ON PROPAGATION OF HIGHER SPACE REGULARITY FOR
NON-LINEAR VLASOV EQUATIONS
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ABSTRACT. This work is concerned with the broad question of propagation
of regularity for smooth solutions to non-linear Vlasov equations. For a class
of equations (that includes Vlasov-Poisson and relativistic Vlasov-Maxwell),
we prove that higher regularity in space is propagated, locally in time, into
higher regularity for the moments in velocity of the solution. This in turn
can be translated into some anisotropic Sobolev higher regularity for the so-
lution itself, which can be interpreted as a kind of weak propagation of space
regularity. To this end, we adapt the methods introduced in the context of
the quasineutral limit of the Vlasov-Poisson system in [D. Han-Kwan and F.
Rousset, Ann. Sci. Ecole Norm. Sup., 2016].
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1. INTRODUCTION

This paper is concerned with the broad question of propagation of regularity for
smooth solutions to Vlasov equations of the general form

(1.1) Of+a(v) -Vuf +F(t,z,v)-V,f =0,

set in the phase space T? xR (with T¢ = R?/Z? endowed with normalized Lebesgue
measure), where F : Rt x T4 x R? — R9 is a force field satisfying V,, - F = 0 and
a: R? — RY is an advection field satisfying suitable assumptions, a(v) = v being the
main example to be considered. The (scalar) function f(t, z,v) may be understood
as the distribution function of a family of particles, which can be, depending on
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the physical context, e.g. electrons, ions in plasma physics, or stars in galactic
dynamics. The choice of the periodic torus T? is made for simplicity.

The two precise examples of equations we specifically have in mind are the Vlasov
equations arising from a coupling with Poisson or Maxwell equations, in which case
the resulting coupled system is called the Vlasov-Poisson or the relativistic Vlasov-
Maxwell system (we will discuss as well several other models).

e The Viasov-Poisson system — either the repulsive or the attractive version, the
sign of the interaction here does not matter here — reads

Oif +v-Vof £ E-V,f =0,
E(t,x) = =V o(t,x),

AW - ,
® /]Rd fdv /de]Rd fdvdx
fli=o0 = fo.

In the repulsive version (that is with the sign + in the Vlasov equation), this
system describes the dynamics of charged particles in a non-relativistic plasma,
with a self-induced electric field.

In the attractive version (that is with the sign — in the Vlasov equation), it
describes the dynamics of stars or planets with gravitational interaction.

e The relativistic Vlasov-Mazwell system, reads, in dimension d = 3,

Of+v-Vuf+F-V,f=0,

(1.2)

v 1
V= F(t,z,v):= E(t,x) + -0 x B(t,x),
—= (t,2,0) i= E(t,) + -0 x B(t,)
1
(1.3) -0iB+V, x E =0, V. E= fdv —/ f dvdz,
c R3 T3 xR3

1 1
—fétEJerxB:f/ ofdv, V., -B=0,
C C Jrs3

f|t:0 = fOu (E7B>‘t:0 = (E07BO)7

in which the parameter c is the speed of light. There are also related versions of
in lower dimensions. This system describes the dynamics of charged particles in a
relativistic plasma, with a self-induced electro-magnetic field. We recall that the
(repulsive) Vlasov-Poisson can be derived from in the non-relativistic regime,
that is to say in the limit ¢ — 400, as studied in [5], 17, [54].

In this paper, we will consider weighted Sobolev norms and associated weighted
Sobolev spaces (based on L?), defined, for k € N,r € R, as

1/2

(1.4) fllaee = D /Td/Rd(H|u|2)"|a;;a§f|2dudx 7

lal+|BI<k
where for a = (a1, ,an), 8= (b1, -+, Bn) € {1, -+ ,d}", we write
‘a| =n, ‘B| =n,

and

(r“)f =

)

Loy ?

0

Vg

..

VBn *

90 =0, -

As usual the notation H?® will stand for the standard Sobolev spaces, without
weight.
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It will be also useful to introduce the following weighted W% space, whose
norm is defined, for kK € N,r € R, as

(1.5) £l == D 1L+ [v*)720008 £l Lee,
la+]8|<k

For the Vlasov-Poisson or Vlasov-Maxwell couplings, given an initial condition fy
satisfying
fo € ’H:L

for n,r > 0 large enough (and with a smooth enough initial force F(0)), it is
standard that there exists a unique local solution f(¢) € C'(0,T;H!). Under fairly
general assumptions on the advection field a and the force F', the same result can
also be shown for , as we will soon see.

Let us now present the precise problem we tackle in this work. Assuming some
higher space regularity such as

(1.6) ot fo € HY, (or O fo € HO, for p>n+1)

the question we ask is the following: is there also propagation of any higher reg-
ularity for the solution f(¢)? A first remark to be made is that there is no hope
of proving that this sole additional assumption entails that the solution f(¢) also
satisfies 97T f(t) € HY even for small values of t. Indeed, regularity in z and v is
intricately intertwined for solutions of the Vlasov equation, as can be seen from the
representation of the solution using the method of characteristics.

For s,t > 0 and (7,v) € T¢ x R? we define as usual the characteristic curves
(X (s,t,x,v),V(s,t,z,v)) as the solutions to the system of ODEs

iX(s,t,x,v) =a(V(s,t,z,v)), X(t, t,xz,v) =z,

(1.7) ”ﬁ;
d—V(s,t,x,v) = F(s,X(s,t,z,v),V(s,t,x,v)), Vt,t,z,v) =v.

s

The existence and uniqueness of such curves are a consequence of the Cauchy-
Lipschitz theorem (assuming we deal with smooth forces). The method of charac-
teristics asserts that one can represent the solution of (1.1)) as

(1.8) ft,z,0) = fo(X(0,t,2,v),V(0,t, z,0)).

Therefore we see (except maybe in trivial cases such as F' = 0) that derivatives in x
of f(t) involve derivatives in x and in v of fy, so that regularity in x only of fy can
not in general be propagated for f(t). However given some smooth test function
¥ (v) (the case ¢ = 1 is already interesting), we can also wonder about the higher
regularity of the moment my(t,x) := [pa f(t,2,v)1(v) dv. Such moments, which
can be interpreted as hydrodynamic quantities, are important objects in kinetic
theory. We have the representation formula

my(t, T) = y Fo(X(0,¢,2,v), V(0,t, z,v))(v) dv.

We note that for ¢ small enough, the map v — V(s,¢,z,v) is a diffeomorphism for
all s € [0,¢]. Indeed for s =t this map is the identity and integrating with respect
to s the equation satisfied by V (s, t,x,v), we note that for ¢ small enough and
s € [0,t], the map v — V(s,t,2,v) is a small perturbation of the identity, hence
our claim that it is a diffeomorphism. In particular the map v — V(0,¢,z,v) is a
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diffeomorphism and we denote by V=1(¢, z, v) its inverse. Using this diffeomorphism
as a change of variables (in v) we get, for ¢ small enough,

my(t, T) =
fo(X(0,¢, z, yt (t,z,v)), v)w(Vfl(t, x,v))|det D,V (0,t, x, v)|71 dv.
Rd

Thanks to this formula, at least formally, Leibniz rule allows to ensure that deriva-
tives in 2 of the moment my, only involve derivatives in x of fy. Recalling the extra
higher regularity , it seems maybe natural to expect that the moment m, be-
longs to the Sobolev space H"*! in x. In the case where F is a fized external force,
assumed to be very smooth, say C'°° with respect to all variables, then the fact
that, ¢ being fixed, my (¢, ) belongs to H?™! follows indeed from Leibniz formula,
using the fact the characteristic curves (X, V') inherit the C*° regularity of F'.

However this argument seems to break down in the case where the case F' depends
on the solution f(t) itself, as the regularity of F' is then tightly linked to that of f.
Let us discuss for instance the Poisson case — the Maxwell case is actually worse
in the sense that in the Vlasov-Poisson coupling, F' gains, loosely speaking, one
derivative in z compared to f. As already mentioned, the local Cauchy theory
yields f(t) € C(0,T;H"), and we have F € C(0,T; H*™'). Note then that when
applying (n + 1) derivatives in = on my, one needs to apply (n + 1) derivatives in
x on |det D, V(0,t,z,v)|~!, which amounts to applying in total (n + 2) derivatives
to V(0,t,z,v). However, by (L.7), we observe that (X, V) inherits the same order
of regularity as F, and therefore it does not seem licit to take as many as (n + 2)
derivatives.

The goal of this work is to show that despite this apparent shortcoming, it
is indeed possible to show for a fairly wide class of non-linear Vlasov equations
(including the Vlasov-Poisson and Vlasov-Maxwell system) a result of propagation
of regularity in = for the moments, assuming higher order space regularity for the
initial condition. This in turn can be translated into some anisotropic Sobolev
higher regularity for the solution itself, which can be interpreted as a kind of weak
propagation of space regularity.

It turns out that the lagrangian approach, that is to say the approach that we
have just underlined, based on representation formulas using characteristics , is not
adapted to answer this question. Instead we shall rely on an eulerian approach,
that is based to a larger extent on the PDE itself, inspired by the recent work
of the author in collaboration with F. Rousset on the quasineutral limit of the
Vlasov-Poisson system [34] [37]. The quasineutral limit is a singular limit which
loosely consists in a penalization of the Laplacian in the Poisson equation. The
small parameter is the scaled Debye length, which appears to be very small in
several usual plasma settings. The limit leads to singular Vlasov equations, which
display a loss of regularity of the force field compared to that of the distribution
function. As a consequence, these equations are in general ill-posed in the sense of
Hadamard, see [9] and [35]. This problem might therefore look quite different from
the one considered here; the similarity comes from the fact that the justification of
the quasineutral limit ultimately loosely comes down to the proof of an uniform[]
propagation of one order of higher regularity for moments of solutions of the Vlasov-
Poisson equation. Note though that the analysis of [34] [37] requires the introduction

*(with respect to the scaled Debye length)
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of pointwise Penrose stability conditions, and also relies on pseudo-differential tools,
which will not be the case in this paper. As a matter of fact, the singular Vlasov
equations which can be formally derived in the quasineutral limit will not enter the
class of Vlasov equations we will deal with in this work, precisely because of the
aforementioned loss of derivative.

The methodology of [34] was also used in the context of large time estimates for
data close to stable equilibria for the Vlasov-Maxwell system in the non-relativistic
regime, in a recent work in collaboration with T. Nguyen and F. Rousset [36].

As a matter of fact, the approach can be considered as semi-lagrangian, in the
sense that at some point we still rely on characteristics as in the lagrangian approach
but at the level at the PDEs that arise after applying derivatives on the Vlasov
equation, whereas in the lagrangian approach, derivatives are taken after using the
representation of the solution by characteristics.

2. MAIN RESULTS

2.1. The abstract framework. Let us now describe precisely the class of Vlasov
equations we deal with. We consider in this work the abstract equation

(2'1) atf+a(fu)-vxf+F~V1,f:O,

with the following structural assumptions. Among all these assumptions, we high-
light that the force depends on the distribution function itself, but only through
some of its moments in velocity.

o Assumptions on the advection field. The map a : R? — R is a one to one C™
function such that

(2.2) la(v)| < C(1+v]), YoeRY

(2.3) |05allLe < Cu, Y|a|#0,
and its inverse a~! (defined on a(R?)) satisfies, for some A > 0,

(2.4) 0% (w)] < Ca(1 + |a L (w)) e v € a(R?), Vo

o Assumptions on the force field. The vector field F is divergence-free in v (i.e.
satisfies V,, - F' = 0) and we have the following decomposition for some ¢ € N*:

L

(2.5) F(t,z,v) =Y A;(v)Fi(t,x).
j=1

We assume that for all j € {1,---,¢}, A; is a C* scalar function satisfying
(26) ||83A]||Loo S Ca, Va.
Furthermore, there exist C*° functions v, (v),- - , ¥, (v) with at most polynomial
growth, i.e. there is 79 > 0 such that
(2.7) ¥ () [lypr0e < Cig, Vk €N,

—r0

such that, denoting

My; (t,z) = /]Rd f(t, ’U)wz(v) dv,
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for all j = 1,---,¢, the vector field F7 is uniquely determined by these moments
and the initial conditions, through a map
(2.8) (Om )izt s (F9(0))j, ) > F

and for all large enough n > 1+ d, and all ¢ > 0, we have
HF] ||L2(O,t;H;L)

(2.9) _ L
< anj) t, ||m¢1||L2(0,t;H;”)"" ) ||’rn¢%”LQ(O,t;H;”)’ZHFU(O)”H,’Dl )
j=1

and
[ 7] Los (0,17

(2.10) ¢

STt llm, |,z 5 M, L=,y D IIF7 ()| mp |
j=1

where F%j )7 Fng ) isa polynomial function that is non-increasing with respect to each
of its arguments (the others being fixed non-negative numbers).

Finally, the force field satisfies the following stability property. Let f and g be
two solutions of (2.1I)), and denote by F[f] and F[g] their associated force field.
Assume that the initial conditions (F7(0));=1.... ¢ are the same. Then, we have for

allj=1,--
L2(O,t;H;L)> ’

(2.11) |
| F7[f] = F? [9]||L2(0,t;Hg)
< (t, | [ -awitwrar
where F,(f ¥ is a polynomial function that is non-increasing with respect to each of
its arguments and such that ry (0,-) =0.
We shall explain later why both Vlasov-Poisson and relativistic Vlasov-Maxwell
enter the abstract framework.

R

L2(0,t:HY)

[ = gpun)as

2.2. Statement of the main results. The regularity and integrability indices
that will be useful to handle such equations will depend on the dimension d, the
maximal growth of the moments that intervene in the definition of F', that is rg,
and the parameter of growth of the inverse of a, that is A; let us set

(2.12) N := gd+4, R := max <62l+2(1+/\)(1+d)—|—7‘0) .

We use in the following statement the notation |-] for the floor function.
The main result proved in this paper is the following theorem.

Theorem 2.1. Let n > N and r > R. Let n’ > n be an integer such that
n > L%/j + 1. Assume that fo € H™ and Fi(0) € HY for all j € {1,---,(}.
Assume furthermore that the initial data fy satisfy the following higher anisotropic
regqularity:

(2.13)

n’ !
" o000 fo e MO, Vlal + 18l = —n—k, V’“G{1~~"2H”}'
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Then there is T > 0 such that the following holds. There exists a unique solution
(f(t), F(t)) with initial data (fo, F(0)) to (2.1)) such that f(t) € C(0,T;H}).
Moreover, for all test functions ¥ € L>=(0,T; W™, >°), we have

—79

(2.14) H [ oa < Ay(T, M),
L2(0,T;H?")
where Ay is a polynomial function and
ST el 2(n—| % | +k)
M = || follsp + D IF (0| e + > 102"~ 020] folluo-
j=1 k=1 |a|+|B|=n'—n—k

Thanks to (2.9), we immediatly deduce from (2.14]) that the force field satisfies
as well the higher regularity

Fi e L*0,T; H).

Another consequence concerns the flow (X,V) = (X(¢,0,2,v),V(¢,0,x,v)) as de-
fined in (1.7)), for which we also obtain a higher regularity property.

Corollary 2.2. For some T' < T, we have
O (X —z—tv,V —v) € L®(0,T'; LFL2), Yy <.

Remark 2.3. Some remarks about Theorem [21] are in order.

e In the case where n = 2m — 1 and n’ = n+ 1 = 2m, the assumption
simply reads 071 fo € HO and we obtain the L7HIT' smoothness of the
moments: in other words this gives an answer to the question raised in
the beginning of the introduction. Note though that the regularity result we
prove is not pointwise in t.

e Observe that it is required that the higher reqularity index n' is not too large
compared to n (i.e., n > L%/J +1); such a restriction is somehow reminis-
cent of a similar one appearing in the celebrated result of Bony concerning
the propagation of Sobolev microlocal regularity at characteristic points for
general non-linear PDEs, see [12, Théoréme 6.1]. We remark however that
the class of PDEs considered in this work does not enter the framework
of [12], in particular because of the “non-locality” in velocity. We refer to
Section[10] for some remarks and (counter-)ezamples in this direction.

e As a matter of fact, our result can be somehow interpreted as a kinetic (and
non-local) analogue of Bony’s aforementioned theorem.

o If it is ensured that the solution (f(t),F(t)) to is global (e.g. for
Viasov-Poisson in dimension d < 3, see [46, [53] 55 10, B9]), we do not
know if the higher propagation of reqularity for the moments may or may
not be global.

o Let us mention that in a somewhat different direction, a vector field method
was devised in [58)] (see also [22]) in order to prove time decay of moments
for Viasov equations set in unbounded spaces.

In the case where the force is one-derivative smoother than the distribution
function f itself (that is to say when estimates (2.9)) hold with n — 1 instead of n in
the right-hand side), the statement of Theorem may be strengthened, insofar
as one may ask only for derivatives in x in the regularity assumption . We
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refer to such as case as the transport/elliptic case, which includes in particular
Vlasov-Poisson, see Theorem in Section [9]

As already mentioned in the introduction, the higher regularity for moments as
obtained in Theorem [2.1|actually yields regularity for the solution itself (see [24] for
a microlocal version of this fact, in the context of averaging lemmas) in anisotropic
Sobolev spaces (as defined by Hormander in [38, Chapter II, Section 2.5]), that we
first introduce.

Definition 2.4. Let m,n € R. The anisotropic Sobolev space H}";" is defined as
HEt = {g € 8'(T* x RY), (1+ [K[)™2(1+ [nf*)"/?g(k,n) € L*(2" Rd>},

where g stands for the Fourier tmnsfornﬂ of g. We also denote
Hy = HP.

x,v
peER
‘We have

Corollary 2.5. Consider the same assumptions and notations as in Theorem[2.1]
We have

f(t,z,0) € L2(0,T; HY 3 ™).

Corollary is a direct consequence of some estimates obtained in the proof of
Theorem we will provide a proof of this fact in Section[7} It is actually possible
to give an estimate of a value of p < 0 such that f € L?*(0, T} H;L:f).

2.3. Overview of the proof. We discuss in this section the ingredients, inspired
from [34], leading to the higher propagation of regularity for the moments (the local
well-posedness theory is fairly standard, see Section . We shall discuss here the
case n = 2k — 1 and n’ = n+ 1 = 2k. To ease readability, we assume here that the
dimension is d = 1 (in higher dimension, the algebra is more involved but the basic
principle is the same).

A. Taking derivatives. Since we intend to propagate regularity in space, the first
step consists in understanding how to appropriately apply derivatives in x to the
Vlasov equation .

We note that applying the operator 05 does not seem relevant, as it does not
commute well with the operator F'0,: as a result it is not possible to obtain a closed
equation bearing on 92 f without appealing to 9297 f for v # 0, and therefore such
an approach would require a control of derivatives in v which we do not have at
initial time (this is of course reminiscent of the mixing in = and v that we have
evoked in the introduction).

The idea is to look for more appropriate differential operators, with non-constant
coeflicients, satisfying the following three key properties:

e at initial time, they involve only derivatives in x;

Twhere g(k,n) = 1/(2r)? Jrd yga g(z,v)e= ke~ drdy, although the convention that is

chosen for the writing of the Fourier transform does not matter here.
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e they enjoy good commutation properties with the transport operator, so
that it is eventually possible to obtain closed systems involving these dif-
ferential operators alone;

e they allow a good control of the Sobolev norm of the moments.

It turns out that second order differential operators in x and v, with coefficients
depending on the solution itself will be appropriate. More precisely, we consider
the operator

L= ag% + @(t, )00, + P(t, x)a?n

whose coefficients ¢ and 1 will depend on the force field F. Setting 7 := 0; +
a(v)d, + F0, the transport operator, we ask that the coefficients ¢, 1 solve a semi-
linear system of the form

T(’b = 28$F + Gl ((725,1/}, az,vF)
T¢ =G (¢7¢7 az,vF) y
Sp‘tzo =0, ¢|t:0 =0.

where G, G2 are polynomial functions of degree greater or equal to 2; this corre-
sponds to zero-order coupling terms. Note in particular that by definition, L = 9?2
at time t = 0. The semi-linear system is precisely chosen in order to cancel bad
terms in the commutation between L and 7, so that for any function g,

LT (9) = TL(g) + (LF)0sg + (La)dzg + (9va)pLg.
Applying this identity to the solution f of the Vlasov equation , this yields
TL(f) = =(LF)dyf — (La)dy f — (dva)pLf.

This formula will play a key role in the analysis. The main term (in terms of
regularity issues) is the term —02F3,f, the others involving either more regular
quantities (we recall indeed that F' and a are assumed to be smooth with respect
to v), or the quantity Lf, which paves the way for a closed system involving only
compositions of L applied to f. As a consequence, the operators obtained as com-
positions of L appear to be relevant for applying higher order derivatives in x, since
by construction

e they require only a control of space regularity at initial time;
e denoting by L the composition of k operators L, one can obtain that L f
satisfies an equation of the form

(2.15) T(Lif) = A(Lif) = (02FF)0u f + G((05 , f)ja|<2k-1);

where A, G are bounded linear operators. We note that this equation in-
volves derivatives in v of the solution, but only of order 2k — 1 = n, which
we control thanks to the local well-posedness theory. This can therefore be
seen as a closed equation for Ly f.

e One can show that for any smooth test function 1,

/(ka) P(t, z,v)dv = /(8§kf) P (t, xz,v) dv 4+ “controlled terms”.
R R

In the controlled terms, the overload of derivatives in v falling on f is
transferred to ¢ by an integration by parts argument.
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All in all, this eventually shows that the Lj are indeed well-suited to study the
regularity of moments. This step is fully developed in Section There are two
separate difficulties in order to complete this task: obtaining the right algebra as
discussed here, and proving Sobolev estimates for all the involved objects.

(In the case where n’ > n + 1, we need to set up an induction argument, and
this leads the study of successive systems of coupled kinetic transport equations,
which build on the general equation (2.15)).)

B. Propagation of regularity on moments. We then turn to the study of
moments of the solutions to . This step is partly inspired from (and thus
related to) the treatment of linear Landau damping by Mouhot and Villani [48].

We first use the method of characteristics to invert the operator 7 — A. It is
convenient at this stage to use changes of variables in velocity (introduced and
studied in Section , in order to straighten characteristics and eventually, roughly
speaking, come down from T to the free transport operator 9; + a(v) - V. To this
end, it turns out to be efficient to introduce the change of variables v +— ® where
® solves the Burgers equation

at(I)—l-a((I)) vch):F(aq))v (I)|t=0 =,

where we can prove that ® remains close to v in small time (in terms of Sobolev
norms). The problem comes down to the understanding of the contribution of the
term —(92*F)d, f, and eventually roughly reduces to the study of an equation of
the type

¢
Hiy(t,z) :/ /((%Hg)(s,:c —(t—s)a(v)U(t,s,z,v)dvds
o Jr
+ “controlled terms”,

where we know only that Hy is controlled in L?(0,7; L2) and U is smooth, and we
seek for a bound of Hy in L?(0,7T; L2) (such an estimate corresponds to a control on
the moments of L f). The integral in time is due to the use of Duhamel’s formula,
and the integral in v to the fact that we study moments in v. We observe that the
operator in the right-hand side seems to feature a loss of derivative in . However,
we use a smoothing effect to overcome this apparent loss, which was proved in [34].
The outcome is the estimate

¢
‘ / / (VoH2)(s,x — (t — s)a(v)) - U(t, s,z,v) dvds
0 JRrd L2(0,4L3)

5 ||H2||L2(O,t;L§) sup ||U(t787)||,
0<t,s<

where || - || stands for a high order weighted Sobolev norm (in z and v) which we

will make precise later. As noted in [34], this is reminiscent of (but different from)

classical kinetic averaging lemmas, as it loosely speaking involves the gain of one

full derivative; we refer to Section [f] for a thorough discussion.

2.4. Content of the end of the paper. The paper is then organised as follows:
the proofs of Corollaries and are provided in the end of Section [7] In Sec-
tion [§] we check the general assumptions for the Vlasov-Poisson and relativistic
Vlasov-Maxwell equations, and discuss some extensions as well. As already men-
tioned, Section |§| is devoted to the particular case of the transport/elliptic case,
for which Theorem can be improved. We end the paper with the study of
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two examples that we cook-up in order to discuss the regularity assumptions of
Theorem 2.1

We will prove Theorem when n is odd, of the form n = 2m — 1, and the
higher regularity index n’ is even, of the form n’ = 2(m + p). The other cases
follow by the same arguments. The requirement on n and n’ is m > p + 2. The
assumption reads in this case

(2.16) PRl fo e 1O, Va|+ |8l =2p—k,  Vk=0,---,2p.
3. LOCAL WELL-POSEDNESS

We prove in this section a basic local Sobolev well-posedness result for (2.1). We
start by recalling useful product estimates in weighted Sobolev spaces, taken from
[34].

Lemma 3.1. Let s be a non-negative integer. Consider a smooth nonnegative
function x = x(v) that satisfies |0%x| < Cux for every multi-index a such that
la] < s.

e Consider two functions f = f(x,v), g = g(x,v), then we have for k > s/2
(3.1) Ixfollms, S 1 Fllyroe Ixgllms , + gl e lxfllms -

e Consider a function E = E(z) and a function F(x,v), then we have for
any so > d that

(3.2) IXEF |y, < 1Bz

IXFllas , + 1B

e Consider a vector field E = E(x), a function A(v), and a function f =
f(x,v), then we have for any so > 1+ d and for any multi-indices «, (
such that |a| + |B] = s > 1 that

XFus -

(3.3)
Ix 0202, A@)E@) - 9] 2 . < WAllwz = (Bl wzo xS iz, + 1l

e Consider two functions f = f(x,v), g = g(x,v), then we have for multi-
indices «, B with |a| + |8| < s that

xfllus,)-

1 1
(3-4) 105 f 0 ugllzz S H;fIIL;vaXgIIH;,U + ”XQHL;‘:UH;JIHH;,,U-

Proposition 3.2. Let n > d+ 1 and r > ro + d/2. Assume that fo € H}?
and F7(0) € H. Then there exists T > 0 such that there is a unique solution
(f(t), F(t)) with initial data (fo, F(0)) to such that f(t) € C(0,T;H}) and
Fi(t) € L®(0,T; H™).

Proof of Proposition[3.3 The existence part follows from a standard iterative con-
struction. We define recursively a sequence of distribution functions (f))ren,
denoting by F(y) the force field associated to f(x) and the initial condition (F7(0)).
Let us denote

¢
Ro = [|follsz + D IF7 (0) |
j=1
We set fo) := fo and assume that f(;) is already constructed (with associated force
field F4)), and is such that for some T}, > 0, fzy € C(0,Ty; H}}), and

(3.5) | fey | oo 0,157y < 2Ro.
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We define f(;41) as the unique solution on [0, T}) to the equation
(3.6) Ot fet1) +a() - Vefar) + Fuoy - Vofer1) =0, faor)li=o = fo,

obtained by the method of characteristics.
Applying the operator 9297 to (3.6) for |a| + |3| < n yields

(0r + a(v) - Vo + Fy - Vo) (0508 fierny) + (0205 ,a(v) - Vi + Fgoy - Vo fer1) = 0.

We then take the L? scalar product with (1 + [v[?)"998% f(441) and sum for all
la] + 18] < n. By using (2.3)), we have

> /\ (0207, a(v) - Va] fr1) 0505 fan) (1 + [0*)" dvdz < || frin) 13-
ol +HBl<n

Thanks to (2.6) and estimate (3.3]) in Lemma with s = n, x(v) = (1 + [v[?)"/?

and so = n (recall that n > d + 1), we have for all j € {1,--- , ¢},
[ [0202, 4,0 F @) 9] ||, S IFG Nz ek e
Therefore by Cauchy-Schwarz, we get

3 / 1 [0208, Fy - V) Fan0208 fny (1 + o) dvda
la|+]B|<n

< NE g | e -

Recalling that V,, - F' = 0, we deduce that for all ¢ € (0,T),

d
el @l < 1+ZII ol | e (Ol

so that

t
BT MOl S 1ol e | € [ 1+Z|\Fﬂ i | ds
0

We set
(i) = [ oot o)) do
R

and get, for ' > d/2 such that » > ro + v’ (which is possible thanks to the
assumption r > ro + d/2), by Cauchy-Schwarz and (2.7)), that

o |[1/2
M, ()l 220,87y = </ Oy fuoyi dv)
la|<n L2(0,t;LY)
1/2
|1/)z'|2 dv
< S (] 102w+ oy a ) (/ _eldo
al<n (/ " re (L4 [0[2)70F Sl 20,4501
d’U 1/2
< S ] 10250 Pa + 1Pyt dv) ( / )
jal<n </ " re (L4 [0 Sl 20,0

S o llzz a4 -
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Therefore, by (2.9)), denoting by C' > 0 a generic constant that does not depend on
t or k, we obtain

| £ 1) ()] 342

S | follper exp Ct-i-C\/ZH k)Hm(OtHn)

S 1ol

#nexp |Ct
+ C\[ZF(J) s (Vtllmeg, )|l o 0.5 Hn))i=1,. ,T,Z |7 (0) ||

S [ foll# exp Ct+0\[zf(]) t\/||f(k)||L°o(0tH")7Z||F] Mz

Jj=1 j=1

We now observe that if we choose T > 0 small enough so that
l4
(3.8) Roexp |CT + CVT Y TY(T,2VT Ry, Ry) | < 2Ry,
j=1

and Ty > T, then,
(3.9) I fk1) @)l Lo 0,75m) < 2Ro.
Therefore, by induction, we obtain that for all k € N, f;y € C(0,T;H}}), and
(3.10) | k) ll oo (0,727) < 2Ro.
For k € N\ {0}, we set hy := f(r41) — f(k), which satisfies the equation
(3.11)  Othi + a(v) - Vahi + Ffx] - Vohe + (F[fay] = Flfa—1)]) - Vofe = 0.
By weighted L? estimates, proceeding as before, we get

Y
d )
%Hhk(t)H%g ST I [l | ()13
j=1
e . .
+ 1l D NF ) = F2 gl 2 e () 340

Jj=1
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Let t € (0,T). Integrating in time, applying Cauchy-Schwarz and using the stability
property (2.11) and the uniform estimates (3.10)) for (fx), we obtain

kel oo (0,8:209)

< 1+Z||Fﬂ Mz | s >||Hods+2/ 1F9 ) = B [z ds

14

SVE|(VE+IF [falllz2 0,6mm) Ikl o,m0) + D IF [fuy) = F7 -l L2 (0,65L2)

Lo (O,t;L§)> i=1

Jj=1

< \/E[IIthIme,wa) +ViEY TR <\/¥H/(f<k> — fo—1))¥i(v) dv
=1

SVt [||hk||LN(O,t;H2) + \/ZZF%M (ta ﬁ||hk—l||L”(0,t;H2))] .
=1

We can thus pick a small enough time 77 > 0, independently of &k such that for all
k e N\ {0},

1
| foe+1) — foryll oo 0,775m0) < §|\f(k) — fte=1)llz>= 0,173

We can therefore pass to the limit in (3.6) and find that the limit (f, F[f]) satisfies
(in the sense of distributions)

(3.12) Of +a(v) - Vaf +F[f]-Vof =0,

with the initial conditions (fo, F7(0)). We deduce from ([3.12)) that f € CY(0,7"; H™)
and 0, f € L?(0,T';H"~}). Also, thanks to , we deduce FV € L>(0,T'; HY).
That the equation is satlsﬁed in a classmal way follows from the smoothness of

(f, F[f)]). Uniqueness is also a consequence of the contraction estimate.
O

The main matter is now to obtain the higher regularity statement for the mo-
ments. To this end, we will focus only on the task of obtaining a priori estimates
for smooth solutions of (2.1)); setting

(3.13)
0

2p
M= |follggm-r+> 2 Yo NP0 follag + D IF (O] y2cmem
k=0 |a|+|B8|=2p—k j=1
we look for some time T > 0 depending only on M such that given a smooth test
function ¢ € L*°(0, Tp; Wz(mﬂ)) ), the following estimate holds:

(3.14) H / Fo(v) dv

where A is a polynomial function which is non-decreasing with respect to each of
its arguments, once the others are fixed non-negative numbers. In what follows, the
function A may change from line to line but will always refer to such a function.
Once a priori estimates such as as are obtained, we apply them to the
sequence of solutions built in the iteration scheme proving the existence of solutions

< CyA(Tp, M).

L2(0,To; H2™+P))
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in the proof of Lemma [3.2] Passing to the limit yields the higher regularity for the
moments of the solution f(t).

4. DIFFERENTIAL OPERATORS

In this section, we introduce and study the second order differential operators
(with coefficients depending on ¢ and z) that we use in order to apply derivatives
in x on the Vlasov equation .

The basic operators are defined in and the definition of the coefficients is
provided in Lemma By definition these operators involve only derivatives in x
at initial time. The key algebraic result reflecting the good commutation properties
of these operators with the transport operator is stated in Lemma |4.2

The composition of these operators is then studied.

e In Lemma [4.4] it is shown that they are indeed well-suited to study the
regularity of moments, as after integration in v, they act like derivations in
2 only (plus remainders that we can control). The proof is quite technical
as one needs to be careful of the limited available smoothness on the coef-
ficients of the differential operators. Note that in the statement, one does
assume some (limited) higher order smoothness for the moments: this is in
prevision of a forthcoming induction argument.

e In Lemmas and [£.6] the equations satisfied by the functions obtained
after composition of these operators is established. This is where the key al-
gebraic Lemma [4.2] appears to be crucial. Whereas the formal computation
is straightforward, here again, the proof appears to be quite technical in
order to justify that remainders are indeed well controlled. One also needs
to be careful in order to get some Sobolev regularity for the coefficients
involved in the equations.

e As the systems of equations in Lemmas and are not closed, this
invites to study the system satisfied by a larger set of appropriate functions;
this is the purpose of Lemmas and (whose proof is similar to that

of Lemmas and .

4.1. Second order operators. As in the introduction, we set to ease readability
T :=0;+a(v) V,+ F -V, the transport operator.

Lemma 4.1. Let n > d+1. Assume that (F7) € L?(0,T'; H?) with norm bounded
by A(T', M). There is T € (0,T") such that there exists a unique smooth solution
(P Vi) igkieqa,.ay on [0,T] of the system:

(4.1)

Tl = 0u,a(0)tid, + > 0o a0l — D 8, a(v)meld ok ™
k’ Kk’

KU m
+ 5k,jami-Fl + 5k,iamjﬂ + § Sak?l/avl/Flv
l/
1,5 __ ij . k'sm 1,7 %,
ka,z =- E : avwa(v)m‘ﬁk/,z' ki T ‘Pk,lamka + E :wk',lakaFk
K m o

+) 00, B
l/

Phli=0 = Vyli=0 = 0,
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where § denotes the Kronecker function and a(v)y (resp. Fy) stands for the k-th
coordinate of a(v) (resp. F). Moreover we have the following estimates:

sup sup [|(0}, ) lwee S AT, M), Vp<n—1-d/2,

(4.2) (0,71 i kL ~
sup sup || (07, U llgnr S AT, M), V7 > d/2.
[0,7] 4,5k, 7

We will not reproduce the proof of Lemma since it follows, mutatis mutandis,
that of Lemma 4.2 of [34]: System is solved as a semi-linear system of coupled
kinetic transport equations. Note that we use the assumptions on a and
on A to control the contribution of the additional linear and semi-linear terms that
appear compared to Lemma 4.2 of [34].

Introduce now the second order operators

(43) Li,j = z, zj Z (SOk lamkavl + 1/12 jagk 'Ul) s VZ,] € {1, . d}

1<k, l<d

We observe that by uniqueness of the solution of (4.1)) and a symmetry argument,
Li,j = Lj,i~
One of the interests of the operators L; ; comes from the following lemma.

Lemma 4.2. For all smooth functions f, we have the formula

Lz,]T(f) = TLz,j(f) + ail :c]F + Z (Pk’jlamkavlF + 1P ,Jaﬁk v;F : va
(4.4) X

+ Zwk;]a’?)kﬂ)l V f+ Z aUla m@k lLk mf

k,l,m

Remark 4.3. Formula (4.4) can also be written in a more synthetic form:

LiyT(f) =TLi;(f) + (Li;F) - Vof + (Lija) - Vaf + Z 0, (V)P L, -

k,l,m

Proof of Lemma[4.4 We have by direct computations

O (TF) =T (020 )+ 02 F Vo f + 00, F V0, f + 00, F - V0, f,
30500 (T L) = T(2}100, 00, F) = T(215) 9,00, f
+ o (ua) - Vol f
ey F Voo f 4 00, F - Vo f 4 02,00 F - Vo f ),
Vet w (TF) = TW305, w f) = T8, 1 f
+ 0 (90,a(0) - Ty [+ 0u,0(0) - Vi f + 02 a(0) - Vo f
+ Ou P - VoOu f + 0 F Vo f + 02, F Vo).
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We can rewrite

@Ziama(v) . Vzazkf = 90 Z avla ammazkf

_4g k,m k,m 02
= Pr.l Z&,la(v)m Ly f — E : (‘Pk',l/aaﬂk/avzf + Y l/avk/ vl,) Il
m k/7l/

which entails that
Li7,jT(f) = TLiJ(f) + am:ch : vvf
3 (P10 00 F - Vuf + 6302 L F - Vuf +502 ,a(0) - V. f )

+ Z D, a(v)m@ziLk,mf
k,l,m

+Zamkav,f[— +Zaw VY +Zavk, DISCNE

k,l

Z a’UL/a )m‘Pk/ l/@k 1 ™+ 6]6,.]8:01}7‘1 + 0 zasz‘l + Z (Pk l/avl/ F
k' U'm

k k2
Z Vk,V1 [ Z avlla msok/ l’z/}k lm + onjlamka
kU ,m

+ > U100 Fe+ Y 00,00, F |
k’ 14

We therefore deduce , because ((,01€ N +7) solves O

4.2. Composition of the second order operators. Relying on Lemma [4:2] we
shall use the L; ; operators in order to apply derivatives to the solution f of the

Vlasov equation ([2.1)).
Set for I,J € {1,---,d}",

(4.5) LY =L, j, -+ Liy -

Let us also introduce the following useful notation. Given I = (i1,--- i) and
J = (j1, -, Jn), we set

(4.6) a(l, J) = (i1,41, 50k, Jk)-

and

(4.7) 09T = 0y, 0y, v+ O, Oa, -

Note that by construction,

=0 — 83(17‘]).

In what follows, f will systematically stand for the solution of (2.1)), starting from
fo verifying the assumptions of Theorem
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4.3. Moments in v. We study in this section the moments in v of the L1/ f.
Until the end of the section, the times 7' > 0 will be such that the solution to (2.1)
satisfies

Hf”Loo(o,T;Hﬁm*l) < 2Ry,
thanks to Proposition [3.2]

Lemma 4.4. o Letk =0,---,p and I,J € {1,--- ,dY™*. Assume that
the force field satisfies F7 € L*(0,T; Hi(mHC)A) with morm bounded by
AT, M). Assume that for all m = 2m,---,2(m + k) — 1, for all ¢ €
Loo(ovT;Wd+2+n72m’°°) such that HQOHLOO(()?T;Withranm,M) < AT, M),

—70

and all |a| = n, we have

(148) | [ @z nete.aa < AT M),
Rd L2(0,T;L2)
d k,00 . .
Let 1) € L>(0,T; Wﬁi—oﬁ-? ) satisfying ||w||Lw(O7T;Wit§+2k,oo) < AT, M).
We have

(4.9) / LY fap(t, x,v) dv = / XD fap(t, z,v) dv 4+ Ry g,
R4 R4

where Ny . s a remainder satisfying the estimate
(4.10) 1R1,00llL20,522) < AT, M).

o Letk=0,---,p—1and I,J € {1,---,d}y™**. Assume that the force field
satisfies F7 € L*(0,T; Hz(m+k)) with norm bounded by A(T,M). Assume
that for all m = 2m,--- ,2(m + k), for all ¢ € L*>(0,T; Witf+7b_27”’°°)

such that ||<p||Lx(OVT;WEJEEM_M,OO) < AT, M), and all || = n, we have

< A(T, M).
L2(0,T5L2)

(4.11) H/Rd(ag‘f)w(t,:r,v) dv

Let ¢ € L>=(0,T; WHEPT22%) satisfying ||y 0wty < AT, M),
Let O = 0y, or Oy, for somei € {1,---,d}. We have

(4.12) / QLY fop(t, 2, v) dv = / XN fop(t, z,v) dv + Rr g,
R4 Rd
where Ry j s a remainder satisfying the estimate
(4.13) 1M1, 79 20,1522y < AT, M).

This result will allow to set up an induction argument: indeed, with the assump-
tion (resp. (4.11))) that corresponds to regularity of the moments up to order
2(m+k) — 1 (resp. 2(m + k)), this will imply that controlling the moments of the
(L17 f) gives information on the regularity of the moments up to order 2(m + k)
(resp. 2(m + k) + 1).

Proof of Lemma[{.4 Let us focus only on the first item (the proof of the second
one is completely similar). Let ¢ € L>(0, T} Wftf”k’oo). The beginning of the
proof closely follows that of Lemma 4.3 of [34]. At first, we can expand f7,; = LT/ f
in a more tractable form. Let us set for readability

 (eds ians
U= (p)" ¥ <k i<d 1<a,8<mtk-
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Then, by induction, we obtain

(4.14)
2(m+k)—2
frg =000 f 4 Z > PR (U)PE,(QU) - PE, (0°U)050°
e,a, ko, ks
2(m+k)—2

ot hp ey Y R,

s=0 e,a, ko, ks
where the sum is taken on indices such that
(4.15)
le] =1, || =2(m+k)—1—s, kot+ki+-- ks <m—+k, ko > 1, k1 +2ka+- - sks = s,

and for all0 < p < s, Pf, % o(X) is a polynomial of degree smaller than &, (we denote
by 0*U the vector made of all the partial derivatives of length k of all components
of U). We can set

2(m+k)—2

9”‘171,11;:/]1@1/)(',@) Z > R’;‘g; s dv,

e, a, ko, -

so that we have to estimate [p, wRS A ks dv. All the following estimates are uni-
form in time for ¢ € [0,T] and we shall dismiss the time parameter to ease read-
ability.

We begin by estimating the terms for which s > 2k + 1. Note that for all these
terms the total number of derivatives applied to f is at most 2m — 1.

e When s < 2(m + k) — 4 — 2, we can use estimate (4.2) in Lemma to obtain
that
1PE: o (U) P o (OU) -

S,e,xx

sea( HLOC <A(T M)
and hence using that

sup [(1+ [0]*) 7729 (-, 0)| < AT, M)

we obtain by Cauchy-Schwarz that since r > ro + 1/, for some 1’ > d/2, we have

- ot oo
| [Rbsar o] < i ) g0+ o) 5 00
dv 1/2
< AT, M /> Fllayoms
@ ([, i) Wi
< A(T, M).

e Let us now consider s > 2(m + k) — 2 — 4. We start with the case where in the
sequence (k1,--- ,ks), the largest index [ such that k; # 0 and k, = 0 for every
p >l is such that [ > s/2. In this case, since lk; < s has to hold, we necessarily
have k; = 1. Moreover, for the indices p < [ such that k, # 0, we must have
p < pky, < s/2. Thus, we can use estimate in Lemma to bound [|0PU ||z,
provided s/2 < 2(m+ k) — % — 2. Since s < 2(m + k) — 2, this is verified thanks to
the assumption that 2m > 2 + d. We thus obtain that

‘/ngos’a Sdu

< A(T, M) H/zpalweaaf dv

%
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Next, we can use the fact that

(0+)

0,0

H/waangaaf

SA@M) I+ P)F U1+ [of?) p
L2 L3

< AT, M)||U|lpgzm-2 sup [|(1 + [v]*) 2950 | 2.

By Sobolev embedding in z, we have

sup [|(1+[0*)2050% fll 22 < [I£ll32m—
x

assoon as 2m — 1 > 1+ |a|+ % = 1 +2(m + k) — 1 — s + £ which is equivalent
to s > 142k + 2. Since we are in the case where s > 2(m + k) — 2 — £, the

condition is matched, thanks to the assumption 2m > 3 + d. Consequently, by
using estimate (4.2) in Lemma we obtain again that

H/Resa s dv

Finally, it remains to handle the case where k; = 0 for every [ > s/2. As above, we
necessarily have s/2 < 2(m+k) — % — 2 and hence by using again estimate (4.2)) in
Lemma [£.1] we find

< A(T, M).

L2
.’E

10U Lo, < AT, M), 1< 5/2.

H/R’“a *dv

It remains to treat the cases corresponding to s < 2k, that is to say Re . ke
contains the maximal number of derivatives applied to f. This means that |oz\
2m —1,---,2(m + k) — 1 so that at least 2m derivatives of f are involved. We
denote for readability the associated coefficient

=P  (U)PR (0U)-- P (0°U),

and we have to study the L2 norm of [T950%f dv.
First, assume that |a| < 2(m + k) — 2 (which corresponds to s > 1). We note
that for all &' =0,---,2(m + k) — 1 — |a|, we have by Lemma [4.1] that

We deduce
< AT, M) fllyzm s < AT, M).

L2
m

10°' Ullyese < AT, M), Yk <2(m+k)—2—d/2— 5.

Since s’ < 2(m+k)—1—|a|, 2(m+k)—2—d/2—s" > |a|—d/2—1 > d+2+]|a|+1-2m
since 2m > 3d/2 + 4. Therefore

0% Ul et iarsr-2mee < AT, M)

and
L[ pat2tiarti—2mee < AT, M).
e

We can thus use the assumption (4.8) to obtain the bound

(4.16) H/ra;aafdv < A(T, M).

Lg
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Assume finally that || = 2(m + k) — 1 (which corresponds to s = 0), that is to
say 2(m + k) derivatives of f are involved. We can write, by integration by parts
in v (relying on the fast decay of f and its derivatives at infinity)

/ ragaafdvz—/ BT f dv.
Rd Rd

We have that
||65F||Wd+1+2k,oc < AT, M),
o

and we can use again (4.8) to obtain

H / DT Fdv| < AT, M).

L3
In summary, we have proved that

195,500l 2 < AT, M).

This ends the proof of the lemma.
O

4.4. The equation satisfied by L'/ f. Using the algebraic identities of Lemma
we obtain

Lemma 4.5. For all k = 0,---,p, the following holds. Assume that (F7) €
L2(0,T; Hﬁ"”*’“)‘l) with norm bounded by A(T, M). For all I,J € {1,--- ,d}™**,
we have

T ) +0eEDE .V, f =

(4.17) mtk s s
Z Z Z YE L.apl™ 9205 f + Ry g

r=m—k K,Le{l,---,d}" |a|+|B8|=m+k—1
where
1,J ) o
® VK Lap OT€ coefficients satisfying

1,7
(4~18) H'YK,L,a,ﬁ||L2(07T;Wg_j;2«°°) < A(T7 M)v

e R; j is a remainder satisfying
HRI,JHL‘X’(O,T;'Hg) SA(T7 M)7 vr < r_d/2'
We mention that a version of this lemma was proved in [34] in the case k = 0.

Lemma will be useful in the induction argument to treat the case of even
integers. For what concerns odd integers, we have the following result.

Lemma 4.6. For all k = 0,--- ,p — 1, the following holds. Assume that (F7) €
LQ(O,T;HQ%("L-HC)) with norm bounded by A(T,M). For all I,J € {1,--- ,d}"™*,
andi=1,---,d, we have

TL" 0y, f) + 05,00 F -V, f =
(4.19) sy .
> > > Vit gL 0300 f + R

r=m—k—1K,Le{1,---,d}" |a|+|B|=m+k+1—7r
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and
T(LH9,, f) + 0,000 DF .V, f =
k
(4.20) e T
> X D WKLl RN + Rur
r=m—k—1K,Le{l,---,d}" |a|+|B|=m+k+1—7

where

° 7?72:;76, 7;;,[1':,{1,/3 are coefficients satisfying

zi, 1, J ird,J

(4.21) ||7;()L’a”3a711)(’L,a’ﬂ|‘L2(0,T;Wl‘,ith'°°) S AT, M),

o Ry, 1,5, Ry, 1.7 are remainders satisfying

| L0, 7m0y S AT, M), Vi <r—d/2.

| Rai,1,01 Low 0,7:200) + 1 Ruoi1,

4.5. The equation satisfied by L!/920°f. Lemma invites to seek for a
closed equation on L1:79295 f, for k € {0,---p}, r € {m —k,--- ,m+k}, I,J €

{1,--+,d}" and all |a|+|B| = m+k—r (and similarly for what concerns Lemma[4.6)).
This is the purpose of the next two lemmas.

Lemma 4.7. Let k = 0,---,p. Letr =m —k,--- ,m + k. Assume that (F7) €
L2(0,T; sz(erk)_l) with norm bounded by A(T,M). For allI,J € {1, ---,d}" and
all |a| + 18] = m+ k — r, we have

(4.22)
T(L 0300 )+ 20l F -V f =
> X Yo WKL LT f 4 Rr s
r'=m—k K,Le{1,---,d}"" |a'|+|8'|=m+k—r
where

[7J7 S . . .
o 7K7L?éof?,ﬂ' are coefficients satisfying

i1, J ird,J
(423) ||'Y;IC(,L,a,,B’7?{,L,a,ﬁ|‘L2(o,T;W§;2»°°) S A(T> M),

o Rj jap 1S a remainder satisfying

|1Rr,0,0,8] Lo 0,750y S AT, M), Vi <r—d/2.

Lemma 4.8. Letk =0,--- ,p—1. Letr = m—k—1,--- ,m+k. Assume that (F7) €
LQ(O,T;Hg(erk)) with norm bounded by A(T,M). For all I,J € {1,---,d}", and
all |a| + 18| =m+k+1—r, we have

(4.24)

T(L70208 f) + 9208920 DF .V, f =
Z Z Z VQ{L’?C&?,QILK’Lagaf/f + Rr, g0,
r'=m—k—1 K,Le{l,-- 7d}r’ |/ |+| B |=m~+k+1—1'
where

1,7 . o
) 'yK”L’?‘&?ﬁ, are coefficients satisfying

oI,J i,
(4.25) ||’Yf<,L,a,5a’Y?(,L,%,BHL2(07T;W5$2=°C) S AT, M),
o Ri jap s a remainder satisfying

1R1,5,0,8] Lo 0,7570) S AT, M), Vi <r—d/2.
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We observe that as wanted, Lemmas [4.7] and [I.§ provide closed systems of equa-
tions.

To conclude this section, we shall give the proofs of Lemmas and (the
proofs of the remaining Lemmas and being very similar).

4.6. Proof of Lemmas [4.5] and [4. 7l

Proof of Lemma[f.5 Let # < r —d/2. Since r > d, we can assume, without loss
of generality, that 7 > d/2. We can write, by an induction argument relying on
Lemma [£.2] that

T(L" f)=Fy

. . . 4
with the source term Fy ; is given by Fr ;= — >, | F;, where
(4.26)
m—+k—1
Fy = E Lil,j1 T Li7n+k—(1jm,+k—£
=1
2
X ((axim«i»kffﬁ»l ’xjm#»kféﬁ»l F) ' vaivn+k—l+27j7n+k'—2+2 e LinL+k7j1n+k' f)’
(4.27)
m+k—1 ) )
_ R . tmAk—L+1:Im4+k—£4+1
= Z Liy g L“'Hrk*f’]erk*Z ( [ Z Pl ax'i'nwrk—ﬁrl avjvrz+k—2+1 F
=1 k.l
It k—41:JmAk—e41 92 . . . .
+ "/Jk,l 6U'im+k—£+1 Vi — 041 F} . valm+k7Z+2;]m+k7Z+2 le+k,Jm+k f) ’
(4.28)
m+k—1
_ T, ) It k—f4+1:Jm+k—04+1 52
B3 = E Li, j, L'Lm+k72;.7m+k7£(|: E wk,z avim+k7“1,vjm+k7”1a}
=1 k.l
: vaim+k7£+27jm+kfl+2 e Lim+k,jm+k f)7
(4.29)
m+k—1

Fy= E Lil,j1 T Lin1+k—1fs.jm,+k—£
=1

bk — 04150 mtk— 41 ] ) ) )
X 2 : a”z/a(u)m'¢k’,l’ Lk/vmlL1m+k7€+27Jm+k—£+2 T le,+k7J7n+k I
kU ,m/

We shall focus on the contribution of F;. We have to estimate terms under the
form

(4.30) Fiy=L"""*q,, Gy=0°FE-V,L'!

where we use the notation L™ for the composition of n operators of type L; ; (the
exact combination of the operators involved in the composition does not matter
here). Note that as in (4.14)), we can develop L™ under the form

2n—2
(431)  Lr=0+ Y Y Pk (U)PF (0U) - P (0°U)050%,

s=0 e, o, ko--ks
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where for all 0 < p < s, Pﬁ %,a(X) is a polynomial of degree smaller than k,, the
multi-index a,, has length 2n and the sum is taken on indices such that

(4.32) le|=1, || =2n—1—s, ko+ki+--- ks <n, ko > 1, k1 +2ka+--- sks = s.
Let us first establish a general estimate, adapted from [34]. We set for any
fonction G(z,v),
(4.33) Jp(G)(z,v) = Z Ip,s,8.5(G)
s, B, KeE

where K = (kg,- - ,ks) and
(4.34) Tps.p.0(G)(2,v) = PFoy(U)PEL(OU) - - - Pry(0°U)0° G

where for all 0 < r < s, Pskﬁ(X ) is a polynomial of degree smaller than k, and the
sum is taken over indices belonging to the set F defined by

(4.35) |Bl=p—s,kotki+ ks <p/2, k1 +2ky+ - --sks=5,0<s<p-—2.

Lemma 4.9. For2(m+k)—1>p>1,2m >d+3,7>d/2 and s, p, K satisfying
(4.35), we have the estimate

(436) 1@l AT (IClhg + D [0V Cllag )-
1>2(m+k)—4-2,
I+|a|<p, || >2

Proof of Lemma[{.9. For the terms in the sum such that s < 2(m+k) — % — 2, we
can use estimate (4.2) in Lemma to obtain that

1 p.s,8,5 (G)llae < AT, M)[|G 3z

When s > 2(m + k) — % — 2, we first consider the terms for which in the sequence
(k1,- - ,ks) the largest index [ for which k; # 0 is such that [ < 2(m + k) — % —2.
Then again thanks to estimate (4.2)) in Lemma we obtain that

[ Jp,s,8.5 (G)lgo < AT, M)[|G |34
When | > 2(m + k) — % — 2, we first observe that we necessarily have k; = 1.
Indeed if k; > 2, because of (4.35)), we must have [ < 5. This is possible only if

2(m+ k) — g —2< pT_Q < %, which corresponds to m + k < %—1—1 and

hence this is impossible. Consequently k; = 1. Moreover we note that for the other
indices | for which k; # 0, because of (4.35), we must have lk; < s — Ik, so that
~ d d
lSs—lSs—Z(m+k)+§+2§§—1
and we observe that ¢ — 1 < 2m — % — 2. Consequently, by another use of esti-
mate (4.2)) in Lemma we obtain that
1p.5.6.5 (G)llee < AT, M) > 10'U8° G 0.
1>2(m+k)— 4 -2,
I+l <p, |a|>2

The fact that |a] > 2 comes from (4.35)). This ends the proof of Lemma O
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We shall now estimate Fy,. Looking at the expansion of L™**=¢ given by
(4.31), we have to estimate terms under the form J,(G,) with p < 2(m + k — ).
Using (4.31)), we decompose G, in the following way:

Gy =0°F -V, L' 'f

where

e in Hy, we gather all terms of the form , with G = f, such that
2k + 14 |B] > 2¢. These terms may contribute to terms with at least 2m
derivatives on f.

e On the other hand in Hy _, the terms that arise correspond to 2k+1+|3| <
2¢, which involve at most 2m — 1 derivatives on f.

We first focus on the contribution of G —; we denote
Fip_ = Lm+k_éG5’,.

Let us start with the case £ > (m+k)/2. We can use the decomposition (4.31]), which
entails that we have to estimate terms of the form J,(G, ) with p < 2(m+k—/{) <
2(m + k) — 1, and apply Lemma to get

(437) ”FLZ,*HL?(O,T;H?;) < A(Ta M)

(HG&_||L2(0,T;7-L§(m+k_£)) + Z ||3lU8aG€,—||L2(O,T;’Hg,))'
1>2(m+k)—4-2,
I+]a|<2(m+k—2L), | >2

We observe that in the right hand side of (4.37)), we have that | < 2(m+k—{)—2 <
m + k — 2; consequently, since 2m — 1 > d — 1, we have [ < 2(m + k) — % — 2 and
hence we can estimate ||0'U ||~ by using estimate ([4.2]) in Lemma This yields

10,0~ L2 0,00y < AT MGl e o gipgzomn-0ys €2 (m A+ E)/2.
Then we use estimate (3.2)) in Lemma with s = 2(m + k — ¥¢) and sg = d + 1,
and the definition of G, to estimate [|Gy,—||,2(ntx-0. Since d +2 < 2m — 1 and
2m+k—£0)+2<2(m+k)—1 (since £ > (m + k)/2 > 2), we obtain

1 F1e,— | 22 0,75m0)
< AT ) (500 L o gy 19— om0,

(4.38) 50D |17 | a0 2oty IV e | oo oz -21))
! :

< AT, M) sup ||Fj |‘L2(0’T;H2(m+k)—l) IVoHy - ||LOQ(O7T;Hg(m+k—£)).
j 7
By using the regularity assumption on F7, this yields
”Flye,* ||L2(O,T;Hg) < A(Ta M) HVUHZ,* ||Loo(07T;Hi(m+k7£))'

To estimate the above right hand side, we need to estimate 9 ,Hy  with [y| <
2(m + k —£) + 1. Recalling the definition of H, _, by taking derivatives using the
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expression (4.31)), we see that we have to estimate terms under the form J,(f) with
p < 2m — 1. Using Lemma |4.9| one more time, we thus obtain that

”FLK*”L?(O,T;HQ)

< A(T, M)<||f|\Lw(O’T;H§m_1) n 3 ||azUaaf||Lm(07T;Hg)).
1>2(m+k)—4 -2,
I+|a|<2m—1, |a|>2

To estimate the right hand side, we argue as follows. Let ' > d/2 such that
747" < r. Since |a] > 2 and |a] — 2 +1 < 2m — 3, we can use estimate (3.4) in

Lemma (taking x(v) = (1 + |v|2)%/)7 to obtain that
(4.39) 10U A+[v[*)20%fllzz , S NUllggzm-a |+ 0[) 0% f [l +1U | o [ fll32m-1

By using again estimate in Lemma and the Sobolev embedding, we finally
obtain that
(4.40)

182~ z20,r5m2) < AT M) fll oo 0, 032m 1) < AT, M), €2 (m+k)/2.

It remains to handle the case ¢ < (m + k)/2. Note that necessarily, for these
cases to be meaningful, we must have 2k + 1 < 2¢. Assume first £ > 2. We obtain
again (4.37). We first need to estimate ||9*F - VUHK,HLZ( We thus

have to study

O,T;H?,(m”*“)'

10°0°F - V0" He,— || 20,7509

with 8] + |v] < 2(m + k — £). Since £ > 2, we have |f| +2 < 2(m + k —1). If
I8 +2 < 2(m+k)—1—d/2, then we get by Sobolev embedding the bound

||3ﬁ32F ’ vva’\/H@ﬁ”L"’(O,T;Hg) < sup ||8B82Fj”L2(O,T;Lg°)”VvaWH@,*”LQ(O,T;Hg)
J

< sup ||FjHL2(07T;Hf(m+k>*1)Hf”L?(o,T;Him—l)
J
< AT, M),

recalling the definiton of H, _. If |3] > 2(m + k) — 3 — d/2, then |y| < 2(m + k —
0) —2(m+ k) + 3 + d/2 and thus the term V,07H, _ involves at most d/2 + 2
derivatives. Since 2m — 1 > 3d/2 + 2, we have this time

||8562F ’ vaHé,—Hm(o,T;Hg)

S Sup ||3682Fj||L2(0,T;L§) ||Hé,— ||L2(O7T;W(j/2+2'm)
j 7

< Sl;,p ”Fme(o,T;Hi(m“‘)‘l £l 20, 7522m 1)
< AT, M).
We also have to estimate terms in under the form
10'U8°0°F 07V, Hy, || 300

with { > 2(m +k) — 2 — 2 and [ + |8 + 7] < 2(m + k — £). Note that this implies
that [3| < 2(m+k—¢) —1 < $+2—2¢ < ¢ since we have £ > 1. In particular
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this yields |3 +2 < 2m — 1 — £ since 2m > 3 + ¢, and thus by using the Sobolev
embedding and (2.9)), we obtain that

|0UOP S F OV Hy llys S sup | FV || o1 [0V, Hy g0
J
S (I fllpzms + sup |2 (0)]| 219UV, Hy, 1y
J

< AT, M)||0'UDV, He, |30

Consequently, it remains to estimate ||0" U0V yHy,— |30 for 1 = 2(m + k) — 42
and [+ |y| < 2(m+k — £). By using again and the definition of Hy _, we can
expand 0"V, H, _ as terms of the form J,(f), with p < 2(¢ — k) +|vy| — 1. Since we
have that 2(6 — k) + |y =1 < 1+ £ < 2(m+ k) — ¢ — 2, we can use estimate (£.2)
in Lemma again to estimate all the terms in the expression of J,(f) involving
U and its derivatives in in L. This yields

10'TO"V o, Hy, —|l30 < AT, M) > 0"V fll0
¥
with |3] < |v] +2(¢ — k) — 1. Consequently, arguing as for (4.39)), we obtain that

100" Ho, Ny < AT, M) (10 1 gz + 1+ o) Fllze, N0l )

where we recall ' > d/2 and we conclude finally by invoking estimate (4.2)) in
Lemma [4.1] and the Sobolev embedding that

(4.41) [F1e,~N20.rme) < AT, M), 2<L< (m+k)/2.

For the case ¢ = 1 to be meaningful, £ must be equal to 0. We set aside the term

U V. f (which appears in the formula (4.17))), and we thus have to study
the term

Livis* Linnsigms (02, o, F Vo) = 20D 9, f.

Lim sTim

We argue exactly as before to obtain a bound in L?(0,7;H2) by A(T, M) (note
indeed that at most 2m — 1 derivatives of f and F are involved). Gathering all
pieces together, we have thus proven that

(4.42) 1PNl zegore) < AT, M).

Let us now treat the contribution of Gy 4, which will give rise to terms involving
2m up to 2(m + k) derivatives of f. Let j € {0,---,2k}. Let us describe the form
of the terms involving derivatives of order 2m + j of f. We note that 2m +j—1 >
2m —1>m+p—12> m+ k — 1. This means that such terms are necessarily of
the form

0 0 k k m+j—k m+4j—k
(443) <a:? ag Lihjl e Lik;jkag 85 o .Lim+j7k)jm+j—k :(Jcl 81? ! >f’
with
m—+j—k m+j—k
Yoo laf gt =2k—5 D (8 #0.
k=0 k=0

In order to have exactly 2m + j derivatives of f, this expression can be rewritten as
LELo29l f, where |K| = |L| = m+j — k and |a| + |B| = 2k — 4, |8] > 1. Indeed if
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derivatives fall on a coefficient of one of the L
derivatives on f.

We denote by ’yﬁ(JLla 5 the coefficient associated to such terms. Remark that
for |y] < 2k —j — 1, 0Y9*F* € L?(0,T; H>™7~2). Since we have 2m > 3d/2 + 4,
we can bound this term in L2(0,T; Wa+2>°) by Sobolev embedding. Likewise, for
[y < 2k—j—1,since 2m+j—1—d/2 > d+2 we have 9] ,U € L>(0,T; W1%>).
All in all, we deduce

ix.jn» then there are less than 2m + j

H'ﬁ(’,JL’Ta,ﬁ||L2(07T;Wg_j;2«°°) < A(T7 M)
It remains to treat the other terms that all involve at most 2m — 1 derivatives are
involved on f. If k > 1, we set aside the term Gg(I’J)F - Vuf in 7 which
corresponds to the case £ = 1 treated above (relevant when k = 0).

The other terms can be considered as remainders that are uniformly bounded
in L2(0,T;H2), since at most 2m — 1 derivatives are involved on f and at most
2(m + k) — 1 derivatives are involved on F'; these terms can be treated exactly as
we did to treat the remainders in Gy, _.

The treatment of Fy, F3, Fy gives rise to similar terms and we omit it.
O

Proof of Lemma[{.7 The proof is similar to the previous one. We shall only explain
why the terms involving at least 2m derivatives of f are indeed of the form appearing
in .

Let k=0,--- ,p—1,andr =m+j, for j = —k—1,--- , k. We look for the terms
involving 2m + [ derivatives of f, for [ =0, --- ;k+ 1+ j. Among the operators in
L7 there are exactly 2m+1— (m+k+1—7) = 2m+j+1—k— 1 derivatives to be
applied on f. Since m > p > k+1, we have 2m+j+1—k—1 > m+j. This means
that these derivatives must be of the form L¥1979%, with |K| = |L| = m+1—k—1
and |y|+ 0| = j—I+k+1 (up to commutations between the differential operators
as in @D, which is treated like in the previous proof). In the end, the terms
involving 2m + [ derivatives of f are thus necessarily of the form L¥2979? f, with

|K|=|Ll=m+1—-k—1, Y+ 10 =2k+2—1,
as appearing in (4.22]).

O

Remark 4.10. An inspection of the proof reveals that the uniform regularity of the
coefficients in (4.18), (4.21), (4.23), [(#.25) can be improved to L*(0,T; WP°) for
allp <2m—2—d/2.

5. BURGERS EQUATION AND THE SEMI-LAGRANGIAN APPROACH

In this section, we explain the procedure to straighten the transport operator 7T,
and which allows, loosely speaking, to come down to the operator 9; + a(v) - V,,.
This relies on several changes of variables in velocity that we introduce now.

Let ®(t,x,v) satisfy the Burgers equation
5.1 O +a(®) -V, 0 = F(t,z,d),
(5.1 ®(0,z,v) =v.

The interest in introducing the vector field ® comes from the following algebraic
identity.
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Lemma 5.1. Given a smooth function g satisfying Tg = R, the function
G(t,z,v) := g(t,z, ®(t,x,v))
solves the equation
(5.2) 0:G + a(®(t,z,v)) - V.G = R(t,x, ®(t, x,v)).
Proof of Lemma[5.1, We compute
0,G = (Du9)(t,x, ®(t, 3,0)) + 0@ - (Vug)(t,x, ®(t, 7, v)),
a(®) - V,G = a(®) - (Vo9)(t,z,2(t,z,v)) + [a(P) - V@] - (Vog)(t, z, P(t, z,v))
Since T¢g = R, we have
(Org)(t, x, (t, 2, 0)) + a(®) - (Veg)(t, z, ®(t, 2, v))
—F(t,z,®) - (Vyg)(t,z,®(t,z,v)) + R(t,z, D(t, x,v)).
From , we deduce as claimed. (I

In other words, the change of variables in velocity v — ®(t,z,v) allows to
straighten the vector field 7.
We now provide a lemma concerning the existence, uniqueness and regularity of

solutions of (5.1)).

Lemma 5.2. Assume that for all j = A, FV e L20,T'; H?) with norm
bounded by A(T', M). There is T € (0,T’] such that the following holds. There ex-
ists a unique solution ®(t,x,v) € C°(0,T;WF°) of (B.1) and we have the following

estimates:
(5.3) sup sup Z |09 (@ — v ||L2U+Sup|‘®_UHWkoo S AT, M),
[0,7] v || <n 0,7
(5-4) Sup sup > 102, (a(®) —a()|rz, + sup la(®) = a(v)[lyr S AT, M),
Y lal<n ’

for allk <n—d/2.

We shall not provide the proof of Lemma as it follows closely the proof of
Lemma 4.6 in [34]. Here the source is semi-linear whereas it is linear in Lemma 4.6
of [34]; however, the proof is essentially the same (see also [30] for a similar issue).

We now introduce the characteristics associated to @, defined as the solution to

KX(t,s,x,v) = a(P)(t,X(t, s,x,v),v),

(5.5)
X(s,8,2,v) =z,

and study the deviation of X from the (modified) free transport ﬂowﬂ

Lemma 5.3. Assume that for all j = 1,--- £, F7 € L*(0,T'; H*) with norm
bounded by A(T', M). There is T € (0,T"] such that the following holds. For every
0<s,t<T, we can write

(5.6) X(t, s,z,0) =x+ (t — 3) (a(v) + X(t, s, , v))

Note that the X introduced here is not the same as the X previously defined in (1.7)).
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with X that satisfies the estimate
(5.7)
sup sup Y 02, X(t,s,2,0)2 + sup [X(t, 5,2, 0) ||y S AT, M),
t,s€[0,T] v la<n ’ t,s€[0,T] s

for all k < n—d/2. Moreover, the map © — x + (t — $)X(t, s, z,v) is a diffeomor-
phism, and there exists ¥(t,s,xz,v) such that the identity

X(t, s,2,U(t,s,z,v)) =z + (t — s)a(v)

holds. Finally, we have the estimate
(5.8)

sup |sup Y 102, (U(t,s,2,0) = o)z + [ U(E 5,2,0) =0l | S AT M),

t,s€[0,T] v lal<n

for allk <n—d/2.

Again, we will not reproduce the proof of Lemma [5.3| as it follows closely that
of Lemma 5.1 in [34].

In what follows, the procedure will consist in applying derivatives on the equa-
tion using multiple combinations of the operators LT+’ that were introduced
and studied in the previous section. This yields systems of Vlasov equations with
sources, such as in Lemma This is on these equations that we will apply
the change of variables v — ®(¢,z,v) in order to straighten the transport opera-
tor 7. We then integrate along characteristics, which is why the X(¢t, s, z,v) are
useful, and average in velocity to obtain equations bearing on moments. In these
equations, it will be crucial to apply various changes of variables based on the X
and ¥ introduced in Lemma [5.3]

This is what we refer to as the semi-lagrangian approach.

6. AVERAGING OPERATORS

For i € {1,---,d} and a smooth function U(t,s,z,v), we define the following

(@)

integral operator K J acting on scalar functions H (¢, x):

(6.1) KW (H)(t,z) = /Ot /Rd(é‘xiH)(s,x — (t— 8)a(v))U(t, s, z,v) dvds.

The integral operator K can be seen as a modified version of the operator KE} )
KU (H)(t,z) = /Ot /R (8, H) (s, — (t — s)v)U(t, s, 2, v) dvds

that was studied in [34].

6.1. The smoothing estimate. We note that the operators K,(Jl) and Kﬁ)seem to
feature a loss of derivative in x. It was nevertheless proved in [34, Proposition 5.1
and Remark 5.1] that for the operators KS), this loss is only apparent, provided
that U is sufficiently smooth in x,v and decaying in v: this is the content of the
following Theorem.
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Theorem 6.1 ([34]). Let k > 1+d and o > d/2. For all H € L*(0,T;L2), and
forallie {1,---,d}, we have

(6.2) IKE (E)llzzorizey S sup (UGt s )llagg | H 220722
0<s, t<T
Based on this result, we deduce the following smoothing estimateﬁ for the oper-
ators K"
U

Proposition 6.2. Let k > 1+d and o > d/2. For all H € L?(0,T;L2), and for
alli e {1, ---,d}, we have

(63)  IKS  )lzoran S sw (U s, s 1Hl20702),

0<s,t<T

withry, =0+ (1+A)(d+ k).

Proof of Proposition[6.3 To ease readability we set 9, = 9, and we forget about
the subscript . We come down from the modified to the straight operator by using
the change of variables w := a(v). We get

x)

[
a(R%)

(H)(t, ).

Ky (H)(t,
-

:KU

OpH) (s, — (t — s)w)U(t,s,x,a”  (w))|det Da(a™ (w))|™* dwds

with
U(t, s, 2z, w) == U(t,s,z,a” " (w))|det Da(a™" (w))| " 1,(ra).-
Let kK > 1+d and o > d/2. By Theorem we get

| K (H) z2(0,11:22) = IKu(H)[22(0,17:22) S S NU(E, s, )l 1H (| 220, 17;2.2) -

By assumption on a, we have
050~ (w)] S (1+[a™" (w)]) A,
In particular, we deduce
| det Da(a™" (w))| ™" S (1 + |a™" (w) )90+

As a consequence, we have, by the Faa di Bruno formula, and using the reverse
change of variables v = ¢~ (w) and (2.3)), that

||U(t7 S, )HH{; N ||U(t7 S, ')”H’“

o+ (d+k)(1+N)

hence the claimed estimate. O

§A close version of this result is also stated in [36] for the special case a(v) = o.
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6.2. Intermission: a comparison to averaging lemmas. We end this section
with a comparison of the smoothing estimate we have just exposed, say in the simple
case where a(v) = v, which corresponds to Theorem with kinetic averaging
lemmas. Averaging lemmas were introduced in [31 [I, B0] and now generically
stand for various smoothing effects in average for kinetic transport type equation
They proved over the years to be fundamental in several contexts of kinetic theory,
as they provide compactness and regularity. There exist many versions of these,
involving several different assumptions on the functional spaces, on the number of
derivatives in v or in z in the source etc., see e.g. [21}[52],B2] 13} [42] and [411 4, [3] for
more recent advances. The closest (to Theorem ) avatar of averaging lemmas
is arguably the following result of Perthame and Souganidis [52].

Theorem 6.3 (Perthame and Souganidis [52]). Let 1 < p < +oo. Let f,g =
(9j)j=1,.da € Lt . ,, satisfy the transport equation

t,x,v

d
(64) atf +uv- vzf = Zafja’luegj7

=1

where k is an arbitrary multi-index. Let p(v) be a C*° compactly supported function
and set

pp(t, ) = y [t z,0)p(v) dv.
Then we have, for all a € [0,min(1/p,1/p")),

o

17\16\(11 [R+1
T P

v

(6.5) Hpc,a”Lf’z < Capap

Let us focus especially on the case p = 2, |k| = 0 (in which case actually
also holds for a = 1/2). Theoremcan also be understood as a kind of averaging
lemma for the moments in v of the kinetic equation (6.4), in the special case where
the source has the form

d
(6.6) Z 0z, Hj(t, x)@ffuj(t, x,v),

j=1

where U} is smooth in = and v, and the initial condition is f|;—o = 0. Let ¢(t,z,v)
be a smooth and decaying test function. Then by the method of characteristics,

t d
ft,z,v) = / Z O, Hj(s,x — (t — $)0)OU; (s, @ — (t — s)v,v) ds,
(it
and thus

t d
po(t,x) = /0 /]Rd Z@achj(s,:c — (t — 8)v)OkU; (5,2 — (t — s)v,v)p(t, z,v) ds

d
="K (H))(t, ),
j=1

1TActually this can be embedded in a more general framework, see in particular [24] 23] [25].
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setting U; (s, t,x,v) = 0MU;(s,x — (t — s)v,v)p(t, x,v). The regularity assumption
of Theorem [6.1] reads

sup  [|U;(t,s,-)llggx < +o0
0<s,t<T

for k > 14d, o > d/2, and the consequence is

(6.7) lpwllLzo,602) S sup Z||Uj(ta57')||H§||Hj||L2(0,t;L§)~
0<s,t<T J

This estimate is not a consequence of Theorem [6.3] Indeed, note that it does not
involve the L? norm of the solution f: somehow, this can be roughly seen as a
version of Theorem [6.3] allowing v = 1 (whereas Theorem [6.3|only allows a < 1/2),
at the expense of asking for the structure assumption on the source g and
of considering a norm for the source that is more demanding than the L? norm of
estimate (|6.5)).

Observe also that Theorem does not require the test function in v to be
decaying at infinity, as long as for all j, U; in is itself decaying sufficiently fast
at infinity.

7. PROOF OF THEOREM [2.1] AND OF COROLLARIES AND [2.5]

We finally set up an induction argument, that relies on the machinery developed
in the previous sections, and will ultimately lead to the proof of Theorem In
order to summarize the procedure in a few words:

e By induction, we assume smoothness on the moments until order n’ —1. We
can first apply Lemma[{.I]to obtain the same smoothness for the coefficients
of the operators L; ;.

e We apply Lemmal[£.7] or in order to get the system of equations satisfied
by (L%L9208 f), which is of the abstract form

T(3) + AT = B,

where 2l is a matrix whose coefficients we control and B is the rest we need
to control. Loosely speaking, B is made either of remainders we can control
thanks to the induction assumption, and terms of the form —05 (KD p Vof,
for K,L € {1,---,d}™** whose contribution is the main matter.

e We then invert the operator 7 + 2 in order to solve the equation. At
this stage, after integration in velocity (remind that we are interested in
the regularity of moments), we use the changes of variables introduced in
Lemmas and

e What is rather straightforward then is the study of the contribution of
the initial data and of the remainder terms in 5. As already said, the
contribution of the terms —Jy KL p. V., f is more serious and involves the
study of integrals of the form

t
/ / (0, 0L Y (5,2 — (t — 8)a(v))U(t, s, z,v) dvds,
0o Jre

which seem to feature a loss of derivative in x. We recognize the integral
operators introduced and studied in Section[f] This is where the smoothing
estimate of Proposition [6.2] proves to be crucial.
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7.1. End of the proof of Theorem For n > 2m — 1, let P(n) be the
following statement:

P(n) : There is T > 0 such that for all test functions
. d+2+n—2m,co
Y(t,xz,v) € L=(0,T; WSS ),

setting for all |a| = n,

myalti) = [ 05tz o)t a0)do,
Rd
there exists A for which
(7.1) Z lmy.allzzo,r;02) S AT, M).

la]=n

By Proposition it is clear that P(2m — 1) is verified.

Let n € {2m,---,2(m+p)}. Let us assume that n is even, of the form 2(m +k).
We shall not proceed with the case where n is odd, as it follows by completely
similar arguments. Assume that P(2m),--- ,P(n — 1) are satisfied and let 7' > 0
be a time on which the estimates (for 2m,--- ,n — 1) are satisfied. We shall
prove that P(n) is also verified. Once this will be done, we deduce by induction that
P(2m), -+, P(2(m+p)) are satisfied; we then deduce the required estimates (3.14).

Thanks to the property P(n — 1) applied to the (¢;);=1,... », and (2.9), we first
have

4
(7.2) SOIF . o.ruzemio-1y < AT, M).

j=1

We can therefore apply Lemma and obtain a possible smaller time still de-
noted by T and operators L; ; with coefficients (¢, ¥;7)i 5 k1e(1,- ) belonging
to L>=(0,T; Hi(?+k)_2) for all 7 > d/2, with uniform regularity

(o VR0 < A(T, M).
)

00 (0.T~7-L2<3”+k)72

Let us consider the vector (the precise ordering does not matter)

(13)  §=(Lrozolr)

re{m—*k,-- ,m+k},K,Le{1,--- ,d}7",|a|+|B|=m+k—r
By Lemma [£.7] it follows that § satisfies the system

(7.4) T(3) +AT =B+ R,
where 2(t, 2, v) is a matrix with coefficients in L?(0, T; Wi1%), satisfying
(7.5) ‘|Q[||L2(07T;ij2v°°) SAT,M).

(The term 2AF encodes the contribution of the leading order terms in the triple sum
of the right-hand side of (4.22)).) On the other hand, 2 is a remainder satisfying
the estimate

(76) ||m||L2(0,T,7~[g) 5 A(T7 M)
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for all # < r—d/2 and B is defined as follows: all its components are equal to 0 except
those corresponding to the components associated to some K, L € {1,--- d}™+*
in which case it is equal to

~9e P .V, f.

The next step consists in using the change of variables v — ®(¢,x,v), where ®
solves , in order to straighten the vector field T, see Lemma, To this end,
we use Lemma (reduce again T' > 0 if necessary) and use the notation o® to
denote the composition in v with ®. Setting F = § o ®, we obtain

(7.7) O+ a(®) - Vo) F+ (Ao ®)F =Bod+Rod.

Let A(s,t,x,v) be the operator, whose existence is ensured by the Cauchy-Lipschitz
theorem, as the solution of the following linear ODE

05 A(s,t,z,v) = A(s,x, P(s,x,v))A(s, t, z,v), A(t,t,z,v) = Id.
Thanks to (|7.5)), we also have
(7.8) IA(-t, ')HLOO(O,T;Wf,tz’OO) + [|0sA(, ¢, .)||L2(07T;Wg$2,m) S AT, M).

By the method of characteristics we get

‘F(t’ x? U) = A(t’ 07 z? /U)‘F(O7 X(O’ t? x? U)7 U)

t
o) + [ A s, 00B o 05, X t..0),0) ds
t
+/ Aty s,x,0)R 0 (s, X(s,t,z,v),v)ds.
0

Let ¢(t, z,v) € L*=(0,T}; WT{OQJFM’OO). We multiply the representation formula (7.9))
by (¢, z, ®(t, z,v))| det D, P(t, x,v)| and integrate in v to obtain

(7.10) F(t,z,v)Y(t,x, ®(t, z,v))| det D, ®(t, z,v)|dv =Ip + 1) + I5
Rd
with
(7.11)
Iy = / A(t,0,z,v)F(0,X(0,t, z,v),v) o ®|det D, P(t, x,v)| dv,
]Rd

t
I, = / Aty s,2,0)(R o @)(s,X(s,t,x,v),v)p o ®|det D, (¢, x, v)| dvds,
0 Jra

t
I, = / A(t, s, z,v)(Bo®)(s,X(s,t,z,v),v) o ®|det D, ®(t, z,v)| dvds.
0 Jrd
By the change of variables v — ®(t, z,v), we have

F(t,z,0)(t, @, ®(t, 2, v))[det Dy (¢, x,v)|dv = | F(t,2,v)i(t, z,v)dv.
Rd Rd

Let us first study this term. Since P(2m),--- ,P(2(m+k)—1) are satisfied, we can

apply Lemma [4.4] (the assumption ([4.8) is indeed verified), which yields, see (4.9)
and (4.10)), that for all I, J € {1,--- ,d}™**,

[ttt do= [ 20D i) dot B,
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where R ;, is a remainder satisfying the estimate
IRr,70ll2201:02) < AT, M).

Consequently, recalling the definition of § in (7.3)), if we are able to obtain the
bound

[ lollz2(0,m;22) + M1ll2(0,m522) + I L2llL2(0,1522) < A(T, M),
then we deduce the bound

> /R D frp v
I,J

that is we obtain the sought bound ([7.1) at rank n.

< AT, M),
L?(0,T;LZ)

7.1.1. Study of Iy. Let us begin by treating the contribution of the initial data,
that corresponds to the term Iy. First by using estimate (5.3]) in Lemma the
L bound for A in ([7.8]), and the estimate

(7.12) 1L+ o) 72|, S 1,

zv

we have for all x € T¢,

A(t, 0,2, v)F(0,X(0,¢,x,v),v)(1+ |U|2)”’/2| det D, ®(t, z,v)|dv
]Rd

< AT, M) / | F(0,X(0, ¢, 2, v),v)|(1 + [v]>)°/? do.
Therefore, we get that

[ ollL2(o,7:02) < A(T, M) H/ |F(0,X(0,t, -, v),v) || 2 (1 + [v]*)*/? dv
R

12(0,T)
By using the change of variable y = X(0,t,z,v) + ta(v) = = — tX(0,t,z,v) and
Lemma [5.3] we obtain that

||]:(O,X(O,t, ',U),”U)HLg < A(Ta M)”]:(Oa - ta(v)vv)”Li < A(Ta M)H]:(Oa ) U)HLi

and hence, we deduce that since r > r + d/2, for some ' > d/2, there holds

dv

) Ol

1ol L2(0,7;02) < A(T, M) (/
R

By using the fact that at ¢t = 0 we have ®(0,z,v) = v and LUIH)|,_o = 8y ) e
end up with

m+k

IFO)lle = I8O)llre < AM) D Y. 1970207 follne

j=m—k |a|+|8|=m+k—j
and hence we finally obtain that

1 ollz2(0,;22) < A(T, M).
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7.1.2. Study of I;. We treat the other remainder term I; in a similar fashion. In-

deed, using again estimate (5.3)) in Lemma [5.2] (7.8) and (7.12), we first get
||Il||L2(0,T;Lg) < AT, M)

t
x / / [R5, X5, £, 0), (5, X5, 1, 0),0)) |2 (1 + [o])"°/ dvds
0 R4

L£2(0,T)

Thanks to the change of variable x — X(s,t,z,v) and to the estimates of Lemma
it follows that

t
Iz <A@ [ [ 196,050 0) (1 + o) duds
0 JR

L2(0,T)
<aan | | R0 B)(5) e ds

SAT, M) T || R0 @ L2(0,7:20)

L2(0,7)

by choosing 7 > 7o+ d/2, which is possible since r > ro+d. Using again the change
of variables v — ®(t, z,v), Lemma and the estimate (7.6)), we thus obtain

I11llz20,7522) < A(T, M).

7.1.3. Study of Is. The main matter thus concerns the contribution of the term I5,
which features an apparently loss of derivative in z. This is however not the case,
thanks to Proposition Let K,L € {1,---,d}™"*. Writing 8§(K’L) = 89085‘/
with || = |(K, L)| — 1, we are led to study terms of the form (here F/ stands for
the i-th coordinate of F7):

0 t )
;/0 Ad(azag/Ff)(s,X(s7t,x,v))w(t,X(s,t,x,v),@(S,X(s,t,x,v),v))

xAﬁ(’:]L(t,s, ,X(s,t,z,v), ®(s, X(s,t,2,0),v))A;(P(s, X(s, t,2,v),v))
XDy, f(8,X(8,t,2,0), ®(s,X(s,t,2,v),v)| det D, P(t, x,v)|dvds,
where AR | o o pawas2ey < AT, M).
We use the change of variables v = ¥(s,t,2,w) to rewrite this expression as
Sy Ku, (0% F}), with
(7.13)
Uj(s,t,z,v) = A, (@(5, x— (t—s)a(v),¥(s,t,x, U)))

X A;’:]L (t, s,x — (t = s)a(v), ®(s,z — (t — s)a(v), ¥(s,t,x, v)))
X 1/)<t,:1c —(t—8)a(v),®(s,z — (t — s)a(v), \I!(s,t7m7v))>
X avif(s,x — (t = s)a(v),®(s,x — (t — s)a(v), ¥(s,t, :L',v)))

x | det D, ®(t, x, ¥(s,t, x,v))|| det D,V (s, t,z,v)|,

where we recall the operators K were introduced in Section [6] In order to apply
Proposition we have to estimate, s, ¢ being fixed, U; in ’Hf,'"d, with 7' > d/2 4+
21+ AN (1 +d) and r > ' 4+ r¢ (which is possible since r > R as defined in (2.12))).
First, by , , , in Lemma and estimate in Lem
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we can uniformly bound in L*° all terms involving A;, ®, ¥ and their derivatives
(since only at most 2+ d derivatives can be involved). For what concerns v, we use

11+ [o?)"/20%)|| 1. $1, V|a| < d+2.

We are therefore led to estimate integrals under the form
I =

/Ifded |g(3: - (t - S)Q(U), (I)(S,I — (t — S)U’ \I/(S,t,.fli’fu)))F(l + |U|2)To+7" dvdz 7

where g = 0°f, |a| < d 4 3. To this end, we can use the change of variables
v w = V(s t, x,v) and rely on estimate (5.7)) in Lemmato obtain the bound

I < A(T, M)/ 9(X(5,t,2,w), D(5,X(5,t, 2, w), w))[*(1 + [w]*) " dadw.
Td x R4

Next, arguing as for I;, we can use successively the change of variable x — y =
X(s,t,x,w) with the estimates of Lemma and the change of variable w — u =
®(s,y,w) with estimate (5.3) in Lemma to finally obtain

I < MT,M)|gll30 < AT, M)||FI52m-1,
since 2m — 1> d+ 3 and r > R. As a result we obtain the bound
(7.14) sup [|Uj [l g2+ < A(T, M)|| |12 2m—1 < A(T, M).

st ! T

We can therefore apply Proposition [6.2] to get the bound

1 Ku, : (F))lL20,m;02) S sup 1Uillzga |1 FF | 2 g gm0 -1,
s, " ’

(719 < A(T,M)||F}
< AT, M),
thanks to estimate (7.2). We deduce
2] 2(0,7;22) < A(T, M)

and gathering all pieces together, we therefore obtain ([7.1) at rank n, and the
induction argument is complete. Theorem follows.

L2 smzono -

7.2. Proof of Corollary In order to prove the higher order regularity for the
characteristics, we proceed as in [34) Lemma 5.1].
By Theorem [2.1] and the assumption (2.9)), we have for all j = 1,--- , ¢,

FI e L*0,T; H")
and thus by Sobolev embedding, we deduce that for k < n’ — d/2,
(7.16) FJ € L2(0,T; Whe).
We set
Z =Y, W):=(X—tv—z,V —v).
Let us first prove that Z € L>(0,T; W}:s°) for k < n’—d/2. Note that by definition
of (X,V), Z satisfies the equation

t t £
Z = /(Y+v)ds,/ZAj(W+v)Fj(Y+z+tv)ds
0 0 =
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By (2.6) and (7.16)), we obtain by induction (on the number of applied derivatives)
that for ¢t < T,

t
sup  sup |07 ,Z||Le, ,S/ A(s) 1+  sup supl|dy,Z]lLe, | ds,
lo|<n/—d/2 [0,t] ’ ' 0 laj<n/—d/2[0,s] '

where \ is a non-negative function belonging to L?(0,T), with norm bounded by
A(T, M). We deduce our claim thanks to the Gronwall inequality, which yields

(7.17) sup  sup |09, Z| L=, < VEIA(T, M).
lal<n’—d/2 [0,t] ' '

We deduce in particular from this estimate that for 77 € (0,7 small enough, for
all v € R?, the map x — X(T",0,z,v) is a C! diffeomorphism.
Next, let us turn to the L°L° L2 estimate. We set

N(t) := sup sup||0y ,Z L2
lo]<n’ [0,t]

By an application of the Faa di Bruno formula, we obtain

t
J
NOSS [ X s i

j=1 k1,k2,81, sBry +ko

with

J -
Jkukzﬁlw" Bry+kg T

(D Aj) 0 V(s)(DE FY) 0 X(s)[1052, (X, V)] -+ 0242 (X, V)|

)
Lr Ly

and where the sum is taken only on indices such that k; + k2 =: k < |a| < 7/,
B1+ -+ Br = |a] with for every j, |5;] > 1 and |B1] < |B2] < -+ < |Bk].

Let us observe that in the sum, if k1 + ko = k > 2, we necessarily have |Sx_1| <
n' — d/2. Indeed, otherwise, we would have |81| + -+ + |B| > 2n’ — d and thus
n' > 2n’ — d, which means n’ < d. This is impossible by assumption on n’. Next,

o if ko < n' —d/2 and k1 + k2 = k > 2 we obtain thanks to the above
observation and (7.17) that fori=1,--- [k —1,
(7.18) 107, (X, V)2, S1+T +1107,(Z) | Lee, S AT, M).
Moreover, using (2.6)), (7.16) we get

J
Jkukzﬁl,'" Bl +ko
k—1

122, x,v)

i=1

< AT, M)||D*2F7|| 0, (14 N(s)).

< |ID™ Ajll g, D™ F7 | e, 1075 (X, V) | g2

oo
L:c,'u

If kK =1, the above estimate is clearly also valid.
o if ko > n'—d/2, we observe that for every i, |3;| < |Bk| < n'—(k—1) < d/2.
In particular |3;] < n’ — d/2 by assumption on n’ and we have this time
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that holds for all i = 1,--- , k. This yields
J’zhkz,ﬁl,”' By ko ’S H(DslAJ) © VHLgOLz H(DI;2F]) © XHL;"’L% A(T’ M)
< 984y DR 0 X AT

S A (D5 P,

To get the last estimate, we restrict to 7" < T small enough so that we can

use the change of variable y = X (t,0,2,v) when computing the L2 norm
of (Dk2 Fi)o X.

By combining the above estimates, we obtain that for ¢ < T”,
t
N(t) < VINT, M) + / A(T, M) sup ||[F7(s)|| gy N (5) ds.
0 J ‘

By using again ([7.16) and the Gronwall inequality, we thus obtain that for ¢ < T",
N(t) S VIA(T, M),
which concludes the proof of Corollary

7.3. Proof of Corollary The idea, as in [24, Proposition 5.2], consists in
applying Theorem [2.1] with the test function

Yy(v) = eV € WIy™,

where 77 € R? has to be seen as the Fourier variable in velocity. A close inspection
of the proofs reveals that the conclusion of Theorem can be refined into

< A<T0v Ma H’(/JUH

, )
L2(0,T0;H;l )

(7.19) Vn € RY, H/fwn dv

where A is a polynomial function. Moreover, ¢y ||y, w.« < A'(|n]), where A’ is also
a polynomial function (of degree n'). Since

1/@n) [ fi,do = Fof o),
we deduce from (7.19) that for some p > 0 taken large enough,

< 400,

F(t. k) (1 + k)72 2*”/2‘
|7k Py a2 L

which means that f € L%(0, Tp; H;L,pr)-

8. APPLICATION TO CLASSICAL MODELS FROM PHYSICS

The goal of this section is to briefly explain why both Vlasov-Poisson and rela-
tivistic Vlasov-Maxwell enter the abstract framework, and thus why Theorem [21]
(and its corollaries) apply to these classical models.
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8.1. Vlasov-Poisson. The Cauchy problem for the Vlasov-Poisson system (|1.2)
was studied (among many other references)

e for what concerns (global) weak solutions, in [2],
e for what concerns local strong solutions in [60], and [8] 46}, 53] 55, 27, 10} [39]
for global strong solutions.

Let us check the following structural assumptions for .
o Assumptions on the advection field. In this model, a(v) = v, so that all required
assumptions on a are straightforward properties. One can take A = 0 in .
o Assumptions on the force field. For what concerns the force field F', we can write
{=1,A; =1and F! = —V_¢, where ¢ is computed only thanks to the moment
of order 0 of f only, that is ¢y =1 (thus ro = 0) and

My, = fdv.
Rd
The assumption (2.9) follows straightforwardly from the Poisson equation, as for
all n € N, there holds

vt >0, [F'Ollmy < lmy, ()l

‘We however do not need the smoothing effect due to the Poisson equation. It follows
directly that both estimates and hold. The stability estimate ([2.11])
holds because of the same estimate, by linearity of the Poisson equation. It turns out
that using the smoothing estimate, we can obtain a stronger version of Theorem [2.1}

we embed this situation in what we refer to as transport/elliptic systems, and refer
to Theorem [3.1]in Section [

Note also that the Vlasov-Poisson system with dynamics constrained on geodesics
introduced in the context of stellar dynamics in [I9] enter the abstract framework
as well (and in this model there is no smoothing of the force field).

8.2. Relativistic Vlasov-Maxwell. The Cauchy problem for the relativistic Vlasov-
Maxwell system (|1.3)) was studied (among many other references)

e for what concerns (global) weak solutions, in [20],
e for what concerns (local) strong solutions in [61] [62] 17, [6] 26], 29, 27] 56,
14, 44, (51, [47].

Let us check the following structural assumptions for ([1.3)).
o Assumptions on the advection field. In this model, a(v) = ¥, and one can check
by a straightforward induction that

1050 ee < Cla, Vau.

We have a(R%) = B(0, ¢) and there holds the explicit formula

w

VI-Twl?/e

vYw € B(0,¢), a '(w)=

It follows that one can take A = 2 in (2.4).
o Assumptions on the force field. For what concerns the force field F', we observe
that we can take ¢ =4 and write

(8.1) A =1, F'=FE,
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and setting B = (Bj, Ba, B3) in an orthonormal basis (eg, ea, e3),

(8.2)

F? = Boes — Bsey,
A3z =1y, F® = Bse; — Byes,
A4:’IA)3, F4:B1€2—BQ€1.

The electromagnetic field (E, B) is computed only from initial data (Fy, By) and
the moments of order 0 and 1, that correspond to 11 = 1,19 = 9 (so that ro = 0)

and

md,l:/ fdv, mwzz/ fodv
R4 R4

The assumption (2.9)) follows from classical energy estimates for Maxwell equations:
we have for all n € N and all ¢t > 0,

2
I(E, B)|lL2(0,6mm) < C,t3/? Z g, 220,60y + (B, B)(0) | 220,527 5

i=1

see e.g. [36l Lemma 3.2]. The estimate (2.10)) is proved similarly. The stability esti-
mate (2.11)) holds because of the same energy estimate, by linearity of the Maxwell
equations.

8.3. Remarks. Some remarks about possible generalizations of the abstract frame-
work are in order.

e It is possible to add a smooth force, of C* regularity with & large enough,

and still adapt the results of Theorem [2.1] without significantly modifying
the analysis. This allows for instance to consider Vlasov-Poisson with a
smooth external magnetic field.

The so-called relativistic gravitational Vlasov-Poisson system (which may
be relevant for galactic dynamics) enters the abstract framework as well, by
a combination of the estimates of Section[8.1]and [8.2] (see e.g. [28] 33| 43| 45]
for some references about this system).

The divergence-free (in v) condition for F' is not an absolute requirement
for the analysis. It may be dropped up to introducing more complicated
formulas. In particular, it is likely that fluid/kinetic systems for sprays
such as Vlasov-Stokes or Vlasov-Navier-Stokes in dimension d = 2 enter
this framework (or a slightly modified version of if) as well. We refer e.g.
to [40, [15], [I8], [T6] for some references about these equations. See also [7], [49]
for other fluid/kinetic systems.

Note that the so-called non-relativistic Vlasov-Maxwell system (that is Sys-
tem with v replacing all occurences of ) does not enter the abstract
framework. Indeed the assumption is not satisfied. However we claim
that is crucial only for having a good local well-posedness theory in
‘H spaces. This means that without , we can still obtain a result sim-
ilar to that of Theorem [2.1] except that we have to assume the existence
of a solution of with the required regularity. For what concerns the
non-relativistic Vlasov-Maxwell system, such solutions do exist, following
Asano [6], which requires the introduction of Sobolev spaces with loss of
integrability in velocity.
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9. THE CASE OF TRANSPORT/ELLIPTIC TYPE VLASOV EQUATIONS

9.1. An improvement of Theorem Let us assume in this section that the
following strengthened version of (2.9)) is verified:

I F7|| 20,60

9.1 . Lo
O < 1"53) &, [[my, ||L2(0,t;H:—1)v ER ||mwr||L2(o,t;H:—1)v Z 7 (O)||
j=1
In other words, the force is smoothed out and gains one derivative compared to the
distribution function. We refer to such a situation as the transport/elliptic type
case. This includes in particular the Vlasov-Poisson system. We then have the
following version of Theorem This is an improved version in the sense that the
higher regularity we ask for is only regularity in « and not at all in v (compare (9.2))

below to ([2.13)) in Theorem [2.1]).

Theorem 9.1. Let n > N and r > R. Let n’ > n be an integer such that n >

|2 | +d+1. Assume that fo € HP and FI(0) € HY forallj € {1,--- ,£}. Assume

furthermore that the initial data fo satisfy the following higher space regularity:

(9.2) %fo e MY, V]a|=n'.

Then there is T > 0 such that the following holds. There exists a unique solution

(f(t), F(t)) with initial data (fo, F(0)) to (2.1)) such that f(t) € C(0,T;HI).
Moreover, for all test functions ¢ € L>(0,T; W",*), we have

(9.3) / fbdv € L2(0,T; HY)

As in Corollary 2.5 we may deduce as well under the assumptions of Theorem
that

(9.4) feL?0,T; Hr ;=°).

,U

Proof of Theorem[9.1. The beginning of the proof is the same as for Theorem
(of which we keep the notations). Let us set in this context

2p 4
(9.5) M= follazm+D D 105 follme + Y I1F O]l y2emsns
j=1

k=0 |a|=2m+k

We proceed with the same induction argument, treating all terms similarly except
form what concerns the treatment of the term I for which the following improvement
in Section[7} The idea will be to use integration by parts in v to trade derivatives in v
against derivatives in x, allowing to obtain estimates depending on (compared

to ([3-13) for Theorem [2.1).
First note using the smoothing estimate (9.1]) that we improve (7.2) to

£
(96) Z ||F] ||L2(07T;H§(m+k)) S A(T7 M)

j=1

[We also remark that in order to treat the term I>, we do not absolutely need to use Propo-
sition we can indeed rely on the smoothing estimate on the force instead and argue as
we did for I;. This observation will be useful later in order to treat other Vlasov models.
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We can use this improved estimate with Remark [£.10] to deduce that the coefficients
of A (as appearing in (7.4])) satisfy the improved form of (7.5

(9.7) 12|20, roweeeey S AT, M), Vp<2m-—d/2-1.
Therefore we deduce the improved form of (7.8):
9.8) G eorwee) SAT M), Vp<2m—d/2—1.

The treatment of Iy then leads to the study of terms of the general form
J = / (0208 F)(0,X(0,t, ,v),v)m(t, x,v) dv,
Rd

where, for j =m —k,--- ;m+k, |a|+ |8 =m+k+7j, |a] > 27, and

Hm”LW(O,T;Hﬁ’T_m) < AT, M),

for all N < 2m —d/2 — 1 and all ' > d/2. If |§] = 0, there is nothing special to
do, as only derivatives in z are involved, so let us assume that |3| > 1. We write
P = 9P d,. We have

J= /R o, [(agaf'f)(o,X(o,t,x,v),v) m(t, z,v) dv
— /R ) (820°")(0,X(0, ¢, 2, v) - Vo F)(0,X(0, ¢, z,v), v)m(t, z,v) dv,
and thus by integration by parts in v, we get
J=- /]R d [(agaf’f)(o,xm,t, x,v)w)}@vm(t,x,v) v
- /R d(@g@f/)(&)X(OJ,x, v) - Vo F)(0,X(0, ¢, 2,v), v)m(t, z,v) dv.

We therefore observe that this procedure allows to trade derivatives in v against
derivatives in x.
Assume now that one can write, for some [l € {1,---,|8|},

J = Z Z / {(33?,85,?)(0,X(0,t,x,v),v) mea g (t, x,v) dv + R
18|<t o] <Jar|+|8] -1 /B
where

(9.9) < AT, M),

Hma,’ﬁ/||L°°(O’T?Hi,i/_r0)
for all N < 2m—d/2—1— ||+ and all ¥’ > d/2, and R; is a remainder satisfying
I Rillz2co,122) < AT, M).

Let us show that this property holds as well for at rank [ — 1. Following the same
integration by parts argument as above, we may write

J-R=J1+Js+ J3



PROPAGATION OF HIGHER SPACE REGULARITY FOR VLASOV EQUATIONS 45

where

Jl - Z / |:(8aocllf)(O)X(Ovta'T7U)7’U):|ma',0(tam7v) d’U,
o’ |<lal+]8]-1 7 ®

EPSEDIEEEDY

[B|<LB'=(B",7) || <|a|+|B] =1
[ @0 F)0.X(0.t.2.0).0) 01, mr 8, 0) o,
R
|B|<LB'=(B",7) |’ |<|a|+|B| =1
/ (0207 )(4,X(0, £, 2,v) - Vo F)(0,X(0, t, 2, v), 0)mas s (t, 7, v) do.
Rd

The terms J; and Js have the good form already. For J3, by using Leibniz rule, we
observe that we need to study terms of the form

:/ 97 ,X(0,t,2,v)07 02 F(0,X(0, ¢, 2,v), v)mar g (L, z,v) dv,
Rd

with |no| <[8"| =11, 1 <|m| < [/[+ 1, and |y| = [/[ + [8"] = || — [n2] + 2.
Assume first that ||+ |n2| < 2m—1. If |n1 |+ |n2| < 2m—1—d, then by Sobolev
embedding we can bound

1L+ [o])72(0 0 F)(0,X(0, 8, 2,0),0) [ 2=, < || follggzm—s < A(M).

Since 0 < |y] < 2(m + k), we use and Lemma [5.2] to get
107X Lo (0,7;220£2) < A(T, M).
(This is where the elliptic estimate is crucially used.) Furthermore, since
2m —d/2 —1—2p > d, we can bound
”ma’ﬁ/||L°°(0,T;W2’:,°_TO) < MT, M),
for v’ > d/2 such that r > 1’ + ro + d. Therefore such terms satisfy a bound
[Tl 20,722 ) < AT, M),

and thus can be put into the remainder R;_q. If || + |2] > 2m — 1 — d, then
|v] < 2k+d+1. Since 2m —d —1 > d/2, we can use this time ||8”X|\Loo(0)T;Lg?u) <
A(T, M) and again, arguing as in the treatment of Iy in the proof of Theorem
such terms are remainders.

Otherwise |n1|+|n2| > 2m. Then we have |y| < 2k and thus 2(m+k) —|v| > 2m.
We set in this case my;, y, := 9] ,Xmqas . In order to show that 97 ,Xmq g has
the required regularity, we are led to study terms of the form

j: ||8a oY Xab oM ’B,HLOC(O’T;,HgT’—rO)’ |Cl| + ‘b| N;_ 1,

T, v T, v

for all N < 2m —d/2 —1— |8 +1—1 and all v/ > d/2. Assume first that
la| < 2m — d/2, then we have |a| + |y| < 2(m + k) — d/2 and we use estimate (5.7)
in Lemmato get (03,07 WXl Lo (0,7515,) < A(T, M), and apply to bound

||am,vm0/75’ ||L°°(O,T;H“_T,_TO) < A(T, M).
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Otherwise, |a| > 2m — d/2. Since we have 2(m + k) — |y| > N;_1 for all N;_; <
2m — 2 — |B| 4+ 1, and we can use estimate (5.7) in Lemma[5.2]to get

> 108,07 Xl o,z L2y < AT, M).
la]<Ni—1

Since |b] = Ni—1 — |a| < Nj—1 — 2m + d/2, we have N; — |b| > 2m + 1 —d/2 > d.
As a result, by and the Sobolev embedding we get that

||ag,vmo/’5/ ||L00(07T;W(_]’:/°_T0) S A(T, M)
In all cases, we have obtained )
J < AT, M).

Therefore the corresponding terms of J3 can be written under the form
[ 02 0RF)0.X0.t,2,0), )1 0,2,0)
Rd

with |7, ., || < AT, M) for all Nj_y <2m—1—8]+ (I—1) and

r' > d/2.
We conclude by induction that we can write at rank [ =0

LT )

J = Z / [(85.7)(0,)((0,@1,1}),@)} Mo o(t,z,v)dv+ R
/| <mktg R
with ”mo‘/’ﬁ'||L°°(0’T4Hfr/_r0) < A(T,M) for all N < 2m —1—|5] and ' > d/2 and
[ RllL2(0,7;02) < A(T, M) is a remainder.
We then note that 2m — 2 — 2k > d, so that
||ma/75/ ||LOC(07T;W3’:1077,0) S A(T, M)

Arguing as in the previous treatment of Iy in the proof of Theorem we finally
conclude that
m+k
(9.10) ol 20,22y < AT, M) > > 108 folle-
j=m—k |a|]=m+k—j
This allows to conclude the proof.
([l

As already noted in the proof of Theorem we actually do not need to use
Proposition [6.2] to treat the term I5 in view of Theorem [0.1} we can indeed rely
on the smoothing estimate on the force instead. Furthermore, one can obtain
L$° estimates instead of the L? theory that we have developped. This observation
implies the following fact: replacing by the slightly weaker estimate (in the

sense that it is implied by (9.1)):
17| 2 0,65)

(9.11) , Lo
< Pgi]) i, Hmwl ”LO@(O’t;H;}—l)v ) ||m'¢)7‘ HLOC(O’t;H;"—l)a Z HFJ (O)HH;L
j=1
together with an associated stability estimate replacing (2.11) with Lg® norms in-
stead of L? for the moments on the right-hand side, then Theorem still holds.
It suffices to estimate all terms (that is to say the moments, Iy, Iy, Iz, --) in
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L*°(0,T; L?) instead of L?(0,T;L2) as previously. This remark is useful in par-
ticular to treat the so-called Vlasov-Darwin model from plasma physics, that we
introduce in the following paragraph.

9.2. Vlasov-Darwin. The Vlasov-Darwin system is another model that allows
to describe the dynamics of charged particles in a plasma, which stands on stage
between Vlasov-Poisson and relativistic Vlasov Maxwell. Like Vlasov-Poisson, it
can be derived from Vlasov-Maxwell in the non-relativistic regime, that is to say
in the limit ¢ — +oo. The difference is that Vlasov-Darwin happens to be a
higher oder approximation than Vlasov-Poisson, see [I1]; in particular it retains self-
induced magnetic effects that have disappeared completely in the Vlasov-Poisson
dynamics. It reads

atf+@~vxf+<E+1@xB> Vof =0,

E=-V,¢— 18,5A, B=V,xA,

(9.12) ¢

— V.= fdv— / fdvdz,
R3 T2 xR3

1
—AxA:—IP’/ bfdv, Vi, -A=0,
& R3

where ¢ > 0 is the speed of light and P denotes the Leray projector. The Cauchy
problem for the Vlasov-Darwin system (|1.3) was studied (among many other refer-
ences):

e for what concerns (global) weak solutions, in [50],
e for what concerns strong solutions in [50, 57, [59].

To embed this system into the abstract framework, we need to make the addi-
tional assumption that all initial conditions fy that are considered are a.e. non-
negative. By a standard property of the Vlasov equation, any associated solution
f(t) is also a.e. non-negative.

o Assumptions on the advection field. In this model a(v) = 0, which is already
treated for the relativistic Vlasov-Maxwell case.

o Assumptions on the force field. We have the decomposition f as well.
Let us set

1
E=F; + ET, FEr = Vzgi), Er = —Eé)tA.

and introduce
VR

7/)1 = 171/12 :f}ﬂ/JSZ W

71/}3:Id_m’¢)37

(so that ro = 0) and
my, = [ wit o
Rd

where my,, and m,, are symmetric matrices. Since £y, and Er derive from poten-
tials solving a Poisson equation, we have

2
vt >0, [[(EL, BYOllmp S Ima, ()] g
i=1
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and thus

2
1By Bl oty S S 1m0 (Ol e 01021
i=1
For what concerns Er, this is a little more subtle; this is where we need that f(t) > 0
a.e. Asin [50, Lemma 2.10], we obtain that FEr satisfies the inhomogeneous elliptic
equation

1 1
(913) *AET+Emw4ET: 7E(m¢4EL7m¢,2 x B—V, :mws).

We fix the time ¢ > 0 which is a parameter here (we take the L$® norm in the end).
Let n > d. By [50, Lemma 2.10], which relies on the fact that m,, is actually a
semi-definite symmetric matrix, it follows that has a unique solution Ep in
H}, with the bound

IErla: S Imy, ELll =1 + [|my, X Bllg=1 + IV @ mg, || -1
Slmy, Erllnz + |lmy, x Bllpz + [[my, ||z
S lmy s 1Bl an + [[mg, e | Bl me + [[my, |n

2
i~ <1 +y IImwi(t)IlH;z> (s Ly + g, N[y + Nl L) -
i=1

Then assume by induction that we have a bound of the form
(9'14) Vk = L.+, N, HETHHQ€ SF/C (”mlluHH;”"" 7||m1/J4HH£)’

for N < n, where I'y, is a polynomial function. Assume first that N < n —d/2. Let
|a| = N. We note that 0% Er satisfies

1 1
—A@ﬁET + Emw4a$ET = —28;“ (m¢4EL — My, X B—-V,: mwa) — [ag,mw4]ET.

We have by standard tame Sobolev estimates

(9.15)
||ag(: (mi/h;EL — My, X B—Vg: mll)s) HH;1 S

~

2
(1 +> ||mwi(t)||H;> (I llarg + s, g + lmasy L) -
i=1

Since N < n — d/2, we can use the Sobolev embedding to obtain
1[0z my, | Er|l -1 S lmylly v | Er |y
S lm Lz T (lmgy ez - ey |y ) -
We apply again the H}! estimate of [50, Lemma 2.10] to obtain a bound of the form
1Bz v S Tovn (Imagy s+ llmag, L) -
We deduce by induction that for all N < n — d/2,
1E7] gy S Tver (lmgs g, -+ 5 Imyllmn) -

In particular, since n > d, we deduce in particular

(9.16) 1BrllLee ST (I llag, - s lIma, llag) -
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Now assume we have for some N < n. We have the tame Sobolev estimate
110z M) E || g S m, [ (| E7 ||y + (| BTl p2e)
S my T (Imga e, - Imeg ey
by at rank N and (0.16)). Thus using the H. estimate of [50, Lemma 2.10],
we obtain at rank NV + 1. By induction, we conclude that
IET (| oo (0.1 n+1) S Dot (1M llnoe o,y - 5 Ml oo o,0mm)) 5

which is an estimate of the requested form (9.11)). A stability estimate of the same
form also holds because of similar considerations.

10. ON THE REGULARITY ASSUMPTIONS OF THEOREM [2.1]

The goal of this short last section is to discuss the type of regularity assumptions
which could be maybe conceivable for proving propagation of higher reguliarity.

Example 1. Consider the free transport equation
(10.1) O f +v0.f =0,

set in R X R to simplify the discussion. Let ¢(v) be a C* function, with compact
support in [—1/2,1/2] and such that fR @ dv = 0. Let g be the piecewise continuous
function defined by g(x) =1 for x € [—1,1] and 0 elsewhere. Observe that in the
sense of distributions, we have ¢'(z) = d,—_1 — d,—_1, where § stands for the Dirac
measure. We consider the initial condition
fli=o = g(x)p(v) € LT ,,,
and the solution to ((10.1)) reads
ft,z,0) = gz — tv)p(v).
It follows by explicit computations that p(¢,z) := f]R f dv satisfies
z+1 r—1
Dep(t,z) = ¢ —¢ ,
t t
1 r+1 r—1
k I (S N R W 2 ) B *

8xp(t,z)ftk_1 <<p ( ; ) %) ( ; )), vk € N*.

We have for t < 4,
2 2
1 z+1 r—1
k 2 - (k—=1) [ T & (k—=1) [~ — &

I06p()13; = (Hw =) e (52 ) ,

since ¢ is compactly supported in [—1/2,1/2], and thus
2 _
||3fp(t)||2Lg = WHW 1)||?:§-
We deduce that for any T' > 0, p ¢ L2(0,T; H2). However p(0,z) =0 € HF for all
keN.
This example shows that regularity of moments at initial time may not be propa-

gated, and a more precise information such as (2.13]) is somehow required to obtain
higher regularity for moments.

Example 2. Consider the equation
(10.2) O f +v0,f + F(t,x)0,f =0,
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on T x R, with
F@@=A¢MﬂMWM%

where 1 € C°(R?) with compact support in [-1/2,1/2]. It is clear that (10.2)
enters the abstract framework of this work.
We consider the initial condition

Flio = 9 + 12,

where féQ) is a smooth non-negative function, with support in T x [—1/2,1/2] and
fél) is a smooth non-negative function, with support in T x [1, 2].

Consider f() the solution of associated to the initial condition fél), and
assume that it is defined on an interval [0, T], for T' > 0 small enough. Now define
@ as the solution on [0, 7] of the linear kinetic transport equation

O f +v0, f + </ Y(v) o dv) o f =0,
R

with initial condition £
Because of the form of the force F' (notably because % is localised in [—1/2,1/2]),
we observe that up to reducing 7' > 0, the solution f on [0,T] of can be
written as
f=10+ 19,
since T' > 0 can be chosen small enough so that the support in velocity of f (2)(t)
is disjoint from that of ¢, and thus

/¢wv®@wv=a
R

Now let k& € N and assume that there is (2, v9) € Tx(1,2) such that f|;=o(x0, vo) #
0 and is locally H* around this point. Because of the assumptions on the supports,
this is equivalent to ask that féz)(:ro, vp) # 0 and is locally H”* around this point.
However we can choose (independently of f(gZ)) él) so that fR’(/J(’U)f(l) dv is not
HF, in such a way that f(¢) (and thus f(t)) is not locally H* around points
of the form (X (0,t,zq,v0),V(0,t,20,v0)), where (X, V) denote the characteristics
associated to F', as defined in .

This example shows that local regularity may not be propagated (along charac-
teristics), contrary to what happens for the class of PDEs considered in [I2]. This
is due to the “non-locality” in velocity. Therefore a global regularity assumption is
required in order to obtain propagation of higher regularity.

This example can (also) be slightly modified, in order to prove that a local version
of cannot either be propagated into higher local regularity of moments, see
the next (and last) example.

Example 3. Consider the equation
(10.3) O f +v0,f+ F(t,x+1/4)0,f =0,

on T x R (here we identify T with [0,1) with periodic boundary conditions). Let
us consider as in the previous example

F(t,x) :/Rw(v)f(tw,v)dv.
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We consider the initial condition
Fli=o = £ + £,

where fél) is a non-negative function, with compact support in [0,1/8] x R and féz)
is a non-negative function, with compact support in [1/4,3/8] x R.
Observe that because of the shift in the argument of the force, by looking at the
supports in z, the solution £ associated to the initial condition fé2) is equal to
52)(t7 x —tv,v) on [0,T], for T > 0 small enough. Moreover, we have

(/ Y) Ptz + 1/4,U)dv> o f® =o0.
R

Now define f(M) as the solution on [0, T of the linear kinetic transport equation
O f +v0.f + </ P(v) 52)(x+ 1/4 —tv,v) dv> Ouf =0,
R

s s (2)
with initial condition f;™.

We observe that up to reducing T > 0, the solution f on [0,7] of (10.2)) can be
written as

f= f(l) + f(2)_

Indeed, by looking at the supports in x, we can impose 7' > 0 small enough so that

(/ ¢(U)f(1)(t,1‘ +1/4,v) dq]) duf® =0,

R

(/ P() fN(tz+1/4,0) dv) 8, f™ = 0.
R

Now let & € N and assume that there is 2o € (0,1/8) such that [, f|i=o(x0,v) dv # 0
and f|;—o is locally HF around this point. This is equivalent to ask for the fact that
fR él)(aﬂo, v)dv # 0 and fél) is locally H* around this point. This corresponds to
a local analogue of . However we can choose (independently of él)) é2) SO
that [, ’(/J(’U)f0(2) (x — tv,v) dv is not locally H*, in such a way that the moments in

velocity of f(1)(t) (and thus of f(t)) are not locally H* around points of the form
X (0,t,x0,v0), for some vy € R.
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