Therefore, we
will focus on the case of small ∆ν := ν− − ν+ and write ν := ν+, ν− := ν + ∆ν.
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Relations to other models. Before a more detailed discussion of the results of this
paper, we briefly discuss some relations to other models. Taking a mathematical
perspective, we may interpret the deviations of hot and cold electron densities from
the laminar state (see also (2.1) below) as vorticities ω with the velocity vector field

(∇(∇2)−1
(
ω1 + ω2)

)⊥
. Then system (1.1) can be interpreted as 2D Navier-Stokes

with two vorticities, vorticity sources and an advection term generated by ∆T , cf. [2].
For the comparison with related physical models, it is useful to change variables

ρ+ =
1 +∇2ψ + θ

2
, ρ− =

1 +∇2ψ − θ
2

, V = −ψ (1.5)

and pass to the co-moving frame x2 → x2 − T++T−

2 t. For ∆ν = 0 system (1.1) then
becomes

∂t∇2ψ + [ψ,∇2ψ]− ∆T

2
∂xθ − ν∇4ψ = 0,

∂tθ + [ψ, θ]− ∆T

2
∂x∇2ψ − ν∇2θ = 0,

(1.6)

with x1 = z and x2 = x and the Poisson bracket [f, g] = ∂xf∂zg − ∂zf∂xg. The
Dirichlet boundary conditions (1.2) become

ψ = ∂zzψ = 0, for x1 = 0, L1, and θ(0, x2, t) = −θ(L1, x2, t) =
1

2
. (1.7)

This form readily shows similarities but also highlights differences to several re-
lated models. In particular, we see that the Hasegawa-Wakatani equations [13, (5)-
(6)], a well-known model for resistive drift wave turbulence near the plasma edge
derived from mode coupling, differs in several terms. Also the related models of shear
flow and shear induced stability that we are aware of differ from (1.6), e.g., [9], and
more recently [25]. Only a single term in (1.6) differs from Saltzman’s model [21,
(16’),(17’)] of Rayleigh-Bénard convection in the Boussinesq approximation, which
is a classical widely studied model that exhibits pattern formation bifurcations: the
term −∆T

2 ∂x∇2ψ in (1.6) is replaced by −∆T0

H
∂ψ
∂x in [21, (17’)]. However, boundary

conditions and basic steady state are also different in the literature.
Despite these differences, a common feature in particular with the Saltzman model

is the emergence of periodic travelling waves through bifurcations. Notably, the SO(2)
translation symmetry of (1.1) in x2 implies that bifurcations of Hopf-type are steady
state bifurcations in a suitable co-moving frame; see §5. Moreover, for steady states
(1.1) with equal viscosities and in a suitable co-moving frame possesses a reflection
symmetry and hence an O(2)-symmetry. Such an O(2)-symmetry can also be present
e.g. in the Saltzman model, cf. [15], and implies that the bifurcating travelling waves
have a stronger steady state character with velocity predicted by the linear problem.
However, the reflection symmetry is broken for differing viscosities and we therefore
rely on the center manifold reduction for Andronov-Hopf bifurcations.

Laminar steady state. The relevance of the laminar steady state ρss was already
noted in [10] for ν± = 0 and L1 = L2 = L without the Dirichlet boundary conditions
(1.2). In that case it is linearly unstable in a bounded interval (∆T1,∆T2) = (0, 4L

5π2 )
of the parameter ∆T = T+ − T−and linearly stable for ∆T 6∈ [∆T1,∆T2]. Not
surprisingly, this structure persists for moderate viscosity with modified thresholds
∆T1 = O((ν±)2), ∆T2 = 4L/(5π2) +O((ν±)2), see Fig. 1.1. In addition to studying
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(a) (b)

Fig. 1.1. (a) Schematic illustration of the main case of a primary 1-instability region in the
stability analysis of the steady state ρss when including equal viscosities. The estimate of the global
stability threshold ∆T∗ is larger than the linear stability threshold, even at ν = 0. However, in the
limit ν → 0 the lower thresholds coincide, and if in addition ` → ∞, then also the upper linear
thresholds tend to the global ones. (b) Sketch of local bifurcation diagram of the steady state u = 0
with supercritical branches of stable limit cycles. Solid line represents stable solutions and dashed
lines unstable ones.

linear stability and instability, it was shown in [10] that the laminar steady state is
actually globally stable for ∆T < 0 and ∆T > ∆T∗ = 4L/π2 (in the sense of L2-space
convergence). Here ∆T∗ > ∆T2 is an estimate for a global stability threshold, which
may not be sharp.

One of the original motivations for the present paper was to explain the neces-
sity of a difference between the local (linear) and a global (fully nonlinear) stability
threshold through subcritical bifurcations at ∆T2. In such a case, the global stability
threshold must be larger than the linear one due to the presence of non-zero ampli-
tude solutions that do not converge to the laminar state. We prove, however, that the
bifurcations are always supercritical. Of course, a difference in thresholds can still be
due to other nonzero amplitude solutions that the local bifurcation analysis cannot
reveal and indeed we present numerical evidence for such solutions in §8.2.

Nontrivial aspect ratios L2 6= L1 provide additional insight into the threshold
relation, which is also motivated from the modelling point of view as a thin strip near
the plasma edge, where 0 < L1 � L2. We show that for ν± = 0 the upper linear
stability threshold ∆T2 of the lowest spatial harmonics and the estimated global
stability thresholds become

∆T2 =
4L1L

2
2

π2(L2
2 + 4L2

1)
=

4`2L1

(4 + `2)π2
, ∆T∗ =

4L1

π2
,

so that ∆T∗ is in fact independent of L2. Now we notice that the estimate of the
global stability threshold ∆T∗ is related to the upper linear stability threshold via

lim
`→∞

∆T2 = ∆T∗,

so that the discrepancy is smaller on thinner domains. Note that as a (estimated)
global stability threshold, ∆T∗ is always an upper bound for a linear instability in
∆T .

Coming back to the model origins, the sign of ∆T can be related to the region
within the tokamak that is modelled by (1.1): ‘good curvature’ (negative ∆T ) and
‘bad curvature’ (positive ∆T ) regions, which is consistent with the different stability
properties for positive and negative ∆T as noted in [10] – the model captures the
electron temperature gradient instability. Our rigorous results are in agreement with
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the instability (L-mode) being present for moderate temperature gradients on the
bad curvature side only, and being suppressed for large enough gradients [4]. But the
modelling and physical relations, in particular to L-H transition (see [22]) remain to
be understood. “Clearly, the model selection criteria, apart from the sound physics
behind them, should be based on their capability to reproduce key experimental facts
such as spontaneous L-H transitions, characteristic intermediate regimes (such as
dithering), or hysteresis” [16].

Main results. In this paper, we pursue a mathematical analysis that may serve
as a basis to investigate further the model assessment and relations to physical phe-
nomena. Our main results with ν± > 0 may be summarized as follows, see Fig. 1.1
for illustration.
Global stability (Theorem 7.3) The steady state ρss is globally exponentially L2-stable

for ∆T < 0 and ∆T > ∆T∗ = 4L1

π2 max
(
ν+
ν−
, ν−ν+

)
.

Local bifurcations (Theorems 4.1, 4.3) For 0 ≤ ∆ν � 1 and parameter sets including
L2/L1 < 2

√
2 ≈ 2.8 the following holds.

At the stability thresholds ∆Tj , j = 1, 2, the critical modes are spatially the
lowest harmonics, and supercritical periodic travelling wave bifurcations occur (with
O(2)-symmetry for ∆ν = 0) yield waves with velocity 1

2 (T+ +T−) +O(∆ν) at onset.
Near the degenerate case ∆T1 = ∆T2 the two bifurcating branches of travelling

waves are connected (in ∆T ), and form an arc of stable periodic solutions. We nu-
merically corroborate that, further away from this degeneracy, secondary symmetry-
breaking bifurcations occur along the arc (Figure 8.4).

In case L2 � L1, the primary instabilities can also be higher spatial harmonics,
even simultaneously, but for codimension-1 cases the supercriticality remains valid
(Remark 5, Corollary 3.5, Theorem 4.4). We thus suspect rich dynamics already at
onset for ‘thin’ domains, but a detailed analysis is beyond the scope of this paper. It
is also possible that, as ∆T increases, a sequence of destabilization and restabilization
occur through different harmonics (Lemma 3.7).

Finally, on the infinite strip [0, L1]×R, the laminar state undergoes supercritical
Turing-type instabilities (Lemma 5.1).

This paper is organized as follows. In §2 we reformulate the problem for a subse-
quent bifurcation analysis. Section 3 concerns the spectrum of the linearized operator
in the steady state ρss. In §4 we discuss the center manifold reduction, reduced vector
fields and prove the main bifurcation results. In §5 we explain the relation to travel-
ling wave bifurcations, and consider pattern formation as well as Turing instabilities
in case of an infinite strip. In §6 we discuss nonlinear instability for ν± ≥ 0 in the
linearly unstable region. §7 contains the global stability result. Finally, section 8
contains numerical computations, illustrating the results.
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2. Reformulation and setting. For the bifurcation study it is convenient to
formulate (1.1) through the deviation u = (u1, u2) from ρss,

ρ+ = u1 + ρ+
ss, ρ

− = u2 + ρ−ss.

In terms of u, and in the comoving variable x2 → x2 + T−t, system (1.1) reads

∂tu1 = ∆T∂x2
u1 + E2/L1 − E⊥ · ∇u1 + ν∇2u1,

∂tu2 = −E2/L1 − E⊥ · ∇u2 + (ν + ∆ν)∇2u2,

E = −∇V,
−∇2V = u1 + u2,

x ∈ [0, L1]× R/L2Z , t ≥ 0,

(2.1)

subject to (periodic b.c. in x2 and) homogeneous Dirichlet boundary conditions

u1(0, x2, t) = u2(0, x2, t) = V (0, x2, t) = 0,

u1(L1, x2, t) = u2(L1, x2, t) = V (L1, x2, t) = 0.
(2.2)

Remark 1. The aforementioned reflection symmetry for ∆ν = 0 occurs in
the reference frame with speed − 1

2∆T in (2.1), which yields the advection terms
σj(

1
2∆T∂x2

uj+E2/L1), σ1 = 1, σ2 = −1 in the equation for u1, u2, respectively. Here
the system possesses the reflection symmetry (u1, u2, x1, x2) 7→ (u2, u1,−x1,−x2) so
that the set of solutions invariant under the symmetry forms an invariant subspace.
Together with the translation symmetry in x2 the system thus has O(2)-symmetry and
the solutions emerging from codimension-one bifurcations lie in this subspace, thus

having a priori determined velocity −T
++T−

2 in (1.1). Notably, these solutions are
non-stationary for typical T+, T−, and the symmetry is broken for ∆ν 6= 0.

Remark 2. A peculiarity of the Poisson bracket nonlinearity in (1.1) and equiv-
alently (2.1) is that, viewed on complexified phase space, each eigenspace of the lapla-
cian is flow invariant and the dynamics is purely linear. Indeed, take an eigenfunc-
tion e with eigenvalue −λ of the laplacian and set uj = αje with αj ∈ C so that
E = (α1 + α2)/λ∇e. Hence, E⊥ · ∇uj = 0 so that (2.1) is in fact linear. Noting that
E2 is a multiple of an eigenfunction implies the claim. (For the explicit formulas of
e see gk below.) In particular, x2-independent u1, u2, V form an invariant subspace,
which follows also immediately from the translation symmetry in the x2-direction. The
reduced evolution on this space given by the uncoupled heat equations ∂tu1 = ν∂2

x1
u1,

∂tu1 = (ν + ∆ν)∂2
x1
u1 together with the then trivial −∂2

x1
V = u1 + u2.

However, this is the only case of such flow invariant eigenspaces for the real
equations since all other eigenvalues and eigenspaces of the linear part of (2.1) are
complex (see Lemma 3.1 below).

Remark 3. Concerning boundary conditions, the spectral analysis of the linear
part of (2.1) in §3 below also covers zero-flux boundary conditions on one side of the
domain: doubling the domain extends the sine basis functions in x1-direction to the
homogeneous Dirichlet case of (2.1). However, the image of an eigenfunction under
the nonlinearity violates such boundary conditions.

Next we choose a simple functional analytic setting for a formulation of (2.1) as a
parabolic problem by solving the Poisson equation. This is convenient for the center
manifold reduction, but also gives a simple well-posedness setting.
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Let Ω := [0, L1]× [0, L2] and denote the Sobolev spaces Hj = Hj([0, L1]×R/L2Z)
as well as

X := H1
0 ([0, L1]× R/L2Z),

Y := {f ∈ H2 : f(0, x2) = f(L1, x2) = 0},
Z := {f ∈ H3 : f(0, x2) = f(L1, x2) = 0},

(2.3)

which incorporate the boundary conditions. We shall use standard notation: for f1,
f2 ∈ L2([0, L1]× R/L2Z) we denote the scalar product by 〈f1, f2〉 =

∫
Ω
f1(x)f2(x)dx

and for fj = (fj,1, fj,2) ∈
(
L2([0, L1]× R/L2Z)

)2
j = 1, 2 by 〈f1, f2〉2 = 〈f1,1, f2,1〉 +

〈f1,2, f2,2〉.
Thanks to these boundary conditions we can solve the Poisson equation in (2.1);

see also §3 for explicit solutions. We thus obtain E via the bounded operators Aj :
Z → H3 defined by

Ajf := ∂xj
(∇2)−1f, j = 1, 2,

Af = (A1f,A2f)T ,

A⊥f = (A2f,−A1f)T .

(2.4)

Notably, A2 in fact maps into Z, because E2 = ∂x2V vanishes for x1 = 0, L1 due to
the Dirichlet boundary conditions.

In order to apply standard results on parabolic equations, let us write (2.1) equiv-
alently in the standard form

du

dt
= Lu+R(u), (2.5)

so that solutions of this and (1.1) are in 1-to-1 correspondence. Here

Lu =

(
∆T∂x2

u1 + 1
L1
A2(u1 + u2) + ν∇2u1

− 1
L1
A2(u1 + u2) + (ν + ∆ν)∇2u2

)
,

R(u) =

(
−A⊥(u1 + u2) · ∇u1

−A⊥(u1 + u2) · ∇u2

)
.

Note that L ∈ L(Z × Z,X × X) is the linearization of (1.1) in ρss. We have
that R : Z × Z → Y × Y since ∇uj ∈ H2 × H2 and −A⊥(u1 + u2) · ∇uj vanish
at x1 = 0, L1, and H2 is a Banach algebra; R is in fact analytic in u. See also
§4. Moreover, the imbeddings Z2 ↪→ Y 2 ↪→ X2 are dense and the uniformly elliptic
operator −L : Z × Z ⊂ X × X → X × X is a sectorial operator, generating an
analytic semigroup, and so (2.1) admits mild and classical solutions u(t) for any
initial condition u(0) ∈ Y × Y . The sectoriality is a consequence of the fact that
the laplacian is sectorial in Y with domain L2 of the cylinder [14], and this is robust
under addition of the lower order terms in L. It thus also possesses a square root,
which then provides an isomorphism from L2 to X. Hence, L is also sectorial on Z
with domain X. Note also that L has a compact resolvent and thus discrete spectrum
accumulating at −∞. We discuss its spectrum in detail in the next section.

3. Spectrum of the linearization. For the bifurcation analysis, we distinguish
the stable spectrum of L, σ−(L) := {λ ∈ σ(L) : <(λ) < 0}, its neutral spectrum
σ0(L) = {λ ∈ σ(L) : <(λ) = 0} and its unstable spectrum σ+(L) = {λ ∈ σ(L) :
<(λ) > 0}.
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The next Lemma characterizes the spectrum and is the basis for the identifica-
tion of bifurcations. While this concerns the comoving variable of system (2.1), the
spectrum for the original system is the same up to a scaling of the imaginary parts.
See §5. Recall that ` = L2/L1 is the domain aspect ratio. In the following we set
N∗ = N \ {0} for clarity.

Lemma 3.1. The spectrum σ(L) of L consists of the eigenvalues

λ±k = iπ
k2∆T

`L1
− π2 ν+ + ν−

2L2
1

(
k2

1 +
4k2

2

`2

)
±
√
Dk, , k ∈ N∗ × Z, (3.1)

where

Dk =
k2

2∆T

`2L1

(
4

k2
1 + 4(k2/`)2

− π2 ∆T

L1

)
+O

(
|∆ν|(k2

1 + k2
2)2
)
. (3.2)

In particular, for 0 ≤ |∆ν| � 1, λ−k ∈ σ−(L), and if Dk ≤ 0 then λ+
k ∈ σ−(L).

Moreover, <
(
λ+

(k1,k2)

)
< <

(
λ+

(1,k2)

)
.

Remark 4. Since ν± > 0 renders L uniformly elliptic, for fixed ν± > 0 only a
bounded set of k can give λ±k with real part larger than a fixed value, for instance −1.
For 0 ≤ |∆ν| � 1 continuity thus gives uniform bounds on the difference to ∆ν = 0
for critical eigenvalues. Hence, for the considerations of this section, the perturbations
are all of order |∆ν| (or higher) with constants uniform in k.

We will start to discuss the relevance and implications of Lemma 3.1 after its
proof. In preparation of the proof, choose the orthogonal basis of X given by

gk(x) := sin

(
k1πx1

L1

)
exp

(
2iπk2x2

L2

)
, (3.3)

where k ∈ N∗ × Z. In order to express the operator A, denote

φk(x) := cos

(
k1πx1

L1

)
exp

(
2iπk2x2

L2

)
. (3.4)

Indeed, if f ∈ X, the explicit solution to the Poisson equation −∇2V = f in terms of
this basis reads

V (x) =
2

π2

∑
k∈N∗×Z

1
L2

L1
k2

1 + 4L1

L2
k2

2

(∫
Ω

f(y)gk(y)dy

)
gk(x).

We therefore get the explicit formula for A:

Af(x) = − 2

π

∑
k∈N∗×Z

〈f, gk〉
(
L2

L1
k2

1 +
4L1

L2
k2

2

)−1(
k1φk(x)/L1

2ik2gk(x)/L2

)
. (3.5)

Proof. [Lemma 3.1] Consider functions of the form qgk(x), k ∈ N∗ × Z, where
q ∈ C2 is an arbitrary constant vector. Since

A2gk(x) = −2L1i

π

k2

L2

L1
k2

1 + 4L1

L2
k2

2

gk(x), (3.6)

the action of L on such functions is

(Lqgk)(x) = Mkqgk(x), (3.7)
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where

Mk :=

(
C1(k)∆T − C2(k)− ν−C3(k) −C2(k)

C2(k) C2(k)− ν+C3(k)

)
, (3.8)

with

C1(k) :=
2πk2i

L2
, C2(k) :=

2i

π

k2

L2

L1
k2

1 + 4L1

L2
k2

2

, C3(k) := π2

(
k2

1

L2
1

+
4k2

2

L2
2

)
.

The eigenvalues of Mk are readily computed to be λ±k . Taking Remark 4 into
account, the claims on the real parts of λ±k immediately follow from inspecting (3.1)
for ∆ν = 0 – in particular Dk monotonically decreases in k1.

Note that the proof also implies that eigenfunctions of L have the form

ζk(x) := ξkgk(x) ∈ Z × Z, (3.9)

with ξk a eigenvector of Mk.

The last statement in Lemma 3.1 means that, for 0 ≤ ∆ν � 1, only Dk > 0 and
λ+

(1,k2) with k2 ∈ Z \ {0} allow for destabilization, and the real part in this case is (up

to terms of order ∆ν) given by

<
(
λ+

(1,k2)

)
= −π2 ν

L2
1

(
1 +

4k2
2

`2

)
+

√
k2

2∆T

`2L1

(
4

1 + 4(k2/`)2
− π2

∆T

L1

)
. (3.10)

Note that this is a function of the three parameters ν/L2
1, ∆T/L1, (k2/`)

2. As ex-
pected, increasing viscosity always stabilizes, with increasing impact for increasing
(k2/`)

2. However, the dependence of the real part on k2/` is not necessarily mono-
tone, which allows for intricate destabilization scenarios.

The imaginary part, =(λ+
(1,k2)), is non-zero unless ∆T = 0, which means that all

bifurcations are non-stationary in the reference frame of (2.1) and typically that of
(1.1) so that we generically expect Andronov-Hopf bifurcations, where k2 determines
the wavenumber of bifurcating solutions.

0.02 0.04 0.06 0.08 0.10
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(a) (b)

Fig. 3.1. Real parts of eigenvalues as functions of ∆T for L1 = L2 = 1 and ∆ν = 0.
The unstable eigenvalues with k ∈ {1, ..., 10} × {−10, ..., 10} are plotted for (a) ν = 10−3, (b) ν =
4·10−3. Eigenmodes with higher wavenumber have smaller ∆T -value of maxima in order. The figure
illustrates that linear instabilities occur in a finite interval for ∆T , that in this parameter regime
eigenmodes with wavenumber 1 are most unstable, and that increasing ν stabilizes the spectrum
globally in ∆T .
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Taking the temperature difference ∆T as the primary bifurcation parameter, we
next focus on the location of instabilities as ∆T varies, as well as on the wavenumber
of destabilizing modes determined by k2. In Figure 3.1 we plot sample computations
of spectrum as ∆T varies, illustrating the stabilizing effect of the viscosity. Crossings
of eigenvalue curves at zero real part can occur, which is expected to generate rich
bifurcations. However, in this paper we focus on simple bifurcations.

Recall the spectral conditions at a primary Andronov-Hopf bifurcation

(i) There is a constant γ > 0 s.t. sup{<(λ) : λ ∈ σ−(L)} < −γ,
(ii) σ0(L) = {±iω}, ω > 0 and ± iω are simple eigenvalues,

(iii) σ+(L) = ∅,
(3.11)

and in the nondegenerate case, the critical eigenvalues transversely cross the imaginary
axis upon parameter variation.

It turns out that we can characterize a large part of parameter space, where
critical eigenvalues have k2 = 1, that is, k = kc := (1, 1). We therefore define the
following particular case of (3.11).

Condition 1. It holds that <(λ+
kc

) = <(λ+

kc
) = 0 and there is γ > 0 such that

<(λ±k ) < −γ for k ∈ N∗ × Z \ {kc, kc}.
Here and in the following we denote κ = (κ1,−κ2) for κ ∈ R2.

For the remainder of this section we fix ∆ν = 0 since as before all quantities are
smooth in ∆ν at ∆ν = 0, and in the relevant range this is uniform in k, cf. Remark 4.

Rearranging sign conditions on (3.10) and squaring, we readily compute that the
sign of <(λ+

(1,k2)), for κ2 = k2
2 is the sign of

d(∆T, κ2) =
4L3

1

4κ2 + `2
∆T − L2

1π
2

`2
∆T 2 − ν2π4 (4κ2 + `2)2

κ2`4
, (3.12)

which is somewhat simpler to handle. In particular, zeros of d are the critical eigen-
values for bifurcations. This yields the following a priori bounds on ∆T for linear
instability. Recall ∆T∗ = 4L1

π2 for ∆ν = 0.
Lemma 3.2. For all ν, ` and κ2 > 0, the real roots of d(·, κ2) lie in (0,∆T∗).

Moreover, the real roots approach the endpoints in the limit `→∞ if ν = o(`−1).
Proof. Since d(0, κ2) ≤ 0 and ∂∆T d(0, κ2) > 0 the lower bound holds. For

the upper bound, observe that d(4L1/π
2, κ2) < 0 and ∂∆T d(4L1/π

2, κ2) < 0, which
proves the claim since the quadratic coefficient of ∆T is negative. The statement on
the limits readily follows from (3.12) upon multiplication by `2.

Note that d(·, κ2), as a quadratic polynomial in ∆T , has two real roots ∆T1(κ2) ≤
∆T2(κ2) if and only if the viscosity is sufficiently small,

ν ≤ νcrit(κ2) :=
2
√
κ2`

3L2
1

(4κ2 + `2)2π3
, (3.13)

with a double root at equality. Hence, this is a necessary and sufficient condition for
the occurrence of critical eigenvalues λ+

(1,
√
κ2) as ∆T varies. However, it is subtle to

determine when the critical eigenvalues destabilize the equilibrium as this requires to
exclude unstable eigenvalues for all other k2.

10



Nevertheless, the location of these parabola’s maxima in ∆T is at

∆T =
2`2L1

(4κ2 + `2)π2
, (3.14)

which is strictly decreasing in κ2. Therefore, the k2-value of these parabola in ∆T
can be identified by the relative location of their maxima.

Remark 5. From (3.13) we infer that for fixed ν > 0, increasing aspect ratio `
implies increasing wavenumber k2 (k2

2 = κ2). Specifically, for fixed L2 and L1 → 0
satisfying (3.13) requires that k2 = O(L−3

1 ). For fixed L1 and L2 → ∞, the require-
ment is k2 = O(L2). Concerning the upper destabilization threshold ∆T2, it then
follows from (3.14) that in the first case ∆T2 = O(L5

1), while in the second case
∆T2 → ∆T∗ = 4L1/π

2 as L2 →∞ in accordance with Lemma 3.2.

Remark 6. For κ2 = 1 the roots satisfy ∆T1 = O(ν2) and ∆T2 = 4`2L1

π2(`2+4) +

O(ν2), which was already illustrated in Figure 1.1.
The geometric nature of bifurcating solutions is determined by the k2-value of

critical and destabilizing eigenvalues as ∆T in- or decreases from outside [0,∆T∗].
We thus define

Definition 3.3. For given L1, `, ν, we say that L possesses a k2-instability
region, if d(·, k2) has two positive roots ∆T1(k2

2) ≤ ∆T2(k2
2). We call a k2-instability

region locally primary, if there is a neighbourhood S ⊆ R of J := (∆T1(k2
2),∆T2(k2

2)),
s.t. the steady state u = 0 is stable for ∆T ∈ S \ J and ∆Tj(k

2
2) 6= ∆Tj(κ2) for

κ2 6= k2
2, j = 1, 2. Moreover, we say that the k2-instability region is primary, if it is

locally primary and S = R.
To ease notation, we simply write ∆Tj for ∆Tj(1), j = 1, 2.
As a first step to understand the nature of destabilizing k2-instability regions, we

consider the case k2 = 1 and in preparation define the following condition.
Condition 2. For some given L1, `, ν > 0 we have

∆T

ν2π4
>

(4 + `2)(4k2
2 + `2)

16`4L3
1k

2
2

(`4 − 16k2
2) (3.15)

and ν < νcrit(1) for ∆T ∈ {∆T1,∆T2}, and all k2 ∈ N∗, k2 ≥ 2. Note that Condi-
tion 2 requires a ratio of threshold temperature difference and viscosity to dominate
a ratio involving domain geometry and linear mode harmonics.

Theorem 3.4.
1. A 1-instability region of L is locally primary if and only if Condition 2 holds.

If it holds, then Condition 1 is satisfied at ∆T = ∆Tj, j = 1, 2. The critical
eigenvalues are λj = ±iωj with ωj = π∆Tj/(`L1).

2. For 0 < ` ≤ 2
√

2 ≈ 2.8 any 1-instability region of L is primary and Condi-
tion 1 is satisfied at ∆T = ∆Tj, j = 1, 2.

The point of the theorem is that it provides conditions under which the desta-
bilizing mode for increasing and decreasing ∆T is known, namely the lowest spatial
harmonic. Note the bound on ` in item 2 is not sharp, but it in particular includes
the case ` = 1 considered in [10].

Proof.
1. A direct calculation gives

d(∆T, 1)− d(∆T, κ2)

κ2 − 1
=

16∆Tκ2`
4L3

1 − (4 + `2)(4κ2 + `2)(`4 − 16κ2)ν2π4

κ2`4(4 + `2)(4κ2 + `2)
.

(3.16)

11



In particular, Condition 2 is indeed equivalent to a 1-instability region being
locally primary. The claims on ∆T follow readily from inspection of the zeros
of d.

2. This is the trivial observation that the right hand side in condition 3.15 is
strictly negative for these values of `, while the left hand side is positive at
all possible real roots ∆T of d(·, κ2) on account of Lemma 3.2.

Remark 7. The critical frequencies in the original x2-variable of (1.1) are

ωj = (T+
j + T−j )

π

L2
.

The following corollary guarantees that other destabilization scenarios also occur.

Corollary 3.5. Let κ2 > 1 and let ` be the unique positive solution ` = `κ2 of

`6 − κ2`
4 − 80κ2`

2 − 64κ2(2 + κ2) = 0. (3.17)

Then for ν = νcrit(1) the 1-instability region is a point, ∆T1 = ∆T2, that coincides
with ∆T2(κ2). Notably, `κ2

is strictly increasing in κ2.

Proof. Substituting the critical ν2 =
4l6L4

1

(4+`2)4π6 from (3.13) and the corresponding

critical value of ∆T = 2`2L1

π2(4+`2) at the double root into the nominator of the right

hand side of (3.16) gives

4`6L4
1

(4 + `2)3π2
(64κ2(2 + κ2) + 80κ2`

2 + 4κ2`
4 − `6),

where κ2 = k2
2. The first factor is positive and roots of the second factor, which we

denote by q, precisely solve (3.17). We have

∂(`2)q = 80κ2 + 8κ2`
2 − 3`4,

which is positive at ` = 0 so that the cubic q with negative cubic coefficient has
a unique positive root. In addition, this implies that ∂`q < 0 at this root so that
together with

∂κ2q = 4(32 + 32κ2 + 20`2 + `4) > 0

we infer from implicit differentiation that the location of this root strictly increases
with κ2.

This means that the 1-instability region is not primary. In fact, it is also not
primary for nearby parameter values that produce ∆T2(4) > ∆T2(1). The solution
to (3.17) for κ2 = 4 is `4 ≈ 5.37, and for κ2 = 9 it is `9 ≈ 7.22. See Figure 3.2. For `
between these values (and slightly above `9), we numerically find that the 2-instability
region is primary. In general, for any given k2 Condition 2 is violated for sufficiently
large ` (with ν, L1 fixed), since ∆T is bounded (Lemma 3.2).
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Fig. 3.2. Real parts of eigenvalues λ+k , k = (1, k2), as functions of ∆T for ∆ν = 0. The parabola
are ordered in k2 by the decreasing location of maxima. Here ν = νcrit(1) so that ∆T1 = ∆T2. (a)
` = `4, with near primary 2-instability region. (b) ` = `9, with primary 2-instability region.

Remark 8. It is possible to show that for ν small enough, there is a primary
1-instability region, if ` < `∗ ≈ 4.053, where `∗ is the unique positive root of the
polynomial 16(`2 + 4)2 − (`2 − 8)(`2 + 8)(`2 + 16) = 0.

For the case of small viscosity, we have the following corollary of Theorem 3.4.
Corollary 3.6. As ν → 0, L has k2-instability regions for k2 → ∞ with

∆T1(k2
2) < ∆T2(k2

2). For sufficiently small ν, Condition 1 is satisfied at ∆T2(1), and
this is an instability threshold.

Proof. The presence of all k2-instability regions clearly holds at ν = 0 in view of
(3.13). In addition, from (3.16) we infer at ν = 0 that

d(∆T, 1)− d(∆T, κ2) > 0,

so that the critical eigenfunction at the right endpoint of the instability interval has
mode number k2 = ±1. This persists for sufficiently small ν > 0, since the thresholds
depend continuously on ν, and again from 3.16 we see that for each ν > 0 there is
only a finite range of κ2 values, for which d(∆T, 1)− d(∆T, κ2) < 0 is possible.

Lastly, we point out the possibility of multiple disjoint primary k2-instability
regions, where changing ∆T destabilizes and stabilizes multiple times. The following
lemma shows that there can be at most two such regions since κ = k2

2 is discrete. On
the infinite strip the lemma implies a Turing-type instability, see Lemma 5.1 in §5
below.

Lemma 3.7. Fix L1, L2, ν and consider d(∆T, κ) as map d : R×R+ → R. Then
d has a unique crticial point, which is a global maximum (∆Tmax, κmax) with κmax > 0
and ∂2

κd(∆Tmax, κmax) < 0. Moreover, for any ∆T , the function d(∆T, ·) has a unique
positive maximum.

Proof. For fixed ∆T we compute

∂2
κd(∆T, κ) =

27L3
1∆T

(4κ+ `2)3
− 2ν2π2

κ3

so that a change in convexity (in κ-direction) for κ > 0 requires

4(L1∆T (1/3) − ν2π2)κ = `2,

which has at most one solution. Since d(∆T, κ) as a function of κ is convex near κ = 0
and d(∆T, κ) → −∞ as κ → ∞, this implies a unique critical point in the convex
region, which is therefore a global maximum for κ > 0.
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Fig. 3.3. Real parts of eigenvalues λ+k , k = (1, k2), as functions of ∆T for ∆ν = 0. Here

` = 2
√

2 + 3
√

2 so that νcrit(1) = νcrit(4). In the plotted region only the curves with k2 = 1, 4 are
present. This illustrates the possibility of k2-instability regions with k2 > 1, that is, the onset can
come through higher harmonics in x2-direction.

Putting this together with the fact that d(∆T, κ) is a convex quadratic polynomial
in ∆T we infer the lemma statement.

In Figure 3.3 we plot eigenvalue curves, where two k2-instability regions consist
of a point. Parameters ν = νcrit(k2) = νcrit(k

′
2) and ` that produce such scenarios

can be readily computed from (3.13); here we take k2 = 1, k′2 = 4. For perturbed
ν < νcrit(1) the instability regions become disjoint open intervals.

Remark 9. On account of (3.13), for decreasing ν and also for increasing `, there
is an increasingly long sequence of secondary instabilities of Andronov-Hopf type as
∆T increases from zero, with higher and higher spatial harmonics, and another reverse
sequence as ∆T is moved towards ∆T∗. See Figure 3.1.

4. Center manifold reduction. In this section, we consider the vicinity of
parameters with critical ∆T = ∆Tj for j = 1 or j = 2 and assume that no other
eigenvalues lies on the imaginary axis. The main example is a primary 1-instability
region. For the unfolding of the bifurcation in the generic case ∆T1 < ∆T2 we
introduce the parameter µ1 by ∆T = ∆Tj + µ1. In the degenerate case ∆T1 = ∆T2,
where ν = νcrit(1), we additionally unfold with µ2 defined by ν = νcrit(1) − µ2

2 and
perturb from ∆ν = 0 to highlight the effect of symmetry breaking, cf. Remark 1. For
readability we frequently suppress the index j.

At bifurcation, the critical eigenvalues are then ±iω and we denote the associated
eigenfunctions by ζ(x) := ζkc(x), ζ(x), see (3.9). Then L possesses a two-dimensional
real central subspace Ec := span{<(ζ),=(ζ)} ⊂ Z2 and we will show that there is a
locally invariant 2D center manifold

Wc = {u0 + ψ(u0, µ) : u0 ∈ OEc
} ⊂ OZ2 , µ ∈ OR2 ,

with ψ : OEc → E]c, Ec ⊕ E]c = Z2, and neighbourhoods OR2 of µ = 0, and OEc ,
OZ2 of 0 ∈ Z2. In case of a primary bifurcation the center manifold is also locally
exponentially attracting.

Since we consider k = kc = (1, 1), it is not surprising that the coefficients Cm(kc)
defined in (3.8) show up. It turns out that following modifications are convenient.

c1 :=
π∆T

L2
, c2 :=

2

π
(
L2

L1
+ 4L1

L2

) , c3 := νπ2

(
1

L2
1

+
4

L2
2

)
. (4.1)

We give an overview of the main results in this section and postpone the lengthy
proofs of Theorem 4.1, Corollary 4.2 and Theorem 4.3 to §4.1. First consider the
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generic case of (3.13), where the unfolding goes by µ1 only. See Fig. 1.1 for a partial
illustration.

Theorem 4.1. Suppose that Condition 1 holds for a fixed parameter set for
which ∆T1 < ∆T2. Then the steady state u = 0 of system (2.5) possesses a locally
exponentially attracting and locally invariant 2D center manifold near u = 0 with the
normal form dynamics of z = reiϕ given by

dr

dt
= µ1a1r + br3 +O(r(|µ1|+ r2)2 + |r∆ν|),

dϕ

dt
= ω0 + µ1a0 + ∆νb̃r2 +O(|∆ν|+ ∆ν2r2),

(4.2)

where

a1 =
π

L2

c2 − c1
c3

, b = − L4
1

4π2ν

c21 + c23
L2

2 + 4L2
1

, ω0 =
π∆T

L2
, a0 =

π

L2
, (4.3)

b̃ =
c3L

3
1L2

(L2
2 + 4L2

1)2

(
c22

2c2 − c1
+
L2

2 + 4L2
1

L2
2

(2c1 − c2)

)
(4.4)

The following corollary highlights the nature of the resulting bifurcations. The
relation to travelling waves mentioned in Remark 1 will be made explicit in §5.

Corollary 4.2. Assume the hypotheses of Theorem 4.1. Then the steady state
u = 0 of (2.5) undergoes a supercritical Andronov-Hopf bifurcation as µ1 varies. The
reduced vector field coefficients satisfy b < 0, sgn(a1) = −(−1)j at ∆T = ∆Tj and

b̃ 6= 0 at ∆T2 and if ` > 2 also at ∆T1; otherwise generically b̃ 6= 0. In particular,
near the stability thresholds there exist heteroclinic connections between the unstable
steady state and the stable limit cycle.

As ν ↓ 0, the radius of the limit cycles scales near ∆T1 as r(t) ∝ ν−1
√

∆T −∆T1,
and near ∆T2 as r(t) ∝

√
∆T2 −∆T .

Next, we formulate the result for unfolding the codimension-2 case ∆T1 = ∆T2,
where the critical eigenvalues do not transversely cross the imaginary axis.

Theorem 4.3. Suppose that Condition 1 holds for a fixed parameter set for
which ∆T1 = ∆T2. Then the steady state u = 0 of system (2.5) possesses a locally
exponentially attracting and locally invariant 2D center manifold near u = 0 with the
normal form dynamics for z = reiϕ given by dϕ

dt as in Theorem 4.1 and

dr

dt
= a1µ1 (a2µ2 − a3µ1) r + br3 +R, (4.5)

R = O
(
µ2

2 + |µ1µ
3
2|+ r(|µ|+ r2)2 + |r∆ν|

)
, with

a0 =
π

L2
, a1 =

π2

L2
2

, a2 =
1√

πL1L2

, a3 =
π

L2
2

,

and b from Theorem 4.1.
In particular, for 0 ≤ |∆ν| � |µ2| � 1, there exists a branch of stable periodic

orbits, parametrized by µ1 and terminating at supercritical Andronov-Hopf bifurcations
at ∆T + µ1 = ∆Tj, j = 1, 2.

The following Theorem shows that the bifurcation results 4.1-4.3 can be general-
ized to instabilities caused by higher spatial harmonics.

Theorem 4.4. Assume (3.11) holds with critical wavenumber k2, so that λ+
(1,k2) =

iω. If ∆T1(k2
2) < ∆T2(k2

2) then the statements of Theorem 4.1 and Corollary 4.2 hold
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with ∆Tj replaced by ∆Tj(k
2
2), and L2 replaced by L2/k2 for the coefficients on the

center manifold. If ∆T1(k2
2) = ∆T2(k2

2) then the statement of Theorem 4.3 holds for
the same modifications.

Proof. Under condition (3.11) the center manifold theorem applies as in the
first parts of the proofs of Theorems 4.1 and 4.3. This yields a stable locally invariant
manifold with reduced dynamics of Hopf normal form (with the frequency independent
of amplitude for ∆ν = 0). The only remaining question is the sign of the coefficients.

If k2 is the critical wavenumber in x2-direction on the domain [0, L1] × [0, L2]
then 1 is this wavenumber on the domain [0, L1]× [0, L2/k2] so that Condition 1 holds
there. Hence, on this domain and with the modifications in the claim, Theorem 4.1,
Corollary 4.2 and Theorem 4.3 hold fully.

The theorem now follows since the bifurcating branches imbed into the original
domain.

Remark 10. Recall that there is a sequence of secondary instabilities as noted in
Remark 9. Whenever these occur with a simple pair of complex conjugate eigenvalues,
analogous center manifold reduction results hold for an unstable 2D manifold. The
reduced vector fields are of the same form with coefficients given analogous to the
above results, but to be computed at different k2 and other parameters.

4.1. Proofs of Theorem 4.1, Corollary 4.2 and Theorem 4.3.
Proof. [Theorem 4.1] For the unfolding with µ1, we modify the definition of R

in (2.5) by adding the term µ1∂x2u1 in the first component and denote the result by
R(u;µ1). For the resulting bifurcation problem, we verify the hypotheses of the center
manifold theorem [12, Theorem 3.3, p.46]. We will employ the O(2)-symmetry for
∆ν = 0 noted in Remark 1 only at the end to highlight the steady state nature of the
bifurcations. The goal now is the full justification of the center manifold reduction
and the computations of the coefficients on the center manifold independent of an
additional symmetry.

As noted after (2.5), L ∈ L(Z2, X2) is sectorial so that Hypothesis 2.7 in that
theorem holds, using [12, Remark 2.18 p. 37]. Hypotheses 3.1(i) and 2.4 hold on
account of Theorem 3.4. It remains to show Hypotheses 3.1(ii): smoothness of R.
From (2.5) we explicitly compute

DR(u;µ1)v =

(
µ1∂x2

v1 −A⊥(v1 + v2) · ∇u1 −A⊥(u1 + u2) · ∇v1

−A⊥(v1 + v2) · ∇u2 −A⊥(u1 + u2) · ∇v2

)
,

D2R(u;µ1)[v, w] = −
(
A⊥(v1 + v2) · ∇w1 +A⊥(w1 + w2) · ∇v1

A⊥(v1 + v2) · ∇w2 +A⊥(w1 + w2) · ∇v2

)
.

Note that A⊥(v1 + v2) ∈ H3 × H3 and ∇w ∈ H2 × H2. Since H2 is a Banach algebra
(see for instance [1, Theorem (4.39)]), there is a constant C0 > 0, such that

‖A⊥(v1 + v2) · ∇w‖H2 ≤ C0‖A⊥(v1 + v2)‖H2×H2‖∇w‖H2×H2 .

AlsoA⊥(v1+v2)·∇w vanishes at x1 = 0, L1, hence ‖D2R(u;µ1)[v, w]‖Y 2 ≤ C‖v‖Z2‖w‖Z2 ,
that is, R(u;µ1) ∈ C2(Z2, Y 2). Moreover all the higher derivatives are identically
0, hence R is analytic. This establishes the existence of the 2D center manifold and
smoothness of ψ as needed below, and for which the reduced dynamics has the normal
form (4.2). Here the critical frequency is ω = π∆T/L2 +O(∆ν) due to Theorem 3.4.
In order to analyze the coefficients of the reduced equation, we write functions in the
central subspace as

u0(t) = z(t)ζ + z(t)ζ, z(t) ∈ C.
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Using the expressions in [12, p. 125] we have for a = a1 + ia0,

a = 〈R11(ζ) + 2R20(ζ, ψ001), ζ∗〉2, (4.6)

β = 〈2R20(ζ, ψ110) + 2R20(ζ̄, ψ200) + 3R30(ζ, ζ, ζ̄), ζ∗〉2, (4.7)

with β the complex cubic coefficient on the center manifold so that b = <(β) and
b̃ = d

d∆ν=(β) both evaluated at ∆ν = 0. The quantities in these expressions are
defined as follows: ζ∗ is the adjoint eigenvector to ζ, the operators Rik are given by,
see [12, p. 95-96],

R01 := ∂µ1R(0; 0) = 0,

R20[v, w] :=
1

2
D2R(0; 0)[v, w]

= −1

2

(
A⊥(v1 + v2) · ∇w1 +A⊥(w1 + w2) · ∇v1

A⊥(v1 + v2) · ∇w2 +A⊥(w1 + w2) · ∇v2

)
,

R11v := ∂µ1
DR(0; 0)v =

(
∂x2

v1 0
0 0

)
,

R30 =
1

3!
D3R = 0,

(4.8)

and the functions ψijk, from the expansion of ψ, are the unique solutions to

−Lψ001 = R01,

(2ωi− L)ψ200 = R20(ζ, ζ),

−Lψ110 = 2R20(ζ, ζ̄).

(4.9)

Computation of a. Since R01 = 0 and ker(L) = {0}, −Lψ001 = R01 implies
ψ001 = 0. For this result the parameter µ2 is held fixed at zero so that, using (4.6),
the coefficient a of the reduced system (4.2) is

a = 〈R11(ζ), ζ∗〉2 =
2πξ1i

L2
〈(g1,1, 0)T , ζ∗〉2, (4.10)

where ζ∗ is the adjoint eigenfunction, satisfying

L∗ζ∗ = −iωζ∗ , 〈ζ, ζ∗〉2 = 1. (4.11)

with the adjoint operator of L given by (using integration by parts)

L∗v =

(
−∆T∂x2

v1 + 1
L1
Bv + ν∇2v1

1
L1
Bv + (ν + ∆ν)∇2v2

)
, v ∈ Y2

Bv(x) =
4i

L2π

∑
k∈N∗×Z

k2

L2

L1
k2

1 + 4L1

L2
k2

2

〈v1 − v2, gk〉gk(x).

The critical adjoint eigenfunction ζ∗, as any eigenfunction of L∗, has the form ζ∗(x) =
ηgm(x), where η = (η1, η2) ∈ C2 is an eigenvector of M∗m derived from (3.8). If
m 6= (1, 1), then 〈ζ, ζ∗〉2 = 0, therefore m = (1, 1), and hence M∗1,1η = −iωη so that
from 〈g11, g11〉 = L1L2/2 and (4.10) we infer

a = πξ1η1L1i. (4.12)
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Due to (3.7), there is ξ ∈ C2 such that

M1,1ξ = iωξ, ξ = (ξ1, ξ2)T , (4.13)

and using (4.1) at the bifurcation points ∆T = ∆Tj , j = 1, 2, we have

c23 = c1(2c2 − c1) +O(∆ν). (4.14)

Putting this together with equation (4.11) we obtain with ν̃ = (1 + ν/∆ν) that

(M1,1 − iω)ξ =

(
c1i− c2i− c3 −c2i

c2i −c1i + c2i− ν̃c3

)
ξ = 0

(M∗1,1 + iω)η =

(
−c1i + c2i− c3 −c2i

c2i c1i− c2i− ν̃c3

)
η = 0.

(4.15)

Since M1,1 is semi-simple at the bifurcation point with the eigenvectors ξ, ξ, we have

ξ · η = 0 and we can choose ξ = ξ0 + ∆νξ̃ +O(∆ν2), ν = ν0 + ∆νη̃ +O(∆ν2) so that
ξ̃ ∈ span(ξ0), η̃ ∈ span(η0). Specifically, we take

ξ0 =

(
c2i

c1i− c2i− c3

)
, η0 = δ

(
−c2i

c1i− c2i− c3

)
,

ξ̃ = − i

2ω

(
c3
ν

(
0
ξ2
0

)
− λ̃ξ0

)
, η̃ =

i

2ωδ

(
c3
ν

(
0
η2

0

)
− λ̃ξ0

)
,

δ =
2

L1L2

1

(c1i− c3)(c1i− 2c2i− c3)
=
c3 − i(c2 − c1)

L1L2c3c22
.

(4.16)

where δ 6= 0 provides a normalization and we used (4.14). In particular,

ξ · η =
2

L1L2
+O(∆ν2). (4.17)

From (4.12) at ∆ν = 0 we thus obtain a1 + ia0 = πc22L1δi as claimed.

Computation of b, b̃. Thanks to (4.13), ζ(x) = ξg1,1(x) so that the nonlinearity
R has the property R(ζ) = R20(ζ, ζ) = 0, cf. Remark 2, and ker(2iω − L) = {0} on
account of Theorem 3.4. Hence, the equation for ψ200 from (4.9) implies ψ200 = 0.
Together with R30 = 0 and (4.7), this means

β = 〈2R20(ζ, ψ110), ζ∗〉2. (4.18)

Next, we compute ψ110 using (4.9) and that for k ∈ N∗ × Z we have

A1gk(x) = − L2
2L1k1

π(L2
2k

2
1 + 4L2

1k
2
2)
φk(x). (4.19)

Using ζ = ξg11, (2.4), (3.6), (3.5) and (4.19), straightforward calculations give

−Lψ110 = 2R20(ζ, ζ) =
2i

K1
(ξ1 + ξ2)ξg2,0,

where K1 := L2

L1
+ 4L1

L2
. Since the eigenvectors (ξkgk)k∈N∗×Z of L are mutually orthog-

onal and

M2,0 = −4π2

L2
1

(
ν 0
0 ν + ∆ν

)
18



we have that ψ110 = ξ̂g2,0, where

ξ̂ = α

(
ξ −

(
0

∆νξ2

))
+O(∆ν2), α =

L2
1i

2π2νK1
(ξ1 + ξ2).

This readily gives R20(ζ, ψ110) = ξ̌g1,1φ2,0, where

ξ̌ = −2i

(
ξ1 + ξ2

K1
ξ̂ − ξ̂1 + ξ̂2

K2
ξ

)
(4.20)

(4.21)

with K2 = 4L2

L1
. Substitution into (4.18) and using ξ · η = 0 yields up to order ∆ν2

b = 〈2R20(ζ, ψ110), ζ∗〉2 = −L1L2iα

(
−ξ

1 + ξ2

K2
ξ · η −∆ν

(
ξ1 + ξ2

K1
ξ2η2 +

ξ2

K2
ξ · η

))
.

On the one hand, evaluation at ∆ν = 0 together with ξ · η = 2
L1L2

we obtain

b = − L4
1

4π2ν

c21 + c23
L2

2 + 4L2
1

as claimed.
On the other hand, substituting the expansions of ξ, η, using (4.17) and discarding

a priori real terms gives

b̃ = −L
3
1L2

2K1
=
(

(ξ1
0 + ξ2

0)

K1
ξ2
0η

2
0 +

ξ1
0 + ξ2

0

K2
ξ2
0 ξ0 · η0

)
.

Using (4.14) we readily compute

b̃ = −c3
L2

1

K1

(
c22

K1(c1 − 2c2)
+
c2 − 2c1
K2

)
,

which gives b̃ as claimed.
For ∆ν = 0 this gives the truncated normal form equation on the center manifold

d

dt
z = i(ω + a0µ1)z + bz|z|2

and it remains to show that z = reiϕ has d
dtϕ independent of the amplitude r. As

mentioned before, this results from the reflection symmetry noted in Remark 1, which
means we are in the O(2)-symmetric case Theorem 2.18 of [12] (ω = 0 in the reference
frame of Remark 1). See also §5.

We now turn to the proof of Corollary 4.2.
Proof. [Corollary 4.2] From (4.4) and (4.1) we readily check b < 0, and since

c3 > 0, the sign of a1 is the sign of c2 − c1. Noting that

2π

L2
(c2 − c1) = ∂∆T d(∆T, 1)/L4

1, (4.22)
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and that the quadratic polynomial d(·, 1) has negative quadratic coefficient, it follows
that c1 < c2 at ∆T = ∆T1 and so a1 > 0. Similarly, at ∆T = ∆T2 we have c2 < c1,
hence a1 < 0.

Concerning b̃ we have c1 − 2c2 < 0 due to (4.14), and at ∆T2 it holds c2 < c1 as
noted above. Thus b̃ < 0 at ∆T2. Rearranging terms gives b̃ up to a positive factor
as

K1c1(5c2 − 2c1) + c22(K2 − 2K1)

c1 − 2c2
,

where 5c2 − 2c1 > 0 due to (4.14) and K2 − 2K1 = 2(` − 4/`) with aspect ratio
` = L2/L1. Since c1 − 2c2 < 0 we thus have b̃ < 0 for ` > 2 and generically in ` since
c2 6= 0.

In conclusion, supercritical Andronov-Hopf bifurcations occur at both endpoints
of the instability region, where the phase dynamics is linear in case ∆ν = 0 (and pos-
sibly at non-generic parameter values at ∆T1 for ` < 2). As usual, the local invariance
of the center manifold from Theorem 4.1 implies the existence of the claimed hetero-
clinic orbit between the unstable steady state and the stable limit cycle contained in
the center manifold.

Now consider the behaviour of a1 and b for small viscosity 0 < ν � 1. With
c4 := c3

ν we get c2, c4 = O(1), and

a = π
c2 − c1
L2νc4

, b = − L3
1

4π2ν

c21 + ν2c24
L2

2

L1
+ 4L1

.

Left endpoint of the instability region: ∆T1. Using c2 > c1 and (4.14) we find
c1 = c2 −

√
c22 − ν2c24, where c22 − ν2c24 > 0 by (3.13). Hence,

c1 =
c24
2c22

ν2 +O(ν4),

and we obtain

a =
πc2
L2c4

1

ν
+O(ν), b = − L4

1c
2
4

4π2(4L2
1 + L2

2)
ν +O(ν3).

Therefore the radius of the stable limit cycle |z(t)| for sufficiently small µ1 is

2π

L2
1c4

(
π(4L2

1 + L2
2)c2

L2c4

) 1
2

1

ν
µ

1
2
1 +O(ν

1
2 ).

Right endpoint of the instability region: ∆T2. Here c1 = c2+
√
c22 − ν2c24, therefore

c1 = 2c2 +O(ν2) and so

a = − c22π

c24L2

1

ν
+O(ν), b =

L4
1c

2
2

π2(4L2
1 + L2

2)

1

ν
+O(ν)

hence the radius of the stable limit cycle for small −µ1 is

π

L2
1c4

(
4L2

1 + L2
2

L2

) 1
2

(−µ1)
1
2 +O(ν

1
2 ).
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This concludes the proof.

We finally provide the proof of Theorem 4.3.
Proof. [Theorem 4.3] In order to unfold in µ2, we cannot cite a center manifold

theorem from [12] verbatim. The reason is that µ2 modifies the second order derivative
terms, but the results in [12] are formulated for parameter dependence of lower order
terms only. However, as pointed out in [12, Remark 3.7], there is no problem if
the domain of L is independent of the parameter. This is the case here as long as
ν = νcrit(1) − µ2

2 > 0, which is valid for the purpose of unfolding from ν = νcrit.
More precisely, the proof of [12, Theorem 3.3, p. 46], which considers the phase space
extended by the unfolding parameter space, applies as follows for νcrit(1) > µ2

2 due

to the linearity in µ2
2. Set µ = (µ1, µ

2
2), ũ = (u, µ) and L̃ũ = (L + µ1∂x2(u1, 0)T −

µ2
2∇2u, 0) as well as R̃(ũ) = (R(u), 0), where ∆ν = 0. (We use µ2

2 as the parameter
instead of µ2 only to get more pleasant reduced equations.) For the extended problem,
the parameter-free center manifold theorem applies [12, Theorem 2.9].

Therefore, as in the first part of the proof of Theorem 3.4, we obtain existence
of the center manifold and the coefficient b is unchanged. Let A denote the real
coefficient of z in the vector field on the center manifold. It remains to derive the
claimed aj-dependent form

A = a1µ1 (a2µ2 − a3µ1) +O(µ2
2 + |µ1µ

3
2|).

For this we simply note that in the present case, (4.10) is replaced by the more general
form

A = 〈R11(ζ)µ, ζ∗〉2 = µ1a− µ2
2〈∇2ζ, ζ∗〉2,

where ζ = ξg1,1. Using ∇2g1,1 = −π2
(

1
L2

1
+ 4

L2
2

)
g1,1 as well as 〈ζ, ζ∗〉2 = 1, we obtain

A = µ1a+ µ2
2π

2

(
1

L2
1

+
4

L2
2

)
= µ1a+O(µ2

2), (4.23)

with a from Theorem 4.1, whose dependence on µ2 is considered next. Recall that
ν = νcrit − µ2

2, with µ2 = 0 giving equality in (3.13). Hence,

νcrit =
2

πL1L2c̃23
,

where c̃3 stems from writing

d(∆T, 1)/L4
1 = (2c̃1 − c̃2∆T )∆T − ν2c̃23,

with suitably defined c̃j , j = 1, 2, 3 (note the relation to cj in (4.1)). Then d(∆T, 1) =
0 gives

∆Tcrit = c̃1 +
c̃3
2
µ2

√
2νcrit − µ2

2.

Using (4.22) with ∆T = ∆Tcrit + µ1 then yields

a = a1

(
c̃3µ2

√
2νcrit − µ2

2 − 2c̃2µ1

)
.

21



The above formula for νcrit and expansion in µ2 = 0 gives claimed form of A, when
substituting the resulting a into (4.23). Employing the symmetry as in the proof of
Theorem 3.4 implies the form of reduced equations.

The bifurcation scenario can be immediately read off the reduced vector field as
follows: Let us fix µ2 with 0 < |µ2| � 1 and set ∆ν = 0. Then the reduced vector
field shows that at the stability thresholds we have supercritical bifurcations. In the
instability region of the equilibrium r = 0 the stable limit cycle radii are

r =

√
a1µ1(a3µ1 − a2µ2)

b
,

which gives the connected branch of periodic orbits with endpoints at the bifurcations,
perturbed for 0 < ∆ν � |µ2|.

5. Travelling waves and Turing instabilities. As mentioned before, due to
the translation symmetry in x2, the Andronov-Hopf bifurcations correspond to peri-
odic travelling wave bifurcations and each periodic orbit is a steady state in a comoving
frame y2 = x2 − st for certain s. While this relation is generally known for complete-
ness we give some details. The converse is clear: non-stationary periodic travelling
wave bifurcations imply Andronov-Hopf-type bifurcations.

First note that the effect of the co-moving variable is the introduction of an ad-
vection term s∂y2 on the right hand side of the first two equations in (1.1). Therefore,
the linearization Mk is replaced by

Mk,s = Mk + sC1(k)Id,

where C1(k) = 2πik2/L2. Hence, if λk is an eigenvalue of Mk then λk + sC1(k) is an
eigenvalue of Mk,s and choosing critical k2 = +1, the frequency at bifurcation ω is
replaced by ω + s2π/L2. The reduced equation on the center manifold then reads

ż = i(ω + s2π/L2) + µ1a+ bz|z|2,

where a and b are unmodified since the matrices made of cj in (4.15) do not depend
on s. Hence, for s = s∗ := −ωL2/2π we find steady state supercritical pitchfork
bifurcations in the amplitude. Note the choice k2 = −1 reverses the sign of ω, simply
leading to the complex conjugate equation.

Since the spectrum of the modified L possesses a double zero eigenvalue at s = s∗,
the coefficients on the center manifold are not immediately given by the Andronov-
Hopf case used above. However, the reduced vector field on the 2D center manifold of
the double zero eigenvalue reduces further to a scalar equation, undergoing a pitchfork
bifurcation, precisely due to the translation symmetry: In polar coordinates of the
Hopf normal form, this is due to detuning the trivial angular equation, co-rotation
with velocity sC1(1), to stationarity. The co-moving frame speed in the unfolding
generically depends on the amplitude. An exception are O(2)-symmetric cases such
as ∆ν = 0 as discussed previously.

In the context of travelling waves, let us briefly take the perspective of pattern
formation, for which the infinite strip x ∈ [0, L1]×R is the natural domain here. The
linear stability analysis of the laminar steady state in this case involves the eigenvalues
λ±k from §3 with k = (k1, k2) where k2 is continuous and rescaled: these are now
eigenmodes in the essential spectrum given by λ±k with k = (k1, L2k2), (k1, k2) ∈
N∗ × R.
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We are then lead to search for pattern-forming instabilities, and indeed, the sys-
tem allows for the analogue of Turing instabilities from reaction-diffusion systems,
which is also well known in fluid dynamics, for instance Rayleigh-Bénard convection.
For ∆ν = 0, as for the finite dimensional bifurcation discussed in the previous sections,
the symmetry enters and turns Turing-Hopf instabilities fully into Turing instabili-
ties in a suitable frame of reference. The spectral configuration of a Turing-Hopf
instabilities in general is such that the essential spectrum touches the imaginary axis
at some λ = λ(k1, k2) with =(λ) 6= 0, (k1, k2) 6= 0, and crosses it upon parameter
variation; for a Turing instability the critical spectrum is real. Due to Lemma 3.1
critical eigenmodes must have k1 = 1. More precisely, we have the following, where
supercritical refers to positive real part of the Landau-coefficient in the associated
Grinzburg-Landau amplitude equations. For the general theory of these equations for
pattern forming instabilities we refer to [5, 23].

Lemma 5.1. For 0 ≤ ∆ν � 1 and any fixed L1 > 0 there exists a unique νTH > 0
such that the laminar steady state is stable for ν > νTH and all ∆T . For 0 < ν < νTH

it undergoes supercritical Turing-Hopf instabilities at precisely two values of ∆T , and
these lie in (0,∆T∗). For ∆ν = 0 and in the reference frame of Remark 1 these are
pure Turing instabilities. The critical eigenmodes have wavenumber k1 = 1 and some
k2 = k2(∆T ), and the imaginary part of the critical eigenmode (the frequency) is
∆Tπk2(∆T ).

For fixed L1 and any ∆T ∈ (0,∆T∗), a Turing-Hopf instability occurs at a unique
ν, and there is no instability in ν for ∆T < 0 or ∆T ≥ ∆T∗.

Proof. As before we may and will set ν = 0 due to smoothness. Recall that
for bounded rectangular domains, the function d(∆T, k2

2) from (3.12) has the sign of
<(λ+

(1,k2)). This followed from (3.10), which in the case of an infinite strip has k2

replaced by k2L2, where k2 is now the continuous wavenumber. Then ` is replaced by
1/L1 in (3.10) so that d(∆T, k2

2) gives the sign of critical modes for the infinite strip
when setting ` = 1/L1. The scaling also implies that given an instability, the claimed
critical frequency follows from (3.1) with k2 replaced by L2k2.

Lemma 3.2 shows that instabilities can occur for ∆T ∈ [0,∆T∗) only, and ∆T = 0
requires ν = 0. Due to Lemma 3.7, for any ν ≥ 0, the graph of d : R × R+ → R is
parabolic. In particular, there is a unique maximum of d(∆T, k2

2), and it has k2 > 0.
Hence, the maximal real part of the spectrum lies at a unique (∆T, k2), and for
the lemma it now suffices (by continuity) to find values of ν where the maximum of
d(∆T, k2

2) is positive and where it is negative.
For ν = 0 the maximum is positive since then (3.13) holds, and it is bounded as a

function of k2
2 (with maximum at k2 = 0). For ν > 0 the additional term in d(∆T, k2

2)
is the negative contribution

−ν2π4 (4κ2 + `2)2

κ2`4

which is bounded from above as a function of κ2 (with maximum at κ2 = `2/4).
Hence, ν can be chosen so large, that d(∆T, κ2) < 0 for all ∆T, κ2 ≥ 0.

Since the periodic solutions of §4 always bifurcate supercritically implies that
the Turing(-Hopf) instabilities are supercritical: with L2 = 2π/kTH the mode with
critical wavenumber is the lowest spatial harmonic and the supercritical Andronov-
Hopf bifurcation implies positive real part of the Landau-coefficient in the Grinzburg-
Landau amplitude equations.

A numerically computed example is given in Figure 5.1, which is derived from
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that in Figure 3.2(a). Here the critical modes at onset of the instability on the infinite
strip have wavenumber near 0.75.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
k 2

-0.10

-0.08

-0.06

-0.04

-0.02

0.02
Re Λ

Fig. 5.1. A Turing(-Hopf) instability for parameters as in Figure 3.2(a): real parts of eigen-
values λ+k , k = (1, k2), as functions of k2 for ∆T = 0.05 (stable), ∆T = 0.08 (near bifurcation) and
∆T = 0.2 (unstable).

6. Nonlinear Instability. In this short paragraph, we give some details on
the fact that the linear instability of the laminar state ρss is indeed an instability
for the nonlinear equation uniformly in ν. Roughly speaking, this means that in
(∆T1,∆T2), there are initial data which are arbitrarily close to the steady state and
which get “far” from it exponentially quickly. We thus assume ∆T1 < ∆T2 and take
∆T ∈ (∆T1,∆T2). This means that σ+(L) 6= ∅ (see the proof of Theorem 3.4).

In the parabolic formulation (2.5), the sectoriality of L allows to apply the well
known nonlinear instability results from [14] for spectrum in the right half plane.
However, this heavily relies on ν > 0 and the following does not. Furthermore, the
result given for the specific case here is actually stronger than the general ones in [14].

As in [10, Theorem 6.1], the following instability result holds for ν± ≥ 0:
Theorem 6.1. Suppose ∆T ∈ (∆T1,∆T2). There exist constants δ0, η1, η2 > 0

such that for any 0 < δ < δ0 and any s ≥ 0 there exists a solution (ρ±, E) to (1.1)
with ‖ρ±(0)− ρ±ss‖Hs ≤ δ but such that:

‖ρ±(tδ)− ρ±ss‖L2 ≥ η1 and ‖E(tδ)‖L2 ≥ η2,

with tδ = O(| log δ|).
In order to pass from linear to nonlinear instability, a natural candidate is the

solution (ρ±, E) to (1.1) with initial datum

ρ±(0) = ρ±ss + δh±,

where (h+, h−) is an eigenfunction associated to an eigenvalue λ1 with maximal real
part for the linearized operator. We expect the solution ρ± to behave like the solution
of the linearized equations:

ρ±lin(t) = ρ±ss + δeλ1th±.

Since the nonlinear part of (1.1) involves derivatives, controlling the error between
ρ± and the approximation ρ±lin is not straightforward; the main idea is to apply the
method of Grenier [8], whose principle is to build a more precise approximation of ρ±,
which allows to get a better control on the nonlinearities. Since the proof is identical
to that of Theorem 6.1 in [10], we refer to this paper for details.
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7. Global Nonlinear Stability. Let us now investigate the stability of the
steady state ρss, outside of [∆T1,∆T2]. We first state the results and then give the
proofs.

The key point is the following energy identity for M := max(ν+, ν−) and m :=
min(ν+, ν−):

Lemma 7.1. For any initial data ρ0 ∈ L∞, we have the following estimate for
the energy of the system (1.1)

E(t) :=‖ρ− ρss‖2L2 −
2

L1∆T

∫
Ω

|∇V |2dx

+ 2

∫ t

0

[
−4M

L1∆T
‖ρ− ρss‖2L2 +m‖∇(ρ− ρss)‖2L2

]
ds

≤ E(0) = ‖ρ0 − ρss‖2L2 −
2

L1∆T

∫
Ω

|∇V|t=0|2dx,

(7.1)

with ‖ρ− ρss‖2L2 = ‖ρ+ − ρ+
ss‖2L2 + ‖ρ− − ρ−ss‖2L2 , ‖∇(ρ− ρss)‖2L2 = ‖∇(ρ+ − ρ+

ss)‖2L2 +
‖∇(ρ− − ρ−ss)‖2L2 and ∇V = −∇(∇2)−1(ρ+ + ρ− − 1).

Remark 11. We take the opportunity to point out an error in the energy of [10,
Theorem 5.1]: in equations (5.1) and (5.2) of this paper, there is a factor 2 which is
missing in front of

∫
Ω
|∇V |2dx.

We shall use in the following Poincaré type inequalities:
Lemma 7.2. With the same notations as before, we have, for any t ≥ 0:

‖∇V ‖2L2 ≤
2L2

1

π2
‖ρ− ρss‖2L2 , (7.2)

‖ρ− ρss‖2L2 ≤
L2

1

π2
‖∇(ρ− ρss)‖2L2 . (7.3)

As a consequence of the energy identity, we can prove L2-return to equilibrium, with
exponential (and explicit) speed, for negative or large enough ∆T .

Theorem 7.3. If ∆T < 0 or ∆T > ∆T∗ := 4L1

π2 max
(
ν+
ν−
, ν−ν+

)
, then the steady

state ρss is globally asymptotically stable in L2, with exponential convergence rate

−2 min(ν+, ν−)
π2

L2
1

− 4π2|ν+ − ν−|
L1(π2∆T − 4L1)

.

Remark 12. Notably, the constants in all these results are independent of L2,
and the convergence rate is larger on thinner domains (with smaller L1), but also
balancing with viscosity.

Recall that by Lemma 3.2, for fixed ` = L2/L1 the upper instability threshold ∆T2

satisfies ∆T2 < ∆T∗ = 4L1

π2 , but that lim`→+∞∆T2 = ∆T∗ if ν = o(`−1). Hence, the
global threshold estimate ∆T∗ is also linked to linear instability.

Let us now prove Lemma 7.1, Lemma 7.2 and Theorem 7.3.
Proof. [Lemma 7.1] The proof follows from computations that are similar to those

that can be found in [10], for the model without viscosity (that is ν+ = ν− = 0). We
keep the notations of Section 2.

Taking the scalar product with u := (u1, u2) in the transport equations satisfied
by u1 and u2 in (2.1), and integrating with respect to x entails

1

2

d

dt
‖u‖2L2 =

∫
Ω

E2

L1
u1 dx−

∫
Ω

E2

L1
u2 dx+ ν−

∫
Ω

u1∇2u1 dx+ ν+

∫
Ω

u2∇2u2 dx. (7.4)
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Note indeed that due the periodicity with respect to x2, the following contribution
vanishes: ∫

Ω

∂x2
u1u1dx =

∫
Ω

1

2
∂x2

u2
1dx = 0 =

∫
Ω

∂x2
u2u2dx.

Likewise, with Green’s Formula, using divE⊥ = 0 and E2 = −∂x2
V = 0 on x1 = 0, L1,

we have (for i = 1, 2)∫
Ω

E⊥ · ∇ui uidx =
1

2

∫
Ω

E⊥ · ∇(ui)
2dx = 0.

Recall an identity proved in [10, Lemma 5.1] for any t > 0, there holds∫
Ω

E2u1dx = −
∫

Ω

E2u2dx. (7.5)

For the sake of completeness, we quickly reproduce the proof. Observe that∫
Ω

E2 (u2 − u1) dx =

∫
Ω

E2 (u1 + u2 − 2u1) dx

=

∫
Ω

E2

(
−∇2V − 2u1

)
dx = −2

∫
Ω

E2u1dx.

(7.6)

Indeed, due to periodicity in the x2-direction and since ∂x2V = 0 on x1 = 0, L, we get∫
Ω

∂x2
V∇2V dx = −

∫
Ω

∂x2
∇V · ∇V dx+

∫
Ω

div(∂x2
V∇V )dx︸ ︷︷ ︸

=0

= −
∫

Ω

∂x2

(
|∇V |2

2

)
dx = 0.

This completes the proof of (7.5) and therefore, we have∫
Ω

−E2

L1
u1 dx+

∫
Ω

E2

L1
u2 dx = −2

∫
Ω

E2

L1
u1 dx.

Now compute, using the equations satisfied by (u1, u2, V ):∫
Ω

E2u1 dx =

∫
Ω

V ∂x2u1dx−
∫

Ω

div(V u1e2)dx︸ ︷︷ ︸
=0

=
1

∆T

∫
Ω

V

(
∂tu1 + E⊥ · ∇u1 −

E2

L1

)
dx− ν−

∆T

∫
Ω

V∇2u1dx

=
1

∆T

∫
Ω

V
(
∂t(u1 + u2) + E⊥ · ∇(u1 + u2)

)
dx

− 1

∆T

∫
Ω

V∇2(ν−u1 + ν+u2)dx

=
1

∆T

∫
Ω

−V
(
∂t∇2V − E⊥ · ∇(∇2V )

)
dx

− 1

∆T

∫
Ω

V∇2(ν−u1 + ν+u2)dx.

(7.7)
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Observe that by Green’s formula∫
Ω

−V
(
∂t∇2V − E⊥ · ∇(∇2V )

)
dx =

d

dt

1

2

(∫
Ω

|∇V |2dx
)

and using again (7.5), we have∫
Ω

E2

L1
(u1−u2) dx =

1

L1∆T

d

dt

(∫
Ω

|∇V |2dx
)
dx− 2

L1∆T

∫
Ω

V∇2(ν−u1+ν+u2)dx.

Note that using Green’s formula and the Poisson equation satisfied by V , we have∫
Ω

V∇2(ν−u1 + ν+u2)dx =

∫
Ω

∇2V (ν−u1 + ν+u2)dx ≥ −2M‖u‖2L2

since (u1 + u2)(ν−u1 + ν+u2) ≤ 2 max(ν−, ν+)(u2
1 + u2

2).
Finally, gathering all pieces and using∫

Ω

uj∇2uj dx = −
∫

Ω

|∇uj |2 dx

we have proven that d
dtE(t) ≤ 0.

Let us now prove the Poincaré inequalities of Lemma 7.2.
Proof. [Lemma 7.2] We prove (7.2) only since (7.3) can be treated similarly. Using

the orthogonal basis (3.3), we write:

u1 + u2 =
∑

k1∈N∗,k2∈Z
ak1,k2gk.

Recall the Poisson equation satisfied by V : −∇2V = u1 + u2. This yields:

V =
∑

k1∈N∗,k2∈Z

1

π2
(
k21
L2

1
+

4k22
L2

2

)ak1,k2gk,
∇V =

∑
k1N∗,k2∈Z

1

π2
(
k21
L2

1
+

4k22
L2

2

)ak1,k2π
(

k1
L1
φk

2ik2
L2

gk

)
.

Therefore, ∫
Ω

|∇V |2dx ≤ L2
1

π2
‖u1 + u2‖2L2 ≤

2L2
1

π2
(‖u1‖2L2 + ‖u2‖2L2), (7.8)

which proves (7.2).
Gathering all pieces together, we can now prove Theorem 7.3.
Proof. [Theorem 7.3] Using the energy identity (7.1) and applying the Poincaré

inequality (7.2) we get:

‖u‖2L2 ≤‖u(0)‖2L2 +
2

L1∆T

∫
Ω

|∇V |2dx− 2

∫ t

0

[
−4M

L1∆T
‖u‖2L2 +m‖∇u‖2L2

]
ds

≤‖u(0)‖2L2 +
1

L1∆T

4L2
1

π2
‖u‖2L2 − 2

∫ t

0

[
−4M

L∆T
‖u‖2L2 +m‖∇u‖2L2

]
ds.
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Hence, using the Poincaré inequality (7.3),

(
1− 4L1

π2∆T

)
‖u‖2L2 ≤ ‖u(0)‖2L2 + 2ν

(
4M

L1∆T
−mπ2

L2
1

)∫ t

0

‖u‖2L2ds.

As a consequence, by Gronwall inequality, we obtain L2-stability and L2-return to
equilibrium, provided that

∆T < 0, or ∆T >
4L1M

π2m
,

which in particular implies m π2

L2
1
−M 4

L1∆T > 0 and ∆T > 4L1

π2 . More specifically:

‖u‖2L2 ≤
4π2

L1(π2∆T − 4L1)
‖u(0)‖2L2 exp (−γt) , (7.9)

with 0 < γ := 2
(
m π2

L2
1
− 4M

L1∆T

) (
1− 4L1

π2∆T

)−1
= 2m π2

L2
1
− 4π2|∆ν|

L1(π2∆T−4L1) .

8. Numerical results. For illustration of the analytical results given in the pre-
vious sections we next discuss some numerical computations. In the first subsection we
present numerical time integration using harmonic discretization and slow parameter
ramping in order to approximate and track attractors. In the second subsection we
show results of a complementary approach by numerical continuation, which allows
to track stable and unstable branches more accurately, and also detect bifurcation
points. In doing this, we mainly focus on the parameter set

ν = 9 · 10−4, L1 = L2 = 2,∆ν = 0, (8.1)

which has L2 < 2
√

2L1 so that a primary 1-instability region (∆T1,∆T2) exists (The-
orem 3.4), and the endpoints of this are supercritical Hopf-bifurcations to travel-
ling waves (Corollary 4.2). For parameters (8.1) we readily compute that ∆T1 ≈
3 · 10−4,∆T2 ≈ 0.162.

8.1. Time integration and parameter ramping. Here we discretized (2.1)
with a finite-dimensional spectral decomposition

ul(x, t) =

Nx1∑
k1=1

Nx2∑
k2=−Nx2

Ck1,k2,l(t)gk1,k2(x) , l = 1, 2, (8.2)

with harmonics gk as defined in (3.3). We integrated the resulting system of ODEs
for Ck1,k2,l using a semi-implicit Crank-Nicolson scheme, where the linear part only
is implicit1. All the simulations were made with parameter values (8.1) and Nx1 =
Nx2 = 32, and we selectively checked with Nx1 = Nx2 = 64.

1We modified a code by Jean-Christophe Nave - MIT Department of Mathematics,
jcnave@mit.edu for Navier-Stokes equations in vorticity formulation.
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Fig. 8.1. Contour plots of u1(t2) = ρ1(t2)− ρss with t2 ≈ 1000, ∆T ∈ (∆T1,∆T2) and param-
eters as in (8.1). (a) the dynamics is a translation in the periodic x2-direction, ∆T = 0.159291 is
close to the upper instability threshold, and (b) ∆T = 0.146122, the dynamics resembles a modulated
travelling wave, moving in the x2 direction.

In Figure 8.1 we plot one solution near the upper stability threshold ∆T2 ≈
0.162 and another further inside the nonlinear regime as can be seen by the locus of
parameters in Figure 8.2(a). The ‘weakly nonlinear’ solution for ∆T ≈ ∆T2 closely
resembles the unstable eigenfunction and appears to be a periodic travelling wave
as predicted by the theory. The solution further inside the nonlinear regime has a
clear nonlinear structure and does not appear to be close to a travelling wave: it has
additional oscillations superimposed to the drift. Indeed, the numerical results of §8.2
indicate that the travelling waves in this parameter region are unstable.

Here we located and tracked the solutions emerging from the supercritical bifur-
cation at ∆T = ∆T1, by a simple parameter ramping: for ∆T near the bifurcation at
∆T1, we simulate an initial condition close to ρss and after a transient, t = t1 ≈ 400,
we compute the maximum over the interval [t1, 1000]. Next, we slightly increase ∆T
and repeat this step with the initial condition being the solution at the final time of the
previous step. In this way we obtain the ‘ramping diagram’ in Figure 8.2(a), for which
we used 100 ramping steps with smaller stepsize near the endpoints. As predicted
by Theorem 4.1, the slope of the ramping curve is larger near the left endpoint of
the instability region than near the right endpoint. The numerical instability thresh-
olds of the laminar state are in good agreement with the analytical ones with better
accuracy near the right endpoint. Further away from these thresholds, solutions are
no longer travelling waves as noted above and corroborated by the time trace of the
domain mid-point plotted in Figure 8.2(b). However, when continuing the ramping
the solution still turns into the near harmonic periodic solution bifurcating from the
right endpoint ∆T2. Compare Figure 8.1 (a).
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Fig. 8.2. (a) Ramping diagram in ∆T with maxt1≤t≤t2 ‖u1(t)‖∞ on the vertical axis, where
t2 ≈ 1000. The parameters are as in (8.1), the diagram is in agreement with corollary 4.2. (b)
Time trace of u1 at the midpoint (x1, x2) = (L1/2, L2/2) for ∆T = 0.08

8.2. Numerical continuation. In this section we present a different approach
to numerically illustrate and go beyond our analytical results. Instead of time integra-
tion we rely on numerical pseudo-arclength continuation which finds travelling waves
by a Newton method. For some mathematical background on continuation, and the
implementation in the finite elements based software package pde2path used here, we
refer to [24] and to [6] for extensions that are relevant for our problem.

We thus study the stationary problem of (2.1) in a comoving frame x2 7→ x2− st
with speed s ∈ R, that is, the elliptic problem

0 = (∆T + s)∂x2u1 + E2/L1 − E⊥ · ∇u1 + ν∇2u1,

0 = s∂x2
u2 − E2/L1 − E⊥ · ∇u2 + (ν + ∆ν)∇2u2,

0 = u1 + u2 +∇2V

(8.3)

with E = (E1, E2) = −∇V and domain as well as boundary conditions of (2.1), and
parameters (8.1).

We implemented this in pde2path (version 2) and used a regular 20 × 20 grid
decomposed into right isosceles triangles and checked selected solutions with grids up
to 100 × 100. Using the analytical knowledge of the bifurcation points and critical
eigenvector, we generated an initial guess for the continuation in ∆T . The resulting
branches for ν = 9 · 10−3 and ν = 9 · 10−4 together with stability information are
plotted in Figure 8.3(a,c); a solution contour is plotted in Figure 8.3(b).

As predicted by Theorem 4.1, the solutions are stable near the endpoints and the
slope of the branch is larger near the left endpoint of the instability region than near
the right endpoint. In case ν = 9 · 10−3 the entire branch is stable, which is expected
from Theorem 4.3, since ν is close to νcrit ≈ 0.01, where the instability region vanishes.

Beyond the theory, the results for ν = 9 · 10−4 in Figure 8.3(c) show that the
travelling wave solutions destabilize away from the endpoints (apparently by symme-
try breaking pitchfork bifurcations). In Figure 8.4 we plot the branches that bifurcate
here. The rightmost of these extends beyond ∆T2, turns around and connects to a
fully unstable branch of solutions emerging from the laminar state with wavevector
k = (2, 1), which also connects to the leftmost of the additional branches. We also
mention that along the unstable branches there appear to be further destabilizations
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Fig. 8.3. (a) Branch of travelling waves for L1 = L2 = 2 for ν = 9 · 10−3; all solutions are
stable. (b) Contour plot of the u1-component of the travelling wave from (a) at ∆T = 0.07. (c)
Branch as in (a) but with ν = 9 · 10−4; thick lines mark stable solutions, thin lines unstable ones
and circles mark bifurcation points.
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upper panel: Magnification of left panel near ∆T = 0. Right lower panel: u1-component of the small
amplitude solution on the blue branch near ∆T = 0.1 showing the wavevector k = (2, 1).

by Hopf-bifurcations and thus much richer bifurcation diagrams than our present
numerical computations can reveal.

In conclusion, the numerical results nicely corroborate the rigorous local analysis
concerning stability, location and supercritical nature of bifurcations from the laminar
state. Moreover, these results suggest that many other bounded solutions exist for
small ν, in particular also for values of ∆T ∈ (∆T2,∆T∗) between the upper linear
and the estimated global stability thresholds. The latter would explain the necessity
of a difference between the local and global stability thresholds of the laminar state.
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