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Abstract. This work is concerned with the broad question of propagation
of regularity for smooth solutions to non-linear Vlasov equations. For a class

of equations (that includes Vlasov-Poisson and relativistic Vlasov-Maxwell),

we prove that higher regularity in space is propagated, locally in time, into
higher regularity for the moments in velocity of the solution. This in turn

can be translated into some anisotropic Sobolev higher regularity for the so-

lution itself, which can be interpreted as a kind of weak propagation of space
regularity. To this end, we adapt the methods introduced in the context of

the quasineutral limit of the Vlasov-Poisson system in [D. Han-Kwan and F.

Rousset, Ann. Sci. École Norm. Sup., 2016].
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1. Introduction

This paper is concerned with the broad question of propagation of regularity for
smooth solutions to Vlasov equations of the general form

(1.1) ∂tf + a(v) · ∇xf + F (t, x, v) · ∇vf = 0,

set in the phase space Td×Rd (with Td = Rd/Zd endowed with normalized Lebesgue
measure), where F : R+ × Td × Rd → Rd is a force field satisfying ∇v · F = 0 and
a : Rd → Rd is an advection field satisfying suitable assumptions, a(v) = v being the
main example to be considered. The (scalar) function f(t, x, v) may be understood
as the distribution function of a family of particles, which can be, depending on
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the physical context, e.g. electrons, ions in plasma physics, or stars in galactic
dynamics. The choice of the periodic torus Td is made for simplicity.

The two precise examples of equations we specifically have in mind are the Vlasov
equations arising from a coupling with Poisson or Maxwell equations, in which case
the resulting coupled system is called the Vlasov-Poisson or the relativistic Vlasov-
Maxwell system (we will discuss as well several other models).
• The Vlasov-Poisson system – either the repulsive or the attractive version, the
sign of the interaction here does not matter here – reads

(1.2)



∂tf + v · ∇xf ± E · ∇vf = 0,

E(t, x) = −∇xφ(t, x),

−∆xφ =

∫
Rd
f dv −

∫
Td×Rd

f dvdx,

f |t=0 = f0.

In the repulsive version (that is with the sign + in the Vlasov equation), this
system describes the dynamics of charged particles in a non-relativistic plasma,
with a self-induced electric field.

In the attractive version (that is with the sign − in the Vlasov equation), it
describes the dynamics of stars or planets with gravitational interaction.
• The relativistic Vlasov-Maxwell system, reads, in dimension d = 3,

(1.3)



∂tf + v̂ · ∇xf + F · ∇vf = 0,

v̂ :=
v√

1 + |v|2/c2
, F (t, x, v) := E(t, x) +

1

c
v̂ ×B(t, x),

1

c
∂tB +∇x × E = 0, ∇x · E =

∫
R3

f dv −
∫
T3×R3

f dvdx,

− 1

c
∂tE +∇x ×B =

1

c

∫
R3

v̂f dv, ∇x ·B = 0,

f |t=0 = f0, (E,B)|t=0 = (E0, B0),

in which the parameter c is the speed of light. There are also related versions of (1.3)
in lower dimensions. This system describes the dynamics of charged particles in a
relativistic plasma, with a self-induced electro-magnetic field. We recall that the
(repulsive) Vlasov-Poisson can be derived from (1.3) in the non-relativistic regime,
that is to say in the limit c→ +∞, as studied in [5, 17, 54].

In this paper, we will consider weighted Sobolev norms and associated weighted
Sobolev spaces (based on L2), defined, for k ∈ N, r ∈ R, as

(1.4) ‖f‖Hkr :=

 ∑
|α|+|β|≤k

∫
Td

∫
Rd

(1 + |v|2)r|∂αx ∂βv f |2 dvdx

1/2

,

where for α = (α1, · · · , αn), β = (β1, · · · , βn) ∈ {1, · · · , d}n, we write

|α| = n, |β| = n,

and

∂αx := ∂xα1
· · · ∂xαn , ∂βv := ∂vβ1 · · · ∂vβn .

As usual the notation Hs will stand for the standard Sobolev spaces, without
weight.
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It will be also useful to introduce the following weighted W k,∞ space, whose
norm is defined, for k ∈ N, r ∈ R, as

(1.5) ‖f‖Wk,∞
r

:=
∑

|α|+|β|≤k

‖(1 + |v|2)r/2∂αx ∂
β
v f‖L∞x,v

For the Vlasov-Poisson or Vlasov-Maxwell couplings, given an initial condition f0
satisfying

f0 ∈ Hnr
for n, r > 0 large enough (and with a smooth enough initial force F (0)), it is
standard that there exists a unique local solution f(t) ∈ C(0, T ;Hnr ). Under fairly
general assumptions on the advection field a and the force F , the same result can
also be shown for (1.1), as we will soon see.

Let us now present the precise problem we tackle in this work. Assuming some
higher space regularity such as

(1.6) ∂n+1
x f0 ∈ H0

r , (or ∂pxf0 ∈ H0
r , for p ≥ n+ 1)

the question we ask is the following: is there also propagation of any higher reg-
ularity for the solution f(t)? A first remark to be made is that there is no hope
of proving that this sole additional assumption entails that the solution f(t) also
satisfies ∂n+1

x f(t) ∈ H0
r even for small values of t. Indeed, regularity in x and v is

intricately intertwined for solutions of the Vlasov equation, as can be seen from the
representation of the solution using the method of characteristics.

For s, t ≥ 0 and (x, v) ∈ Td × Rd, we define as usual the characteristic curves
(X(s, t, x, v), V (s, t, x, v)) as the solutions to the system of ODEs

(1.7)


d

ds
X(s, t, x, v) = a(V (s, t, x, v)), X(t, t, x, v) = x,

d

ds
V (s, t, x, v) = F (s,X(s, t, x, v), V (s, t, x, v)), V (t, t, x, v) = v.

The existence and uniqueness of such curves are a consequence of the Cauchy-
Lipschitz theorem (assuming we deal with smooth forces). The method of charac-
teristics asserts that one can represent the solution of (1.1) as

(1.8) f(t, x, v) = f0(X(0, t, x, v), V (0, t, x, v)).

Therefore we see (except maybe in trivial cases such as F ≡ 0) that derivatives in x
of f(t) involve derivatives in x and in v of f0, so that regularity in x only of f0 can
not in general be propagated for f(t). However given some smooth test function
ψ(v) (the case ψ = 1 is already interesting), we can also wonder about the higher
regularity of the moment mψ(t, x) :=

∫
Rd f(t, x, v)ψ(v) dv. Such moments, which

can be interpreted as hydrodynamic quantities, are important objects in kinetic
theory. We have the representation formula

mψ(t, x) =

∫
Rd
f0(X(0, t, x, v), V (0, t, x, v))ψ(v) dv.

We note that for t small enough, the map v 7→ V (s, t, x, v) is a diffeomorphism for
all s ∈ [0, t]. Indeed for s = t this map is the identity and integrating with respect
to s the equation satisfied by V (s, t, x, v), we note that for t small enough and
s ∈ [0, t], the map v 7→ V (s, t, x, v) is a small perturbation of the identity, hence
our claim that it is a diffeomorphism. In particular the map v 7→ V (0, t, x, v) is a
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diffeomorphism and we denote by V −1(t, x, v) its inverse. Using this diffeomorphism
as a change of variables (in v) we get, for t small enough,

mψ(t, x) =∫
Rd
f0(X(0, t, x, V −1(t, x, v)), v)ψ(V −1(t, x, v))|detDvV (0, t, x, v)|−1 dv.

Thanks to this formula, at least formally, Leibniz rule allows to ensure that deriva-
tives in x of the moment mψ only involve derivatives in x of f0. Recalling the extra
higher regularity (1.6), it seems maybe natural to expect that the moment mψ be-
longs to the Sobolev space Hn+1 in x. In the case where F is a fixed external force,
assumed to be very smooth, say C∞ with respect to all variables, then the fact
that, t being fixed, mψ(t, ·) belongs to Hn+1

x follows indeed from Leibniz formula,
using the fact the characteristic curves (X,V ) inherit the C∞ regularity of F .

However this argument seems to break down in the case where the case F depends
on the solution f(t) itself, as the regularity of F is then tightly linked to that of f .
Let us discuss for instance the Poisson case – the Maxwell case is actually worse
in the sense that in the Vlasov-Poisson coupling, F gains, loosely speaking, one
derivative in x compared to f . As already mentioned, the local Cauchy theory
yields f(t) ∈ C(0, T ;Hnr ), and we have F ∈ C(0, T ;Hn+1

x ). Note then that when
applying (n+ 1) derivatives in x on mψ, one needs to apply (n+ 1) derivatives in
x on |detDvV (0, t, x, v)|−1, which amounts to applying in total (n+ 2) derivatives
to V (0, t, x, v). However, by (1.7), we observe that (X,V ) inherits the same order
of regularity as F , and therefore it does not seem licit to take as many as (n + 2)
derivatives.

The goal of this work is to show that despite this apparent shortcoming, it
is indeed possible to show for a fairly wide class of non-linear Vlasov equations
(including the Vlasov-Poisson and Vlasov-Maxwell system) a result of propagation
of regularity in x for the moments, assuming higher order space regularity for the
initial condition. This in turn can be translated into some anisotropic Sobolev
higher regularity for the solution itself, which can be interpreted as a kind of weak
propagation of space regularity.

It turns out that the lagrangian approach, that is to say the approach that we
have just underlined, based on representation formulas using characteristics , is not
adapted to answer this question. Instead we shall rely on an eulerian approach,
that is based to a larger extent on the PDE itself, inspired by the recent work
of the author in collaboration with F. Rousset on the quasineutral limit of the
Vlasov-Poisson system [34, 37]. The quasineutral limit is a singular limit which
loosely consists in a penalization of the Laplacian in the Poisson equation. The
small parameter is the scaled Debye length, which appears to be very small in
several usual plasma settings. The limit leads to singular Vlasov equations, which
display a loss of regularity of the force field compared to that of the distribution
function. As a consequence, these equations are in general ill-posed in the sense of
Hadamard, see [9] and [35]. This problem might therefore look quite different from
the one considered here; the similarity comes from the fact that the justification of
the quasineutral limit ultimately loosely comes down to the proof of an uniform∗

propagation of one order of higher regularity for moments of solutions of the Vlasov-
Poisson equation. Note though that the analysis of [34, 37] requires the introduction

∗(with respect to the scaled Debye length)
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of pointwise Penrose stability conditions, and also relies on pseudo-differential tools,
which will not be the case in this paper. As a matter of fact, the singular Vlasov
equations which can be formally derived in the quasineutral limit will not enter the
class of Vlasov equations we will deal with in this work, precisely because of the
aforementioned loss of derivative.

The methodology of [34] was also used in the context of large time estimates for
data close to stable equilibria for the Vlasov-Maxwell system in the non-relativistic
regime, in a recent work in collaboration with T. Nguyen and F. Rousset [36].

As a matter of fact, the approach can be considered as semi-lagrangian, in the
sense that at some point we still rely on characteristics as in the lagrangian approach
but at the level at the PDEs that arise after applying derivatives on the Vlasov
equation, whereas in the lagrangian approach, derivatives are taken after using the
representation of the solution by characteristics.

2. Main results

2.1. The abstract framework. Let us now describe precisely the class of Vlasov
equations we deal with. We consider in this work the abstract equation

(2.1) ∂tf + a(v) · ∇xf + F · ∇vf = 0,

with the following structural assumptions. Among all these assumptions, we high-
light that the force depends on the distribution function itself, but only through
some of its moments in velocity.
• Assumptions on the advection field. The map a : Rd → Rd is a one to one C∞

function such that

(2.2) |a(v)| ≤ C(1 + |v|), ∀v ∈ Rd,

(2.3) ‖∂αv a‖L∞ ≤ Cα, ∀|α| 6= 0,

and its inverse a−1 (defined on a(Rd)) satisfies, for some λ > 0,

(2.4) |∂αv a−1(w)| ≤ Cα(1 + |a−1(w)|)1+λ|α|, ∀w ∈ a(Rd), ∀α.

• Assumptions on the force field. The vector field F is divergence-free in v (i.e.
satisfies ∇v · F = 0) and we have the following decomposition for some ` ∈ N∗:

(2.5) F (t, x, v) =
∑̀
j=1

Aj(v)F j(t, x).

We assume that for all j ∈ {1, · · · , `}, Aj is a C∞ scalar function satisfying

(2.6) ‖∂αv Aj‖L∞ ≤ Cα, ∀α.

Furthermore, there exist C∞ functions ψ1(v), · · · , ψr(v) with at most polynomial
growth, i.e. there is r0 > 0 such that

(2.7) ‖ψi(v)‖Wk,∞
−r0
≤ Ci,k, ∀k ∈ N,

such that, denoting

mψi(t, x) =

∫
Rd
f(t, x, v)ψi(v) dv,
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for all j = 1, · · · , `, the vector field F j is uniquely determined by these moments
and the initial conditions, through a map

(2.8)
(

(mψi)i=1,··· ,r, (F
j(0))j=1,··· ,`

)
7→ F j

and for all large enough n > 1 + d, and all t > 0, we have

(2.9)

‖F j‖L2(0,t;Hnx )

≤ Γ(j)
n

t, ‖mψ1
‖L2(0,t;Hnx )

, · · · , ‖mψr‖L2(0,t;Hnx )
,
∑̀
j=1

‖F j(0)‖Hnx

 ,

and

(2.10)

‖F j‖L∞(0,t;Hnx )

≤ Γ(j)′

n

t, ‖mψ1‖L∞(0,t;Hnx )
, · · · , ‖mψr‖L∞(0,t;Hnx )

,
∑̀
j=1

‖F j(0)‖Hnx

 ,

where Γ
(j)
n ,Γ

(j)′

n is a polynomial function that is non-increasing with respect to each
of its arguments (the others being fixed non-negative numbers).

Finally, the force field satisfies the following stability property. Let f and g be
two solutions of (2.1), and denote by F [f ] and F [g] their associated force field.
Assume that the initial conditions (F j(0))j=1,··· ,` are the same. Then, we have for
all j = 1, · · · , `,
(2.11)
‖F j [f ]− F j [g]‖L2(0,t;Hnx )

≤ Γ(j)]
n

(
t,

∥∥∥∥∫ (f − g)ψi(v) dv

∥∥∥∥
L2(0,t;Hnx )

, · · · ,
∥∥∥∥∫ (f − g)ψr(v) dv

∥∥∥∥
L2(0,t;Hnx )

)
,

where Γ
(j)]
n is a polynomial function that is non-increasing with respect to each of

its arguments and such that Γ
(j)′

n (0, ·) = 0.
We shall explain later why both Vlasov-Poisson and relativistic Vlasov-Maxwell

enter the abstract framework.

2.2. Statement of the main results. The regularity and integrability indices
that will be useful to handle such equations will depend on the dimension d, the
maximal growth of the moments that intervene in the definition of F , that is r0,
and the parameter of growth of the inverse of a, that is λ; let us set

(2.12) N :=
3

2
d+ 4, R := max

(
d

2
+ 2(1 + λ)(1 + d) + r0

)
.

We use in the following statement the notation b·c for the floor function.
The main result proved in this paper is the following theorem.

Theorem 2.1. Let n ≥ N and r > R. Let n′ > n be an integer such that

n > bn
′

2 c + 1. Assume that f0 ∈ Hnr and F j(0) ∈ Hn′

x for all j ∈ {1, · · · , `}.
Assume furthermore that the initial data f0 satisfy the following higher anisotropic
regularity:
(2.13)

∂
2(n−bn′2 c+k)
x ∂αx ∂

β
v f0 ∈ H0

r , ∀|α|+ |β| = n′ − n− k, ∀k ∈
{

1, · · · , 2
⌊
n′

2

⌋
− n

}
.
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Then there is T > 0 such that the following holds. There exists a unique solution
(f(t), F (t)) with initial data (f0, F (0)) to (2.1) such that f(t) ∈ C(0, T ;Hnr ).

Moreover, for all test functions ψ ∈ L∞(0, T ;Wn′,∞
−r0 ), we have

(2.14)

∥∥∥∥∫ fψ dv

∥∥∥∥
L2(0,T ;Hn′x )

≤ Λψ(T,M),

where Λψ is a polynomial function and

M = ‖f0‖Hnr +
∑̀
j=1

‖F j(0)‖Hn′x +

2
⌊
n′
2

⌋
−n∑

k=1

∑
|α|+|β|=n′−n−k

‖∂2(n−b
n′
2 c+k)

x ∂αx ∂
β
v f0‖H0

r
.

Thanks to (2.9), we immediatly deduce from (2.14) that the force field satisfies
as well the higher regularity

F j ∈ L2(0, T ;Hn′

x ).

Another consequence concerns the flow (X,V ) = (X(t, 0, x, v), V (t, 0, x, v)) as de-
fined in (1.7), for which we also obtain a higher regularity property.

Corollary 2.2. For some T ′ ≤ T , we have

∂γx,v(X − x− tv, V − v) ∈ L∞(0, T ′;L∞v L
2
x), ∀|γ| ≤ n′.

Remark 2.3. Some remarks about Theorem 2.1 are in order.

• In the case where n = 2m− 1 and n′ = n+ 1 = 2m, the assumption (2.13)
simply reads ∂n+1

x f0 ∈ H0
r and we obtain the L2

tH
n+1
x smoothness of the

moments: in other words this gives an answer to the question raised in
the beginning of the introduction. Note though that the regularity result we
prove is not pointwise in t.
• Observe that it is required that the higher regularity index n′ is not too large

compared to n (i.e., n > bn
′

2 c+ 1); such a restriction is somehow reminis-
cent of a similar one appearing in the celebrated result of Bony concerning
the propagation of Sobolev microlocal regularity at characteristic points for
general non-linear PDEs, see [12, Théorème 6.1]. We remark however that
the class of PDEs considered in this work does not enter the framework
of [12], in particular because of the “non-locality” in velocity. We refer to
Section 10 for some remarks and (counter-)examples in this direction.
• As a matter of fact, our result can be somehow interpreted as a kinetic (and

non-local) analogue of Bony’s aforementioned theorem.
• If it is ensured that the solution (f(t), F (t)) to (2.1) is global (e.g. for

Vlasov-Poisson in dimension d ≤ 3, see [46, 53, 55, 10, 39]), we do not
know if the higher propagation of regularity for the moments may or may
not be global.
• Let us mention that in a somewhat different direction, a vector field method

was devised in [58] (see also [22]) in order to prove time decay of moments
for Vlasov equations set in unbounded spaces.

In the case where the force is one-derivative smoother than the distribution
function f itself (that is to say when estimates (2.9) hold with n− 1 instead of n in
the right-hand side), the statement of Theorem 2.1 may be strengthened, insofar
as one may ask only for derivatives in x in the regularity assumption (2.13). We
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refer to such as case as the transport/elliptic case, which includes in particular
Vlasov-Poisson, see Theorem 9.1 in Section 9.

As already mentioned in the introduction, the higher regularity for moments as
obtained in Theorem 2.1 actually yields regularity for the solution itself (see [24] for
a microlocal version of this fact, in the context of averaging lemmas) in anisotropic
Sobolev spaces (as defined by Hörmander in [38, Chapter II, Section 2.5]), that we
first introduce.

Definition 2.4. Let m,n ∈ R. The anisotropic Sobolev space Hm,n
x,v is defined as

Hm,n
x,v :=

{
g ∈ S ′(Td × Rd), (1 + |k|2)m/2(1 + |η|2)n/2ĝ(k, η) ∈ L2(Zd × Rd)

}
,

where ĝ stands for the Fourier transform† of g. We also denote

Hm,−∞
x,v :=

⋃
p∈R

Hm,p
x,v .

We have

Corollary 2.5. Consider the same assumptions and notations as in Theorem 2.1.
We have

f(t, x, v) ∈ L2(0, T ;Hn′,−∞
x,v ).

Corollary 2.5 is a direct consequence of some estimates obtained in the proof of
Theorem 2.1; we will provide a proof of this fact in Section 7. It is actually possible
to give an estimate of a value of p < 0 such that f ∈ L2(0, T ;Hn′,p

x,v ).

2.3. Overview of the proof. We discuss in this section the ingredients, inspired
from [34], leading to the higher propagation of regularity for the moments (the local
well-posedness theory is fairly standard, see Section 3). We shall discuss here the
case n = 2k− 1 and n′ = n+ 1 = 2k. To ease readability, we assume here that the
dimension is d = 1 (in higher dimension, the algebra is more involved but the basic
principle is the same).

A. Taking derivatives. Since we intend to propagate regularity in space, the first
step consists in understanding how to appropriately apply derivatives in x to the
Vlasov equation (2.1).

We note that applying the operator ∂αx does not seem relevant, as it does not
commute well with the operator F∂v: as a result it is not possible to obtain a closed
equation bearing on ∂αx f without appealing to ∂βx∂

γ
v f for γ 6= 0, and therefore such

an approach would require a control of derivatives in v which we do not have at
initial time (this is of course reminiscent of the mixing in x and v that we have
evoked in the introduction).

The idea is to look for more appropriate differential operators, with non-constant
coefficients, satisfying the following three key properties:

• at initial time, they involve only derivatives in x;

†where ĝ(k, η) = 1/(2π)d
∫
Td×Rd g(x, v)e−ix·ke−iv·η dxdv, although the convention that is

chosen for the writing of the Fourier transform does not matter here.
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• they enjoy good commutation properties with the transport operator, so
that it is eventually possible to obtain closed systems involving these dif-
ferential operators alone;
• they allow a good control of the Sobolev norm of the moments.

It turns out that second order differential operators in x and v, with coefficients
depending on the solution itself will be appropriate. More precisely, we consider
the operator

L := ∂2x + ϕ(t, x)∂x∂v + ψ(t, x)∂2v ,

whose coefficients ϕ and ψ will depend on the force field F . Setting T := ∂t +
a(v)∂x +F∂v the transport operator, we ask that the coefficients ϕ,ψ solve a semi-
linear system of the form

T φ = 2∂xF +G1 (φ, ψ, ∂x,vF )

T ψ = G2 (φ, ψ, ∂x,vF ) ,

ϕ|t=0 = 0, ψ|t=0 = 0.

where G1, G2 are polynomial functions of degree greater or equal to 2; this corre-
sponds to zero-order coupling terms. Note in particular that by definition, L = ∂2x
at time t = 0. The semi-linear system is precisely chosen in order to cancel bad
terms in the commutation between L and T , so that for any function g,

LT (g) = T L(g) + (LF )∂vg + (La)∂xg + (∂va)ϕLg.

Applying this identity to the solution f of the Vlasov equation (1.1), this yields

T L(f) = −(LF )∂vf − (La)∂xf − (∂va)ϕLf.

This formula will play a key role in the analysis. The main term (in terms of
regularity issues) is the term −∂2xF∂vf , the others involving either more regular
quantities (we recall indeed that F and a are assumed to be smooth with respect
to v), or the quantity Lf , which paves the way for a closed system involving only
compositions of L applied to f . As a consequence, the operators obtained as com-
positions of L appear to be relevant for applying higher order derivatives in x, since
by construction

• they require only a control of space regularity at initial time;
• denoting by Lk the composition of k operators L, one can obtain that Lkf

satisfies an equation of the form

(2.15) T (Lkf) = A(Lkf)− (∂2kx F )∂vf +G((∂αx,vf)|α|≤2k−1),

where A,G are bounded linear operators. We note that this equation in-
volves derivatives in v of the solution, but only of order 2k − 1 = n, which
we control thanks to the local well-posedness theory. This can therefore be
seen as a closed equation for Lkf .
• One can show that for any smooth test function ψ,∫

R
(Lkf)ψ(t, x, v) dv =

∫
R

(∂2kx f)ψ(t, x, v) dv + “controlled terms”.

In the controlled terms, the overload of derivatives in v falling on f is
transferred to ψ by an integration by parts argument.
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All in all, this eventually shows that the Lk are indeed well-suited to study the
regularity of moments. This step is fully developed in Section 4. There are two
separate difficulties in order to complete this task: obtaining the right algebra as
discussed here, and proving Sobolev estimates for all the involved objects.

(In the case where n′ > n + 1, we need to set up an induction argument, and
this leads the study of successive systems of coupled kinetic transport equations,
which build on the general equation (2.15).)

B. Propagation of regularity on moments. We then turn to the study of
moments of the solutions to (2.15). This step is partly inspired from (and thus
related to) the treatment of linear Landau damping by Mouhot and Villani [48].

We first use the method of characteristics to invert the operator T − A. It is
convenient at this stage to use changes of variables in velocity (introduced and
studied in Section 5), in order to straighten characteristics and eventually, roughly
speaking, come down from T to the free transport operator ∂t + a(v) · ∇x. To this
end, it turns out to be efficient to introduce the change of variables v 7→ Φ where
Φ solves the Burgers equation

∂tΦ + a(Φ) · ∇xΦ = F (·,Φ), Φ|t=0 = v,

where we can prove that Φ remains close to v in small time (in terms of Sobolev
norms). The problem comes down to the understanding of the contribution of the
term −(∂2kx F )∂vf , and eventually roughly reduces to the study of an equation of
the type

H1(t, x) =

∫ t

0

∫
R

(∂xH2)(s, x− (t− s)a(v))U(t, s, x, v) dvds

+ “controlled terms”,

where we know only that H2 is controlled in L2(0, T ;L2
x) and U is smooth, and we

seek for a bound of H1 in L2(0, T ;L2
x) (such an estimate corresponds to a control on

the moments of Lkf). The integral in time is due to the use of Duhamel’s formula,
and the integral in v to the fact that we study moments in v. We observe that the
operator in the right-hand side seems to feature a loss of derivative in x. However,
we use a smoothing effect to overcome this apparent loss, which was proved in [34].
The outcome is the estimate∥∥∥∥∫ t

0

∫
Rd

(∇xH2)(s, x− (t− s)a(v)) · U(t, s, x, v) dvds

∥∥∥∥
L2(0,t;L2

x)

. ‖H2‖L2(0,t;L2
x)

sup
0≤t,s≤T

‖U(t, s, ·)‖,

where ‖ · ‖ stands for a high order weighted Sobolev norm (in x and v) which we
will make precise later. As noted in [34], this is reminiscent of (but different from)
classical kinetic averaging lemmas, as it loosely speaking involves the gain of one
full derivative; we refer to Section 6 for a thorough discussion.

2.4. Content of the end of the paper. The paper is then organised as follows:
the proofs of Corollaries 2.2 and 2.5 are provided in the end of Section 7. In Sec-
tion 8, we check the general assumptions for the Vlasov-Poisson and relativistic
Vlasov-Maxwell equations, and discuss some extensions as well. As already men-
tioned, Section 9 is devoted to the particular case of the transport/elliptic case,
for which Theorem 2.1 can be improved. We end the paper with the study of
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two examples that we cook-up in order to discuss the regularity assumptions of
Theorem 2.1.

We will prove Theorem 2.1 when n is odd, of the form n = 2m − 1, and the
higher regularity index n′ is even, of the form n′ = 2(m + p). The other cases
follow by the same arguments. The requirement on n and n′ is m > p + 2. The
assumption (2.13) reads in this case

(2.16) ∂2(m−p+k)x ∂αx ∂
β
v f0 ∈ H0

r , ∀|α|+ |β| = 2p− k, ∀k = 0, · · · , 2p.

3. Local well-posedness

We prove in this section a basic local Sobolev well-posedness result for (2.1). We
start by recalling useful product estimates in weighted Sobolev spaces, taken from
[34].

Lemma 3.1. Let s be a non-negative integer. Consider a smooth nonnegative
function χ = χ(v) that satisfies |∂αχ| ≤ Cαχ for every multi-index α such that
|α| ≤ s.

• Consider two functions f = f(x, v), g = g(x, v), then we have for k ≥ s/2
(3.1) ‖χfg‖Hsx,v . ‖f‖Wk,∞

x,v
‖χg‖Hsx,v + ‖g‖Wk,∞

x,v
‖χf‖Hsx,v .

• Consider a function E = E(x) and a function F (x, v), then we have for
any s0 > d that

(3.2) ‖χEF‖Hsx,v . ‖E‖Hs0x ‖χF‖Hsx,v + ‖E‖Hsx‖χF‖Hsx,v .

• Consider a vector field E = E(x), a function A(v), and a function f =
f(x, v), then we have for any s0 > 1 + d and for any multi-indices α, β
such that |α|+ |β| = s ≥ 1 that

(3.3)∥∥χ [∂αx ∂βv , A(v)E(x) · ∇v
]
f
∥∥
L2
x,v
. ‖A‖W s,∞

v
(‖E‖Hs0x ‖χf‖Hsx,v + ‖E‖Hsx‖χf‖Hsx,v ).

• Consider two functions f = f(x, v), g = g(x, v), then we have for multi-
indices α, β with |α|+ |β| ≤ s that

(3.4) ‖∂αx,vf ∂βx,vg‖L2 . ‖ 1

χ
f‖L∞x,v‖χg‖Hsx,v + ‖χg‖L∞x,v‖

1

χ
f‖Hsx,v .

Proposition 3.2. Let n > d + 1 and r > r0 + d/2. Assume that f0 ∈ Hnr
and F j(0) ∈ Hn

x . Then there exists T > 0 such that there is a unique solution
(f(t), F (t)) with initial data (f0, F (0)) to (2.1) such that f(t) ∈ C(0, T ;Hnr ) and
F j(t) ∈ L∞(0, T ;Hn

x ).

Proof of Proposition 3.2. The existence part follows from a standard iterative con-
struction. We define recursively a sequence of distribution functions (f(k))k∈N,

denoting by F(k) the force field associated to f(k) and the initial condition (F j(0)).
Let us denote

R0 := ‖f0‖Hnr +
∑̀
j=1

‖F j(0)‖Hnx

We set f(0) := f0 and assume that f(k) is already constructed (with associated force
field F(k)), and is such that for some Tk > 0, f(k) ∈ C(0, Tk;Hnr ), and

(3.5) ‖f(k)‖L∞(0,Tk;Hnr ) ≤ 2R0.
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We define f(k+1) as the unique solution on [0, Tk) to the equation

(3.6) ∂tf(k+1) + a(v) · ∇xf(k+1) + F(k) · ∇vf(k+1) = 0, f(k+1)|t=0 = f0,

obtained by the method of characteristics.
Applying the operator ∂αx ∂

β
v to (3.6) for |α|+ |β| ≤ n yields

(∂t + a(v) · ∇x + F(k) · ∇v)(∂αx ∂βv f(k+1)) +
[
∂αx ∂

β
v , a(v) · ∇x + F(k) · ∇v

]
f(k+1) = 0.

We then take the L2 scalar product with (1 + |v|2)r∂αx ∂
β
v f(k+1) and sum for all

|α|+ |β| ≤ n. By using (2.3), we have∑
|α|+|β|≤n

∫
|
[
∂αx ∂

β
v , a(v) · ∇x

]
f(k+1)∂

α
x ∂

β
v f(k+1)|(1 + |v|2)r dvdx ≤ ‖f(k+1)‖2Hnr .

Thanks to (2.6) and estimate (3.3) in Lemma 3.1 with s = n, χ(v) = (1 + |v|2)r/2

and s0 = n (recall that n > d+ 1), we have for all j ∈ {1, · · · , `},∥∥∥χ [∂αx ∂βv , Aj(v)F j(k)(x) · ∇v
]
f(k+1)

∥∥∥
L2
x,v

. ‖F j(k)‖Hnx ‖f(k+1)‖Hnr .

Therefore by Cauchy-Schwarz, we get∑
|α|+|β|≤n

∫
|
[
∂αx ∂

β
v , F(k) · ∇v

]
f(k+1)∂

α
x ∂

β
v f(k+1)|(1 + |v|2)r dvdx

. ‖F j(k)‖Hnx ‖f(k+1)‖2Hnr .

Recalling that ∇v · F = 0, we deduce that for all t ∈ (0, Tk),

d

dt
‖f(k+1)(t)‖Hnr .

1 +
∑̀
j=1

‖F j(k)‖Hnx

 ‖f(k+1)(t)‖Hnr

so that

(3.7) ‖f(k+1)(t)‖Hnr . ‖f0‖Hnr exp

C ∫ t

0

1 +
∑̀
j=1

‖F j(k)(s)‖Hnx

 ds

 .
We set

mψi,(k)(t, x) =

∫
Rd
f(k)(t, x, v)ψi(v) dv,

and get, for r′ > d/2 such that r ≥ r0 + r′ (which is possible thanks to the
assumption r > r0 + d/2), by Cauchy-Schwarz and (2.7), that

‖mψi,(k)‖L2(0,t;Hn) =
∑
|α|≤n

∥∥∥∥∥
(∫

Rd
∂αx f(k)ψi dv

)2
∥∥∥∥∥
1/2

L2(0,t;L1
x)

.
∑
|α|≤n

∥∥∥∥(∫
Rd
|∂αx f(k)|2(1 + |v|2)r0+r

′
dv

)(∫
Rd

|ψi|2 dv
(1 + |v|2)r0+r′

)∥∥∥∥1/2
L2(0,t;L1

x)

.
∑
|α|≤n

∥∥∥∥(∫
Rd
|∂αx f(k)|2(1 + |v|2)r0+r

′
dv

)(∫
Rd

dv

(1 + |v|2)r′

)∥∥∥∥1/2
L2(0,t;L1

x)

. ‖f(k)‖L2(0,t;Hnr ).
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Therefore, by (2.9), denoting by C > 0 a generic constant that does not depend on
t or k, we obtain

‖f(k+1)(t)‖Hnr

. ‖f0‖Hnr exp

Ct+ C
√
t
∑̀
j=1

‖F j(k)‖L2(0,t;Hnx )


. ‖f0‖Hnr exp

[
Ct

+ C
√
t
∑̀
j=1

Γ(j)
n

t, (√t‖mψi,(k)‖L∞(0,t;Hnx )
)i=1,··· ,r,

∑̀
j=1

‖F j(0)‖Hnx

]

. ‖f0‖Hnr exp

Ct+ C
√
t
∑̀
j=1

Γ(j)
n

t,√t‖f(k)‖L∞(0,t;Hnr ),
∑̀
j=1

‖F j(0)‖Hnx

 .
We now observe that if we choose T > 0 small enough so that

(3.8) R0 exp

CT + C
√
T
∑̀
j=1

Γ(j)
n (T, 2

√
TR0, R0)

 < 2R0,

and Tk ≥ T , then,

(3.9) ‖f(k+1)(t)‖L∞(0,T ;Hnr ) ≤ 2R0.

Therefore, by induction, we obtain that for all k ∈ N, f(k) ∈ C(0, T ;Hnr ), and

(3.10) ‖f(k)‖L∞(0,T ;Hnr ) ≤ 2R0.

For k ∈ N \ {0}, we set hk := f(k+1) − f(k), which satisfies the equation

(3.11) ∂thk + a(v) · ∇xhk + F [fk] · ∇vhk + (F [f(k)]− F [f(k−1)]) · ∇vfk = 0.

By weighted L2 estimates, proceeding as before, we get

d

dt
‖hk(t)‖2H0

r
.

1 +
∑̀
j=1

‖F j [f(k)]‖Hnx

 ‖hk(t)‖2H0
r

+ ‖f(k)‖Hnr
∑̀
j=1

‖F j [f(k)]− F j [f(k−1)]‖L2
x
‖hk(t)‖H0

r
.
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Let t ∈ (0, T ). Integrating in time, applying Cauchy-Schwarz and using the stability
property (2.11) and the uniform estimates (3.10) for (fk), we obtain

‖hk‖L∞(0,t;H0
r)

.
∫ t

0

1 +
∑̀
j=1

‖F j [f(k)]‖Hnx

 ‖hk(s)‖H0
r
ds+

∑̀
j=1

∫ t

0

‖F j [f(k)]− F j [f(k−1)]‖L2
x
ds

.
√
t

(
√
t+ ‖F j [f(k)]‖L2(0,t;Hnx )

)‖hk‖L∞(0,t;H0
r)

+
∑̀
j=1

‖F j [f(k)]− F j [f(k−1)]‖L2(0,t;L2
x)


.
√
t

[
‖hk‖L∞(0,t;H0

r)
+
√
t

r∑
i=1

Γ(j)]
n

t,(√t∥∥∥∥∫ (f(k) − f(k−1))ψi(v) dv

∥∥∥∥
L∞(0,t;L2

x)

)
i=1,··· ,r

]

.
√
t

[
‖hk‖L∞(0,t;H0

r)
+
√
t

r∑
i=1

Γ(j)]
n

(
t,
√
t‖hk−1‖L∞(0,t;H0

r)

)]
.

We can thus pick a small enough time T ′ > 0, independently of k such that for all
k ∈ N \ {0},

‖f(k+1) − f(k)‖L∞(0,T ′;H0
r)
≤ 1

2
‖f(k) − f(k−1)‖L∞(0,T ′;H0

r)
.

We can therefore pass to the limit in (3.6) and find that the limit (f, F [f ]) satisfies
(in the sense of distributions)

(3.12) ∂tf + a(v) · ∇xf + F [f ] · ∇vf = 0,

with the initial conditions (f0, F
j(0)). We deduce from (3.12) that f ∈ C0(0, T ′;Hnr )

and ∂tf ∈ L2(0, T ′;Hn−1r−1 ). Also, thanks to (2.10), we deduce F j ∈ L∞(0, T ′;Hn
x ).

That the equation is satisfied in a classical way follows from the smoothness of
(f, F [f)]). Uniqueness is also a consequence of the contraction estimate.

�

The main matter is now to obtain the higher regularity statement for the mo-
ments. To this end, we will focus only on the task of obtaining a priori estimates
for smooth solutions of (2.1); setting
(3.13)

M := ‖f0‖H2m−1
r

+

2p∑
k=0

∑
|α|+|β|=2p−k

‖∂2(m−p+k)x ∂αx ∂
β
v f0‖H0

r
+
∑̀
j=1

‖F j(0)‖
H

2(m+p)
x

,

we look for some time T0 > 0 depending only on M such that given a smooth test

function ψ ∈ L∞(0, T0;W2(m+p),∞
−r0 ), the following estimate holds:

(3.14)

∥∥∥∥∫ fψ(v) dv

∥∥∥∥
L2(0,T0;H

2(m+p)
x )

≤ CψΛ(T0,M).

where Λ is a polynomial function which is non-decreasing with respect to each of
its arguments, once the others are fixed non-negative numbers. In what follows, the
function Λ may change from line to line but will always refer to such a function.

Once a priori estimates such as (3.14) as are obtained, we apply them to the
sequence of solutions built in the iteration scheme proving the existence of solutions
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in the proof of Lemma 3.2. Passing to the limit yields the higher regularity for the
moments of the solution f(t).

4. Differential operators

In this section, we introduce and study the second order differential operators
(with coefficients depending on t and x) that we use in order to apply derivatives
in x on the Vlasov equation (2.1).

The basic operators are defined in (4.3) and the definition of the coefficients is
provided in Lemma 4.1. By definition these operators involve only derivatives in x
at initial time. The key algebraic result reflecting the good commutation properties
of these operators with the transport operator is stated in Lemma 4.2.

The composition of these operators is then studied.

• In Lemma 4.4, it is shown that they are indeed well-suited to study the
regularity of moments, as after integration in v, they act like derivations in
x only (plus remainders that we can control). The proof is quite technical
as one needs to be careful of the limited available smoothness on the coef-
ficients of the differential operators. Note that in the statement, one does
assume some (limited) higher order smoothness for the moments: this is in
prevision of a forthcoming induction argument.
• In Lemmas 4.5 and 4.6, the equations satisfied by the functions obtained

after composition of these operators is established. This is where the key al-
gebraic Lemma 4.2 appears to be crucial. Whereas the formal computation
is straightforward, here again, the proof appears to be quite technical in
order to justify that remainders are indeed well controlled. One also needs
to be careful in order to get some Sobolev regularity for the coefficients
involved in the equations.
• As the systems of equations in Lemmas 4.5 and 4.6 are not closed, this

invites to study the system satisfied by a larger set of appropriate functions;
this is the purpose of Lemmas 4.7 and 4.8 (whose proof is similar to that
of Lemmas 4.5 and 4.6).

4.1. Second order operators. As in the introduction, we set to ease readability
T := ∂t + a(v) · ∇x + F · ∇v the transport operator.

Lemma 4.1. Let n > d+ 1. Assume that (F j) ∈ L2(0, T ′;Hn
x ) with norm bounded

by Λ(T ′,M). There is T ∈ (0, T ′) such that there exists a unique smooth solution

(ϕi,jk,l, ψ
i,j
k,l)i,j,k,l∈{1,··· ,d} on [0, T ] of the system:

(4.1)

T ϕi,jk,l =
∑
k′

∂vk′a(v)kψ
i,j
k′,l +

∑
k′

∂vk′a(v)kψ
i,j
l,k′ −

∑
k′,l′,m

∂vl′a(v)mϕ
i,j
k′,l′ϕ

k′,m
k,l

+ δk,j∂xiFl + δk,i∂xjFl +
∑
l′

ϕi,jk,l′∂vl′Fl,

T ψi,jk,l = −
∑
k′,l′,m

∂vl′a(v)mϕ
i,j
k′,l′ψ

k′,m
k,l + ϕi,jk,l∂xkFk +

∑
k′

ψi,jk′,l∂vk′Fk

+
∑
l′

ψi,jk,l′∂vl′Fl,

ϕi,jk,l|t=0 = ψi,jk,l|t=0 = 0,
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where δ denotes the Kronecker function and a(v)k (resp. Fk) stands for the k-th
coordinate of a(v) (resp. F ). Moreover we have the following estimates:

(4.2)

sup
[0,T ]

sup
i,j,k,l

‖(ϕi,jk,l, ψ
i,j
k,l)‖Wp,∞

x,v
. Λ(T,M), ∀p < n− 1− d/2,

sup
[0,T ]

sup
i,j,k,l

‖(ϕi,jk,l, ψ
i,j
k,l)‖Hn−1

−r̃
. Λ(T,M), ∀r̃ > d/2.

We will not reproduce the proof of Lemma 4.1, since it follows, mutatis mutandis,
that of Lemma 4.2 of [34]: System (4.1) is solved as a semi-linear system of coupled
kinetic transport equations. Note that we use the assumptions (2.3) on a and (2.6)
on A to control the contribution of the additional linear and semi-linear terms that
appear compared to Lemma 4.2 of [34].

Introduce now the second order operators

(4.3) Li,j := ∂2xi,xj +
∑

1≤k,l≤d

(
ϕi,jk,l∂xk∂vl + ψi,jk,l∂

2
vk,vl

)
, ∀i, j ∈ {1, · · · d}.

We observe that by uniqueness of the solution of (4.1) and a symmetry argument,
Li,j = Lj,i.

One of the interests of the operators Li,j comes from the following lemma.

Lemma 4.2. For all smooth functions f , we have the formula

(4.4)

Li,jT (f) = T Li,j(f) +

∂2xi,xjF +
∑
k,l

ϕi,jk,l∂xk∂vlF + ψi,jk,l∂
2
vk,vl

F

 · ∇vf
+
∑
k,l

ψi,jk,l∂
2
vk,vl

a(v) · ∇xf +
∑
k,l,m

∂vla(v)mϕ
i,j
k,lLk,mf.

Remark 4.3. Formula (4.4) can also be written in a more synthetic form:

Li,jT (f) = T Li,j(f) + (Li,jF ) · ∇vf + (Li,ja) · ∇xf +
∑
k,l,m

∂vla(v)mϕ
i,j
k,lLk,mf.

Proof of Lemma 4.2. We have by direct computations

∂2xixj (T f) = T (∂2xi,xjf) + ∂2xi,xjF · ∇vf + ∂xiF · ∇v∂xjf + ∂xjF · ∇v∂xif,

ϕi,jk,l∂xk∂vl(T f) = T (ϕi,jk,l∂xk∂vlf)− T (ϕi,jk,l)∂xk∂vlf

+ ϕi,jk,l

(
∂vla(v) · ∇x∂xkf

+ ∂xkF · ∇v∂vlf + ∂vlF · ∇v∂xkf + ∂xk∂vlF · ∇vf
)
,

ψi,jk,l∂
2
vk,vl

(T f) = T (ψi,jk,l∂
2
vk,vl

f)− T (ψi,jk,l)∂
2
vk,vl

f

+ ψi,jk,l

(
∂vla(v) · ∇x∂vkf + ∂vka(v) · ∇x∂vlf + ∂2vk,vla(v) · ∇vf

+ ∂vkF · ∇v∂vlf + ∂vlF · ∇v∂vkf + ∂2vk,vlF · ∇vf
)
.
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We can rewrite

ϕi,jk,l∂vla(v) · ∇x∂xkf = ϕi,jk,l

∑
m

∂vla(v)m∂xm∂xkf

= ϕi,jk,l

∑
m

∂vla(v)m

Lk,mf −∑
k′,l′

(
ϕk,mk′,l′∂xk′∂vl′ + ψk,mk′,l′∂

2
vk′ ,vl′

)
f

 ,

which entails that

Li,jT (f) = T Li,j(f) + ∂xixjF · ∇vf

+
∑
k,l

(
ϕi,jk,l∂xk∂vlF · ∇vf + ψi,jk,l∂

2
vk,vl

F · ∇vf + ψi,jk,l∂
2
vk,vl

a(v) · ∇xf
)

+
∑
k,l,m

∂vla(v)mϕ
i,j
k,lLk,mf

+
∑
k,l

∂xk∂vlf

[
− T ϕi,jk,l +

∑
k′

∂vk′a(v)kψ
i,j
k′,l +

∑
k′

∂vk′a(v)kψ
i,j
l,k′

−
∑
k′,l′,m

∂vl′a(v)mϕ
i,j
k′,l′ϕ

k′,m
k,l + δk,j∂xiFl + δk,i∂xjFl +

∑
l′

ϕi,jk,l′∂vl′Fl

]

+
∑
k,l

∂2vk,vlf

[
− T ψi,jk,l −

∑
k′,l′,m

∂vl′a(v)mϕ
i,j
k′,l′ψ

k′,m
k,l + ϕi,jk,l∂xkFk

+
∑
k′

ψi,jk′,l∂vk′Fk +
∑
l′

ψi,jk,l′∂vl′Fl

]
.

We therefore deduce (4.4), because (ϕi,jk,l, ψ
i,j
k,l) solves (4.1). �

4.2. Composition of the second order operators. Relying on Lemma 4.2, we
shall use the Li,j operators in order to apply derivatives to the solution f of the
Vlasov equation (2.1).

Set for I, J ∈ {1, · · · , d}k,

(4.5) LI,J := Li1,j1 · · ·Lik,jk .

Let us also introduce the following useful notation. Given I = (i1, · · · , ik) and
J = (j1, · · · , jk), we set

(4.6) α(I, J) := (i1, j1, · · · , ik, jk).

and

(4.7) ∂α(I,J)x = ∂xi1∂xj1 · · · ∂xik∂xjk .

Note that by construction,

LI,J |t=0 = ∂α(I,J)x .

In what follows, f will systematically stand for the solution of (2.1), starting from
f0 verifying the assumptions of Theorem 2.1.



18 DANIEL HAN-KWAN

4.3. Moments in v. We study in this section the moments in v of the LI,Jf .
Until the end of the section, the times T > 0 will be such that the solution to (2.1)
satisfies

‖f‖L∞(0,T ;H2m−1
r ) ≤ 2R0,

thanks to Proposition 3.2.

Lemma 4.4. • Let k = 0, · · · , p and I, J ∈ {1, · · · , d}m+k. Assume that

the force field satisfies F j ∈ L2(0, T ;H
2(m+k)−1
x ) with norm bounded by

Λ(T,M). Assume that for all n = 2m, · · · , 2(m + k) − 1, for all ϕ ∈
L∞(0, T ;Wd+2+n−2m,∞

−r0 ) such that ‖ϕ‖L∞(0,T ;Wd+2+n−2m,∞
−r0

) ≤ Λ(T,M),

and all |α| = n, we have

(4.8)

∥∥∥∥∫
Rd

(∂αx f)ϕ(t, x, v) dv

∥∥∥∥
L2(0,T ;L2

x)

≤ Λ(T,M).

Let ψ ∈ L∞(0, T ;Wd+2+2k,∞
−r0 ) satisfying ‖ψ‖L∞(0,T ;Wd+2+2k,∞

−r0
) ≤ Λ(T,M).

We have

(4.9)

∫
Rd
LI,Jf ψ(t, x, v) dv =

∫
Rd
∂α(I,J)x f ψ(t, x, v) dv + RI,J,ψ,

where RI,J,ψ is a remainder satisfying the estimate

(4.10) ‖RI,J,ψ‖L2(0,T ;L2
x)
≤ Λ(T,M).

• Let k = 0, · · · , p− 1 and I, J ∈ {1, · · · , d}m+k. Assume that the force field

satisfies F j ∈ L2(0, T ;H
2(m+k)
x ) with norm bounded by Λ(T,M). Assume

that for all n = 2m, · · · , 2(m + k), for all ϕ ∈ L∞(0, T ;Wd+2+n−2m,∞
−r0 )

such that ‖ϕ‖L∞(0,T ;Wd+2+n−2m,∞
−r0

) ≤ Λ(T,M), and all |α| = n, we have

(4.11)

∥∥∥∥∫
Rd

(∂αx f)ϕ(t, x, v) dv

∥∥∥∥
L2(0,T ;L2

x)

≤ Λ(T,M).

Let ψ ∈ L∞(0, T ;Wd+3+2k,∞
−r0 ) satisfying ‖ψ‖L∞(0,T ;Wd+3+2k,∞

−r0
) ≤ Λ(T,M).

Let ∂ = ∂xi or ∂vi for some i ∈ {1, · · · , d}. We have

(4.12)

∫
Rd
∂LI,Jf ψ(t, x, v) dv =

∫
Rd
∂α(I,J)x ∂f ψ(t, x, v) dv + RI,J,ψ,

where RI,J,ψ is a remainder satisfying the estimate

(4.13) ‖RI,J,ψ‖L2(0,T ;L2
x)
≤ Λ(T,M).

This result will allow to set up an induction argument: indeed, with the assump-
tion (4.8) (resp. (4.11)) that corresponds to regularity of the moments up to order
2(m+ k)− 1 (resp. 2(m+ k)), this will imply that controlling the moments of the
(LI,Jf) gives information on the regularity of the moments up to order 2(m + k)
(resp. 2(m+ k) + 1).

Proof of Lemma 4.4. Let us focus only on the first item (the proof of the second

one is completely similar). Let ψ ∈ L∞(0, T ;Wd+2+2k,∞
−r0 ). The beginning of the

proof closely follows that of Lemma 4.3 of [34]. At first, we can expand fI,J = LI,Jf
in a more tractable form. Let us set for readability

U := (ϕ
iα,jβ
k′,l , ψ

iα,jβ
k′,l )1≤k′,l≤d, 1≤α,β≤m+k.
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Then, by induction, we obtain

fI,J = ∂α(I,J)x f +

2(m+k)−2∑
s=0

∑
e, α, k0,··· ,ks

P k0s,e,α(U)P k1s,e,α(∂U) · · ·P kss,e,α(∂sU)∂ev∂
αf

(4.14)

=: ∂α(I,J)x f +

2(m+k)−2∑
s=0

∑
e, α, k0,··· ,ks

Rk0,··· ,kss,e,α ,

where the sum is taken on indices such that
(4.15)
|e| = 1, |α| = 2(m+k)−1−s, k0+k1+· · · ks ≤ m+k, k0 ≥ 1, k1+2k2+· · · sks = s,

and for all 0 ≤ p ≤ s, P kps,e,α(X) is a polynomial of degree smaller than kp (we denote
by ∂kU the vector made of all the partial derivatives of length k of all components
of U). We can set

RI,J,ψ =

∫
Rd
ψ(·, v)

2(m+k)−2∑
s=0

∑
e, α, k0,··· ,ks

Rk0,··· ,kss,e,α dv,

so that we have to estimate
∫
Rd ψR

k0,··· ,ks
s,e,α dv. All the following estimates are uni-

form in time for t ∈ [0, T ] and we shall dismiss the time parameter to ease read-
ability.

We begin by estimating the terms for which s ≥ 2k + 1. Note that for all these
terms the total number of derivatives applied to f is at most 2m− 1.

• When s < 2(m + k) − d
2 − 2, we can use estimate (4.2) in Lemma 4.1 to obtain

that
‖P k0s,e,α(U)P k1s,e,α(∂U) · · ·P kss,e,α(∂sU)‖L∞x,v ≤ Λ(T,M)

and hence using that

sup
v
|(1 + |v|2)−r0/2ψ(·, v)| ≤ Λ(T,M)

we obtain by Cauchy-Schwarz that since r > r0 + r′, for some r′ > d/2, we have∥∥∥∥∫ Rk0,··· ,kse,s,α dv

∥∥∥∥
L2
x

≤
∥∥∥∥‖(1 + |v|2)

−r0−r
′

2 ψ‖L2
v
‖(1 + |v|2)

(r0+r′)
2 ∂ev∂

αf‖L2
v

∥∥∥∥
≤ Λ(T,M)

(∫
Rd

dv

(1 + |v|2)r′

)1/2

‖f‖H2m−1
r

≤ Λ(T,M).

• Let us now consider s ≥ 2(m + k) − 2 − d
2 . We start with the case where in the

sequence (k1, · · · , ks), the largest index l such that kl 6= 0 and kp = 0 for every
p > l is such that l > s/2. In this case, since lkl ≤ s has to hold, we necessarily
have kl = 1. Moreover, for the indices p < l such that kp 6= 0, we must have
p ≤ pkp < s/2. Thus, we can use estimate (4.2) in Lemma 4.1 to bound ‖∂pU‖L∞x,v
provided s/2 ≤ 2(m+ k)− d

2 − 2. Since s ≤ 2(m+ k)− 2, this is verified thanks to
the assumption that 2m > 2 + d. We thus obtain that∥∥∥∥∫ Rk0,···kse,s,α dv

∥∥∥∥
L2
x

≤ Λ(T,M)

∥∥∥∥∫ ψ∂lU∂ev∂
αf dv

∥∥∥∥
L2
x

.
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Next, we can use the fact that∥∥∥∥∫ ψ∂lU∂ev∂
αf

∥∥∥∥
L2
x

. Λ(T,M)
∥∥∥‖(1 + |v|2)

−r
2 ∂lU‖L2

v
‖(1 + |v|2)

(r0+r)
2 ∂ev∂

αf‖L2
v

∥∥∥
L2
x

. Λ(T,M)‖U‖H2m−2
−r

sup
x
‖(1 + |v|2)

r
2 ∂ev∂

αf‖L2
v
.

By Sobolev embedding in x, we have

sup
x
‖(1 + |v|2)

r
2 ∂ev∂

αf‖L2
v
. ‖f‖H2m−1

r

as soon as 2m − 1 > 1 + |α| + d
2 = 1 + 2(m + k) − 1 − s + d

2 which is equivalent

to s > 1 + 2k + d
2 . Since we are in the case where s ≥ 2(m + k) − 2 − d

2 , the
condition is matched, thanks to the assumption 2m > 3 + d. Consequently, by
using estimate (4.2) in Lemma 4.1, we obtain again that∥∥∥∥∫ Rk0,···kse,s,α dv

∥∥∥∥
L2
x

. Λ(T,M).

Finally, it remains to handle the case where kl = 0 for every l > s/2. As above, we
necessarily have s/2 < 2(m+ k)− d

2 − 2 and hence by using again estimate (4.2) in
Lemma 4.1, we find

‖∂lU‖L∞x,v ≤ Λ(T,M), l ≤ s/2.
We deduce ∥∥∥∥∫ Rk0,···kse,s,α dv

∥∥∥∥
L2
x

≤ Λ(T,M)‖f‖H2m−1
r

≤ Λ(T,M).

It remains to treat the cases corresponding to s ≤ 2k, that is to say Rk0,···kse,s,α

contains the maximal number of derivatives applied to f . This means that |α| =
2m − 1, · · · , 2(m + k) − 1 so that at least 2m derivatives of f are involved. We
denote for readability the associated coefficient

Γ := ψP k0s,e,α(U)P k1s,e,α(∂U) · · ·P kss,e,α(∂sU),

and we have to study the L2
x norm of

∫
Γ∂ev∂

αf dv.
First, assume that |α| ≤ 2(m + k) − 2 (which corresponds to s ≥ 1). We note

that for all s′ = 0, · · · , 2(m+ k)− 1− |α|, we have by Lemma 4.1 that

‖∂s
′
U‖Wk,∞

x,v
≤ Λ(T,M), ∀k < 2(m+ k)− 2− d/2− s′.

Since s′ ≤ 2(m+k)−1−|α|, 2(m+k)−2−d/2−s′ ≥ |α|−d/2−1 > d+2+|α|+1−2m
since 2m > 3d/2 + 4. Therefore

‖∂s
′
U‖

W
d+2+|α|+1−2m,∞
x,v

≤ Λ(T,M)

and

‖Γ‖Wd+2+|α|+1−2m,∞
−r0

≤ Λ(T,M).

We can thus use the assumption (4.8) to obtain the bound

(4.16)

∥∥∥∥∫ Γ∂ev∂
αf dv

∥∥∥∥
L2
x

≤ Λ(T,M).
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Assume finally that |α| = 2(m+ k)− 1 (which corresponds to s = 0), that is to
say 2(m + k) derivatives of f are involved. We can write, by integration by parts
in v (relying on the fast decay of f and its derivatives at infinity)∫

Rd
Γ∂ev∂

αf dv = −
∫
Rd
∂evΓ∂αf dv.

We have that

‖∂evΓ‖Wd+1+2k,∞
−r0

≤ Λ(T,M),

and we can use again (4.8) to obtain∥∥∥∥∫ ∂evΓ∂αf dv

∥∥∥∥
L2
x

≤ Λ(T,M).

In summary, we have proved that

‖RI,J,ψ‖L2
x
≤ Λ(T,M).

This ends the proof of the lemma.
�

4.4. The equation satisfied by LI,Jf . Using the algebraic identities of Lemma
4.2, we obtain

Lemma 4.5. For all k = 0, · · · , p, the following holds. Assume that (F j) ∈
L2(0, T ;H

2(m+k)−1
x ) with norm bounded by Λ(T,M). For all I, J ∈ {1, · · · , d}m+k,

we have

(4.17)

T (LI,Jf) + ∂α(I,J)x F · ∇vf =

m+k∑
r=m−k

∑
K,L∈{1,··· ,d}r

∑
|α|+|β|=m+k−r

γI,JK,L,α,βL
K,L∂αx ∂

β
v f +RI,J

where

• γI,JK,L,α,β are coefficients satisfying

(4.18) ‖γI,JK,L,α,β‖L2(0,T ;Wd+2,∞
x,v ) . Λ(T,M),

• RI,J is a remainder satisfying

‖RI,J‖L∞(0,T ;H0
r̃)
. Λ(T,M), ∀r̃ ≤ r − d/2.

We mention that a version of this lemma was proved in [34] in the case k = 0.
Lemma 4.5 will be useful in the induction argument to treat the case of even

integers. For what concerns odd integers, we have the following result.

Lemma 4.6. For all k = 0, · · · , p − 1, the following holds. Assume that (F j) ∈
L2(0, T ;H

2(m+k)
x ) with norm bounded by Λ(T,M). For all I, J ∈ {1, · · · , d}m+k,

and i = 1, · · · , d, we have

(4.19)

T (LI,J∂xif) + ∂xi∂
α(I,J)
x F · ∇vf =

m+k∑
r=m−k−1

∑
K,L∈{1,··· ,d}r

∑
|α|+|β|=m+k+1−r

γxi,I,JK,L,α,βL
K,L∂αx ∂

β
v f +Rxi,I,J
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and

(4.20)

T (LI,J∂vif) + ∂vi∂
α(I,J)
x F · ∇vf =

m+k∑
r=m−k−1

∑
K,L∈{1,··· ,d}r

∑
|α|+|β|=m+k+1−r

γvi,I,JK,L,α,βL
K,L∂αx ∂

β
v f +Rvi,I,J

where

• γxiI,JK,L,α,β, γviI,JK,L,α,β are coefficients satisfying

(4.21) ‖γxi,I,JK,L,α,β , γ
vi,I,J
K,L,α,β‖L2(0,T ;Wd+2,∞

x,v ) . Λ(T,M),

• Rxi,I,J , Rvi,I,J are remainders satisfying

‖Rxi,I,J‖L∞(0,T ;H0
r̃)

+ ‖Rvi,I,J‖L∞(0,T ;H0
r̃)
. Λ(T,M), ∀r̃ ≤ r − d/2.

4.5. The equation satisfied by LI,J∂αx ∂
β
v f . Lemma 4.5 invites to seek for a

closed equation on LI,J∂αx ∂
β
v f , for k ∈ {0, · · · p}, r ∈ {m − k, · · · ,m + k}, I, J ∈

{1, · · · , d}r and all |α|+|β| = m+k−r (and similarly for what concerns Lemma 4.6).
This is the purpose of the next two lemmas.

Lemma 4.7. Let k = 0, · · · , p. Let r = m − k, · · · ,m + k. Assume that (F j) ∈
L2(0, T ;H

2(m+k)−1
x ) with norm bounded by Λ(T,M). For all I, J ∈ {1, · · · , d}r and

all |α|+ |β| = m+ k − r, we have
(4.22)

T (LI,J∂αx ∂
β
v f) + ∂αx ∂

β
v ∂

α(I,J)
x F · ∇vf =

r∑
r′=m−k

∑
K,L∈{1,··· ,d}r′

∑
|α′|+|β′|=m+k−r′

γI,J,α,βK,L,α′,β′L
K,L∂α

′

x ∂
β′

v f +RI,J,α,β

where

• γI,J,α,βK,L,α′,β′ are coefficients satisfying

(4.23) ‖γxi,I,JK,L,α,β , γ
vi,I,J
K,L,α,β‖L2(0,T ;Wd+2,∞

x,v ) . Λ(T,M),

• RI,J,α,β is a remainder satisfying

‖RI,J,α,β‖L∞(0,T ;H0
r̃)
. Λ(T,M), ∀r̃ ≤ r − d/2.

Lemma 4.8. Let k = 0, · · · , p−1. Let r = m−k−1, · · · ,m+k. Assume that (F j) ∈
L2(0, T ;H

2(m+k)
x ) with norm bounded by Λ(T,M). For all I, J ∈ {1, · · · , d}r, and

all |α|+ |β| = m+ k + 1− r, we have
(4.24)

T (LI,J∂αx ∂
β
v f) + ∂αx ∂

β
v ∂

α(I,J)
x F · ∇vf =

r∑
r′=m−k−1

∑
K,L∈{1,··· ,d}r′

∑
|α′|+|β′|=m+k+1−r′

γI,J,α,βK,L,α′,β′L
K,L∂α

′

x ∂
β′

v f +RI,J,α,β

where

• γI,J,α,βK,L,α′,β′ are coefficients satisfying

(4.25) ‖γxi,I,JK,L,α,β , γ
vi,I,J
K,L,α,β‖L2(0,T ;Wd+2,∞

x,v ) . Λ(T,M),

• RI,J,α,β is a remainder satisfying

‖RI,J,α,β‖L∞(0,T ;H0
r̃)
. Λ(T,M), ∀r̃ ≤ r − d/2.
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We observe that as wanted, Lemmas 4.7 and 4.8 provide closed systems of equa-
tions.

To conclude this section, we shall give the proofs of Lemmas 4.5 and 4.7 (the
proofs of the remaining Lemmas 4.6 and 4.8 being very similar).

4.6. Proof of Lemmas 4.5 and 4.7.

Proof of Lemma 4.5. Let r̃ < r − d/2. Since r > d, we can assume, without loss
of generality, that r̃ > d/2. We can write, by an induction argument relying on
Lemma 4.2, that

T (LI,Jf) = FI,J

with the source term FI,J is given by FI,J = −
∑4
i=1 Fi, where

F1 =

m+k−1∑
`=1

Li1,j1 · · ·Lim+k−`,jm+k−`

(4.26)

×
(

(∂2xim+k−`+1
,xjm+k−`+1

F ) · ∇vLim+k−`+2,jm+k−`+2
· · ·Lim+k,jm+k

f
)
,

F2 =

m+k−1∑
`=1

Li1,j1 · · ·Lim+k−`,jm+k−`

([∑
k,l

ϕ
im+k−`+1,jm+k−`+1

k,l ∂xim+k−`+1
∂vjm+k−`+1

F

(4.27)

+ ψ
im+k−`+1,jm+k−`+1

k,l ∂2vim+k−`+1
,vjm+k−`+1

F
]
· ∇vLim+k−`+2,jm+k−`+2

· · ·Lim+k,jm+k
f
)
,

F3 =

m+k−1∑
`=1

Li1,j1 · · ·Lim+k−`,jm+k−`

([∑
k,l

ψ
im+k−`+1,jm+k−`+1

k,l ∂2vim+k−`+1
,vjm+k−`+1

a
](4.28)

· ∇xLim+k−`+2,jm+k−`+2
· · ·Lim+k,jm+k

f
)
,

F4 =

m+k−1∑
`=1

Li1,j1 · · ·Lim+k−`,jm+k−`

(4.29)

×
∑

k′,l′,m′

∂vl′a(v)m′ϕ
im+k−`+1,jm+k−`+1

k′,l′ Lk′,m′Lim+k−`+2,jm+k−`+2
· · ·Lim+k,jm+k

f.

We shall focus on the contribution of F1. We have to estimate terms under the
form

(4.30) F1,` = Lm+k−`G`, G` = ∂2E · ∇vL`−1

where we use the notation Ln for the composition of n operators of type Li,j (the
exact combination of the operators involved in the composition does not matter
here). Note that as in (4.14), we can develop Ln under the form

(4.31) Ln = ∂αnx +

2n−2∑
s=0

∑
e, α, k0···ks

P k0s,e,α(U)P k1s,e,α(∂U) · · ·P kss,e,α(∂sU)∂ev∂
α,
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where for all 0 ≤ p ≤ s, P
kp
s,e,α(X) is a polynomial of degree smaller than kp, the

multi-index αn has length 2n and the sum is taken on indices such that

(4.32) |e| = 1, |α| = 2n−1−s, k0 +k1 + · · · ks ≤ n, k0 ≥ 1, k1 +2k2 + · · · sks = s.

Let us first establish a general estimate, adapted from [34]. We set for any
fonction G(x, v),

(4.33) Jp(G)(x, v) =
∑

s, β,K∈E

Jp,s,β,K(G)

where K = (k0, · · · , ks) and

(4.34) Jp,s,β,K(G)(x, v) = P k0s,β(U)P k1s,β(∂U) · · ·P kss,β(∂sU)∂βG

where for all 0 ≤ r ≤ s, P krs,β(X) is a polynomial of degree smaller than kr and the
sum is taken over indices belonging to the set E defined by

(4.35) |β| = p− s, k0 + k1 + · · · ks ≤ p/2, k1 + 2k2 + · · · sks = s, 0 ≤ s ≤ p− 2.

Lemma 4.9. For 2(m+k)−1 ≥ p ≥ 1, 2m > d+3, r̃ > d/2 and s, p, K satisfying
(4.35), we have the estimate

(4.36) ‖Jp(G)‖H0
r̃
≤ Λ(T,M)

(
‖G‖Hpr̃ +

∑
l≥2(m+k)− d2−2,

l+|α|≤p, |α|≥2

‖∂lU∂αG‖H0
r̃

)
.

Proof of Lemma 4.9. For the terms in the sum such that s < 2(m+ k)− d
2 − 2, we

can use estimate (4.2) in Lemma 4.1 to obtain that

‖Jp,s,β,K(G)‖H0
r̃
≤ Λ(T,M)‖G‖Hpr̃ .

When s ≥ 2(m+ k)− d
2 − 2, we first consider the terms for which in the sequence

(k1, · · · , ks) the largest index l for which kl 6= 0 is such that l < 2(m+ k)− d
2 − 2.

Then again thanks to estimate (4.2) in Lemma 4.1, we obtain that

‖Jp,s,β,K(G)‖H0
r̃
≤ Λ(T,M)‖G‖Hpr̃ .

When l ≥ 2(m + k) − d
2 − 2, we first observe that we necessarily have kl = 1.

Indeed if kl ≥ 2, because of (4.35), we must have l ≤ s
2 . This is possible only if

2(m + k) − d
2 − 2 ≤ p−2

2 ≤ 2(m+k)−3
2 , which corresponds to m + k ≤ d

2 + 1 and
hence this is impossible. Consequently kl = 1. Moreover we note that for the other
indices l̃ for which kl̃ 6= 0, because of (4.35), we must have l̃kl̃ ≤ s− lkl, so that

l̃ ≤ s− l ≤ s− 2(m+ k) +
d

2
+ 2 ≤ d

2
− 1

and we observe that d
2 − 1 < 2m − d

2 − 2. Consequently, by another use of esti-
mate (4.2) in Lemma 4.1, we obtain that

‖Jp,s,β,K(G)‖H0
r̃
≤ Λ(T,M)

∑
l≥2(m+k)− d2−2,

l+|α|≤p, |α|≥2

‖∂lU∂αG‖H0
r̃
.

The fact that |α| ≥ 2 comes from (4.35). This ends the proof of Lemma 4.9. �
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We shall now estimate F1,`. Looking at the expansion of Lm+k−` given by
(4.31), we have to estimate terms under the form Jp(G`) with p ≤ 2(m + k − `).
Using (4.31), we decompose G` in the following way:

G` = ∂2F · ∇vL`−1f
= ∂2F · ∇v (H`,+ +H`,−)

=: G`,+ +G`,−.

where

• in H`+, we gather all terms of the form (4.34), with G = f , such that
2k + 1 + |β| ≥ 2`. These terms may contribute to terms with at least 2m
derivatives on f .
• On the other hand in H`,−, the terms that arise correspond to 2k+1+|β| <

2`, which involve at most 2m− 1 derivatives on f .

We first focus on the contribution of G`,−; we denote

F1,`,− := Lm+k−`G`,−.

Let us start with the case ` ≥ (m+k)/2. We can use the decomposition (4.31), which
entails that we have to estimate terms of the form Jp(G`,−) with p ≤ 2(m+k−`) ≤
2(m+ k)− 1, and apply Lemma 4.9 to get

(4.37) ‖F1,`,−‖L2(0,T ;H0
r̃)
≤ Λ(T,M)(

‖G`,−‖L2(0,T ;H2(m+k−`)
r̃ )

+
∑

l≥2(m+k)− d2−2,

l+|α|≤2(m+k−`), |α|≥2

‖∂lU∂αG`,−‖L2(0,T ;H0
r̃)

)
.

We observe that in the right hand side of (4.37), we have that l ≤ 2(m+k−`)−2 ≤
m+ k − 2; consequently, since 2m− 1 > d− 1, we have l < 2(m+ k)− d

2 − 2 and

hence we can estimate ‖∂lU‖L∞ by using estimate (4.2) in Lemma 4.1. This yields

‖F1,`,−‖L2(0,T ;H0
r̃)
≤ Λ(T,M)‖G`,−‖L∞(0,T ;H2(m+k−`)

r̃ )
, ` ≥ (m+ k)/2.

Then we use estimate (3.2) in Lemma 3.1 with s = 2(m + k − `) and s0 = d + 1,
and the definition of G`,− to estimate ‖G`,−‖H2(m+k−`)

r̃

. Since d+ 2 < 2m− 1 and

2(m+ k − `) + 2 ≤ 2(m+ k)− 1 (since ` ≥ (m+ k)/2 ≥ 2), we obtain

(4.38)

‖F1,`,−‖L2(0,T ;H0
r̃)

≤ Λ(T,M)
(

sup
j
‖F j‖L2(0,T ;Hd+1)‖∇vH`,−‖L∞(0,T ;H2(m+k−`)

r̃ )

+ sup
j
‖F j‖L2(0,T ;H2(m+k−`)+2)‖∇vH`,−‖L∞(0,T ;H2(m+k−`)

r̃ )

)
≤ Λ(T,M) sup

j
‖F j‖L2(0,T ;H2(m+k)−1)‖∇vH`,−‖L∞(0,T ;H2(m+k−`)

r̃ )
.

By using the regularity assumption on F j , this yields

‖F1,`,−‖L2(0,T ;H0
r̃)
≤ Λ(T,M)‖∇vH`,−‖L∞(0,T ;H2(m+k−`)

r̃ )
.

To estimate the above right hand side, we need to estimate ∂γx,vH`,− with |γ| ≤
2(m+ k − `) + 1. Recalling the definition of H`,−, by taking derivatives using the
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expression (4.31), we see that we have to estimate terms under the form Jp(f) with
p ≤ 2m− 1. Using Lemma 4.9 one more time, we thus obtain that

‖F1,`,−‖L2(0,T ;H0
r̃)

≤ Λ(T,M)
(
‖f‖L∞(0,T ;H2m−1

r̃ ) +
∑

l≥2(m+k)− d2−2,

l+|α|≤2m−1, |α|≥2

‖∂lU∂αf‖L∞(0,T ;H0
r̃)

)
.

To estimate the right hand side, we argue as follows. Let r′ > d/2 such that
r̃ + r′ ≤ r. Since |α| ≥ 2 and |α| − 2 + l ≤ 2m − 3, we can use estimate (3.4) in

Lemma 3.1 (taking χ(v) = (1 + |v|2)
r′
2 ), to obtain that

(4.39) ‖∂lU(1+|v|2)
r̃
2 ∂αf‖L2

x,v
. ‖U‖H2m−3

−r′
‖(1+|v|2)r∂2f‖L∞+‖U‖L∞‖f‖H2m−1

r
.

By using again estimate (4.2) in Lemma 4.1 and the Sobolev embedding, we finally
obtain that
(4.40)
‖F1,`,−‖L2(0,T ;H0

r̃)
≤ Λ(T,M)‖f‖L∞(0,T ;H2m−1

r ) ≤ Λ(T,M), ` ≥ (m+ k)/2.

It remains to handle the case ` ≤ (m + k)/2. Note that necessarily, for these
cases to be meaningful, we must have 2k + 1 < 2`. Assume first ` ≥ 2. We obtain
again (4.37). We first need to estimate ‖∂2F · ∇vH`,−‖L2(0,T ;H2(m+k−`)

r̃ )
. We thus

have to study

‖∂β∂2F · ∇v∂γH`,−‖L2(0,T ;H0
r̃)

with |β| + |γ| ≤ 2(m + k − `). Since ` ≥ 2, we have |β| + 2 ≤ 2(m + k − 1). If
|β|+ 2 < 2(m+ k)− 1− d/2, then we get by Sobolev embedding the bound

‖∂β∂2F · ∇v∂γH`,−‖L2(0,T ;H0
r̃)
≤ sup

j
‖∂β∂2F j‖L2(0,T ;L∞x )‖∇v∂γH`,−‖L2(0,T ;H0

r̃)

≤ sup
j
‖F j‖

L2(0,T ;H
2(m+k)−1
x )

‖f‖L2(0,T ;H2m−1
r̃ )

≤ Λ(T,M),

recalling the definiton of H`,−. If |β| ≥ 2(m + k)− 3− d/2, then |γ| ≤ 2(m + k −
`) − 2(m + k) + 3 + d/2 and thus the term ∇v∂γH`,− involves at most d/2 + 2
derivatives. Since 2m− 1 > 3d/2 + 2, we have this time

‖∂β∂2F · ∇v∂γH`,−‖L2(0,T ;H0
r̃)

≤ sup
j
‖∂β∂2F j‖L2(0,T ;L2

x)
‖H`,−‖L2(0,T ;Wd/2+2,∞

r̃ )

≤ sup
j
‖F j‖

L2(0,T ;H
2(m+k)−1
x

‖f‖L2(0,T ;H2m−1
r )

≤ Λ(T,M).

We also have to estimate terms in (4.37) under the form

‖∂lU∂β∂2F ∂γ∇vH`,−‖H0
r̃

with l ≥ 2(m+ k)− d
2 − 2 and l + |β|+ |γ| ≤ 2(m+ k − `). Note that this implies

that |β| ≤ 2(m + k − `) − l ≤ d
2 + 2 − 2` ≤ d

2 since we have ` ≥ 1. In particular
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this yields |β|+ 2 < 2m− 1− d
2 since 2m > 3 + d

2 , and thus by using the Sobolev
embedding and (2.9), we obtain that

‖∂lU∂β∂2F∂γ∇vH`,−‖H0
r̃
. sup

j
‖F j‖H2m−1

x
‖∂lU∂γ∇vH`,−‖H0

r̃

. (‖f‖H2m−1
r

+ sup
j
‖F j(0)‖H2m−1

x
)‖∂lU∂γ∇vH`,−‖H0

r̃

≤ Λ(T,M)‖∂lU∂γ∇vH`,−‖H0
r̃
.

Consequently, it remains to estimate ‖∂lU∂γ∇vH`,−‖H0
r̃

for l ≥ 2(m + k) − d
2 − 2

and l+ |γ| ≤ 2(m+ k− `). By using again (4.31) and the definition of H`,−, we can
expand ∂γ∇vH`,− as terms of the form Jp(f), with p ≤ 2(`− k) + |γ| − 1. Since we

have that 2(`− k) + |γ| − 1 ≤ 1 + d
2 < 2(m+ k)− d

2 − 2, we can use estimate (4.2)
in Lemma 4.1 again to estimate all the terms in the expression of Jp(f) involving
U and its derivatives in in L∞. This yields

‖∂lU∂γ∇vH`,−‖H0
r̃
≤ Λ(T,M)

∑
γ̃

‖∂lU∂γ̃f‖H0
r̃

with |γ̃| ≤ |γ|+ 2(`− k)− 1. Consequently, arguing as for (4.39), we obtain that

‖∂lU∂γ∇vH`,−‖H0
r̃
≤ Λ(T,M)

(
‖U‖L∞‖f‖H2m−1

r
+ ‖(1 + |v|2)rf‖L∞x,v‖U‖H2m−1

−r′

)
,

where we recall r′ > d/2 and we conclude finally by invoking estimate (4.2) in
Lemma 4.1 and the Sobolev embedding that

(4.41) ‖F1,`,−‖L2(0,T ;H0
r̃)
≤ Λ(T,M), 2 ≤ ` ≤ (m+ k)/2.

For the case ` = 1 to be meaningful, k must be equal to 0. We set aside the term

∂
α(I,J)
x F · ∇vf (which appears in the formula (4.17)), and we thus have to study

the term

Li1,j1 · · ·Lim−1,jm−1

(
∂2xim ,xjmF · ∇vf

)
− ∂α(I,J)x F · ∇vf.

We argue exactly as before to obtain a bound in L2(0, T ;H0
r̃) by Λ(T,M) (note

indeed that at most 2m − 1 derivatives of f and F are involved). Gathering all
pieces together, we have thus proven that

(4.42) ‖F1,`,−‖L2(0,T ;H0
r̃)
≤ Λ(T,M).

Let us now treat the contribution of G`,+, which will give rise to terms involving
2m up to 2(m+ k) derivatives of f . Let j ∈ {0, · · · , 2k}. Let us describe the form
of the terms involving derivatives of order 2m+ j of f . We note that 2m+ j − 1 ≥
2m − 1 > m + p − 1 ≥ m + k − 1. This means that such terms are necessarily of
the form

(4.43)

(
∂α

0

x ∂β
0

v Li1,j1 · · ·Lik,jk∂α
k

x ∂β
k

v · · ·Lim+j−k,jm+j−k∂
αm+j−k

x ∂β
m+j−k

v

)
f,

with
m+j−k∑
k=0

|αk|+ |βk| = 2k − j,
m+j−k∑
k=0

|βk| 6= 0.

In order to have exactly 2m+ j derivatives of f , this expression can be rewritten as
LK,L∂αx ∂

β
v f , where |K| = |L| = m+ j − k and |α|+ |β| = 2k− j, |β| ≥ 1. Indeed if
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derivatives fall on a coefficient of one of the Lik,jk , then there are less than 2m+ j
derivatives on f .

We denote by γI,J,1K,L,α,β the coefficient associated to such terms. Remark that

for |γ| ≤ 2k − j − 1, ∂γx∂
2F i ∈ L2(0, T ;H2m+j−2

x ). Since we have 2m > 3d/2 + 4,
we can bound this term in L2(0, T ;W d+2,∞

x ) by Sobolev embedding. Likewise, for
|γ| ≤ 2k− j−1, since 2m+ j−1−d/2 > d+2 we have ∂γx,vU ∈ L∞(0, T ;W d+2,∞

x,v ).
All in all, we deduce

‖γI,J,1K,L,α,β‖L2(0,T ;Wd+2,∞
x,v ) ≤ Λ(T,M).

It remains to treat the other terms that all involve at most 2m− 1 derivatives are
involved on f . If k ≥ 1, we set aside the term ∂

α(I,J)
x F · ∇vf in (4.17), which

corresponds to the case ` = 1 treated above (relevant when k = 0).
The other terms can be considered as remainders that are uniformly bounded

in L2(0, T ;H0
r̃), since at most 2m − 1 derivatives are involved on f and at most

2(m + k) − 1 derivatives are involved on F ; these terms can be treated exactly as
we did to treat the remainders in G`,−.

The treatment of F2, F3, F4 gives rise to similar terms and we omit it.
�

Proof of Lemma 4.7. The proof is similar to the previous one. We shall only explain
why the terms involving at least 2m derivatives of f are indeed of the form appearing
in (4.22).

Let k = 0, · · · , p−1, and r = m+j, for j = −k−1, · · · , k. We look for the terms
involving 2m+ l derivatives of f , for l = 0, · · · , k + 1 + j. Among the operators in
LI,J there are exactly 2m+ l− (m+k+1−r) = 2m+ j+ l−k−1 derivatives to be
applied on f . Since m > p ≥ k+ 1, we have 2m+ j+ l−k−1 > m+ j. This means
that these derivatives must be of the form LK,L∂γx∂

δ
v , with |K| = |L| = m+ l−k−1

and |γ|+ |δ| = j− l+ k+ 1 (up to commutations between the differential operators
as in (4.43), which is treated like in the previous proof). In the end, the terms
involving 2m+ l derivatives of f are thus necessarily of the form LK,L∂γx∂

δ
vf , with

|K| = |L| = m+ l − k − 1, |γ|+ |δ| = 2k + 2− l,
as appearing in (4.22).

�

Remark 4.10. An inspection of the proof reveals that the uniform regularity of the
coefficients in (4.18), (4.21), (4.23), (4.25) can be improved to L2(0, T ;W p,∞

x,v ) for
all p < 2m− 2− d/2.

5. Burgers equation and the semi-lagrangian approach

In this section, we explain the procedure to straighten the transport operator T ,
and which allows, loosely speaking, to come down to the operator ∂t + a(v) · ∇v.
This relies on several changes of variables in velocity that we introduce now.

Let Φ(t, x, v) satisfy the Burgers equation

(5.1)

{
∂tΦ + a(Φ) · ∇xΦ = F (t, x,Φ),

Φ(0, x, v) = v.

The interest in introducing the vector field Φ comes from the following algebraic
identity.
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Lemma 5.1. Given a smooth function g satisfying T g = R, the function

G(t, x, v) := g(t, x,Φ(t, x, v))

solves the equation

(5.2) ∂tG+ a(Φ(t, x, v)) · ∇xG = R(t, x,Φ(t, x, v)).

Proof of Lemma 5.1. We compute

∂tG = (∂tg)(t, x,Φ(t, x, v)) + ∂tΦ · (∇vg)(t, x,Φ(t, x, v)),

a(Φ) · ∇xG = a(Φ) · (∇xg)(t, x,Φ(t, x, v)) + [a(Φ) · ∇xΦ] · (∇vg)(t, x,Φ(t, x, v))

Since T g = R, we have

(∂tg)(t, x,Φ(t, x, v)) + a(Φ) · (∇xg)(t, x,Φ(t, x, v))

= −F (t, x,Φ) · (∇vg)(t, x,Φ(t, x, v)) +R(t, x,Φ(t, x, v)).

From (5.1), we deduce (5.2) as claimed. �

In other words, the change of variables in velocity v 7→ Φ(t, x, v) allows to
straighten the vector field T .

We now provide a lemma concerning the existence, uniqueness and regularity of
solutions of (5.1).

Lemma 5.2. Assume that for all j = 1, · · · , `, F j ∈ L2(0, T ′;Hn
x ) with norm

bounded by Λ(T ′,M). There is T ∈ (0, T ′] such that the following holds. There ex-
ists a unique solution Φ(t, x, v) ∈ C0(0, T ;W k,∞

x,v ) of (5.1) and we have the following
estimates:

sup
[0,T ]

sup
v

∑
|α|≤n

‖∂αx,v(Φ− v)‖L2
x,v

+ sup
[0,T ]

‖Φ− v‖Wk,∞
x,v
. Λ(T,M),(5.3)

sup
[0,T ]

sup
v

∑
|α|≤n

‖∂αx,v(a(Φ)− a(v))‖L2
x,v

+ sup
[0,T ]

‖a(Φ)− a(v)‖Wk,∞
x,v
. Λ(T,M),(5.4)

for all k < n− d/2.

We shall not provide the proof of Lemma 5.2 as it follows closely the proof of
Lemma 4.6 in [34]. Here the source is semi-linear whereas it is linear in Lemma 4.6
of [34]; however, the proof is essentially the same (see also [36] for a similar issue).

We now introduce the characteristics associated to Φ, defined as the solution to

(5.5)

{
∂tX(t, s, x, v) = a(Φ)(t,X(t, s, x, v), v),

X(s, s, x, v) = x,

and study the deviation of X from the (modified) free transport flow‡.

Lemma 5.3. Assume that for all j = 1, · · · , `, F j ∈ L∞(0, T ′;Hn
x ) with norm

bounded by Λ(T ′,M). There is T ∈ (0, T ′] such that the following holds. For every
0 ≤ s, t ≤ T , we can write

(5.6) X(t, s, x, v) = x+ (t− s)
(
a(v) + X̃(t, s, x, v)

)
‡Note that the X introduced here is not the same as the X previously defined in (1.7).
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with X̃ that satisfies the estimate
(5.7)

sup
t,s∈[0,T ]

sup
v

∑
|α|≤n

‖∂αx,vX̃(t, s, x, v)‖L2
x

+ sup
t,s∈[0,T ]

‖X̃(t, s, x, v)‖Wk,∞
x,v
. Λ(T,M),

for all k < n− d/2. Moreover, the map x 7→ x+ (t− s)X̃(t, s, x, v) is a diffeomor-
phism, and there exists Ψ(t, s, x, v) such that the identity

X(t, s, x,Ψ(t, s, x, v)) = x+ (t− s)a(v)

holds. Finally, we have the estimate
(5.8)

sup
t,s∈[0,T ]

sup
v

∑
|α|≤n

‖∂αx,v(Ψ(t, s, x, v)− v)‖L2
x

+ ‖Ψ(t, s, x, v)− v‖Wk,∞
x,v

 . Λ(T,M),

for all k < n− d/2.

Again, we will not reproduce the proof of Lemma 5.3 as it follows closely that
of Lemma 5.1 in [34].

In what follows, the procedure will consist in applying derivatives on the equa-
tion (2.1) using multiple combinations of the operators LI,J that were introduced
and studied in the previous section. This yields systems of Vlasov equations with
sources, such as (4.22) in Lemma 4.7. This is on these equations that we will apply
the change of variables v 7→ Φ(t, x, v) in order to straighten the transport opera-
tor T . We then integrate along characteristics, which is why the X(t, s, x, v) are
useful, and average in velocity to obtain equations bearing on moments. In these
equations, it will be crucial to apply various changes of variables based on the X̃
and Ψ introduced in Lemma 5.3.

This is what we refer to as the semi-lagrangian approach.

6. Averaging operators

For i ∈ {1, · · · , d} and a smooth function U(t, s, x, v), we define the following

integral operator K
(i)
U acting on scalar functions H(t, x):

(6.1) K
(i)
U (H)(t, x) =

∫ t

0

∫
Rd

(∂xiH)(s, x− (t− s)a(v))U(t, s, x, v) dvds.

The integral operator K can be seen as a modified version of the operator K
(i)
U

K
(i)
U (H)(t, x) =

∫ t

0

∫
R3

(∂xiH)(s, x− (t− s)v)U(t, s, x, v) dvds

that was studied in [34].

6.1. The smoothing estimate. We note that the operators K
(i)
U and K

(i)
U seem to

feature a loss of derivative in x. It was nevertheless proved in [34, Proposition 5.1

and Remark 5.1] that for the operators K
(i)
U , this loss is only apparent, provided

that U is sufficiently smooth in x, v and decaying in v: this is the content of the
following Theorem.
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Theorem 6.1 ([34]). Let k > 1 + d and σ > d/2. For all H ∈ L2(0, T ;L2
x), and

for all i ∈ {1, · · · , d}, we have

(6.2) ‖K(i)
U (H)‖L2(0,T ;L2

x)
. sup

0≤s, t≤T
‖U(t, s, ·)‖Hkσ‖H‖L2(0,T ;L2

x)
.

Based on this result, we deduce the following smoothing estimate§ for the oper-

ators K
(i)
U .

Proposition 6.2. Let k > 1 + d and σ > d/2. For all H ∈ L2(0, T ;L2
x), and for

all i ∈ {1, · · · , d}, we have

(6.3) ‖K(i)
U (H)‖L2(0,T ;L2

x)
. sup

0≤s, t≤T
‖U(t, s, ·)‖Hkrk ‖H‖L2(0,T ;L2

x)
,

with rk = σ + (1 + λ)(d+ k).

Proof of Proposition 6.2. To ease readability we set ∂x = ∂xi and we forget about
the subscript i. We come down from the modified to the straight operator by using
the change of variables w := a(v). We get

KU (H)(t, x)

=

∫ t

0

∫
a(Rd)

(∂xH)(s, x− (t− s)w)U(t, s, x, a−1(w))|detDa(a−1(w))|−1 dwds

= KU(H)(t, x).

with

U(t, s, x, w) := U(t, s, x, a−1(w))|detDa(a−1(w))|−11a(Rd).

Let k > 1 + d and σ > d/2. By Theorem 6.1, we get

‖KU (H)‖L2([0,T ];L2
x)

= ‖KU(H)‖L2([0,T ];L2
x)
. sup

0≤s, t≤T
‖U(t, s, ·)‖Hkσ‖H‖L2([0,T ];L2

x)
.

By assumption on a, we have

|∂αwa−1(w)| . (1 + |a−1(w)|)1+λ|α|.

In particular, we deduce

|detDa(a−1(w))|−1 . (1 + |a−1(w)|)d(1+λ)

As a consequence, we have, by the Faà di Bruno formula, and using the reverse
change of variables v = a−1(w) and (2.3), that

‖U(t, s, ·)‖Hkσ . ‖U(t, s, ·)‖Hk
σ+(d+k)(1+λ)

,

hence the claimed estimate. �

§A close version of this result is also stated in [36] for the special case a(v) = v̂.
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6.2. Intermission: a comparison to averaging lemmas. We end this section
with a comparison of the smoothing estimate we have just exposed, say in the simple
case where a(v) = v, which corresponds to Theorem 6.1, with kinetic averaging
lemmas. Averaging lemmas were introduced in [31, 1, 30] and now generically
stand for various smoothing effects in average for kinetic transport type equations¶.
They proved over the years to be fundamental in several contexts of kinetic theory,
as they provide compactness and regularity. There exist many versions of these,
involving several different assumptions on the functional spaces, on the number of
derivatives in v or in x in the source etc., see e.g. [21, 52, 32, 13, 42] and [41, 4, 3] for
more recent advances. The closest (to Theorem (6.1)) avatar of averaging lemmas
is arguably the following result of Perthame and Souganidis [52].

Theorem 6.3 (Perthame and Souganidis [52]). Let 1 < p < +∞. Let f, g =
(gj)j=1,··· ,d ∈ Lpt,x,v satisfy the transport equation

(6.4) ∂tf + v · ∇xf =

d∑
j=1

∂xj∂
k
v gj ,

where k is an arbitrary multi-index. Let ϕ(v) be a C∞ compactly supported function
and set

ρϕ(t, x) =

∫
Rd
f(t, x, v)ϕ(v) dv.

Then we have, for all α ∈ [0,min(1/p, 1/p′)),

(6.5) ‖ρϕ‖Lpt,x ≤ Cd,p,α,ϕ‖f‖
1− α
|k|+1

Lpt,x,v
‖g‖

α
|k|+1

Lpt,x,v
.

Let us focus especially on the case p = 2, |k| = 0 (in which case (6.5) actually
also holds for α = 1/2). Theorem 6.1 can also be understood as a kind of averaging
lemma for the moments in v of the kinetic equation (6.4), in the special case where
the source has the form

(6.6)

d∑
j=1

∂xjHj(t, x)∂kvUj(t, x, v),

where Uj is smooth in x and v, and the initial condition is f |t=0 = 0. Let ϕ(t, x, v)
be a smooth and decaying test function. Then by the method of characteristics,

f(t, x, v) =

∫ t

0

d∑
j=1

∂xjHj(s, x− (t− s)v)∂kvUj(s, x− (t− s)v, v) ds,

and thus

ρϕ(t, x) =

∫ t

0

∫
Rd

d∑
j=1

∂xjHj(s, x− (t− s)v)∂kvUj(s, x− (t− s)v, v)ϕ(t, x, v) ds

=

d∑
j=1

K
(j)
Uj

(Hj)(t, x),

¶Actually this can be embedded in a more general framework, see in particular [24, 23, 25].
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setting Uj(s, t, x, v) = ∂kvUj(s, x − (t − s)v, v)ϕ(t, x, v). The regularity assumption
of Theorem 6.1 reads

sup
0≤s, t≤T

‖Uj(t, s, ·)‖Hkσ < +∞

for k > 1 + d, σ > d/2, and the consequence is

(6.7) ‖ρψ‖L2(0,t;L2
x)
. sup

0≤s, t≤T

∑
j

‖Uj(t, s, ·)‖Hkσ‖Hj‖L2(0,t;L2
x)
.

This estimate is not a consequence of Theorem 6.3. Indeed, note that it does not
involve the L2 norm of the solution f : somehow, this can be roughly seen as a
version of Theorem 6.3 allowing α = 1 (whereas Theorem 6.3 only allows α ≤ 1/2),
at the expense of asking for the structure assumption (6.6) on the source g and
of considering a norm for the source that is more demanding than the L2 norm of
estimate (6.5).

Observe also that Theorem 6.1 does not require the test function in v to be
decaying at infinity, as long as for all j, Uj in (6.6) is itself decaying sufficiently fast
at infinity.

7. Proof of Theorem 2.1 and of Corollaries 2.2 and 2.5

We finally set up an induction argument, that relies on the machinery developed
in the previous sections, and will ultimately lead to the proof of Theorem 2.1. In
order to summarize the procedure in a few words:

• By induction, we assume smoothness on the moments until order n′−1. We
can first apply Lemma 4.1 to obtain the same smoothness for the coefficients
of the operators Li,j .
• We apply Lemma 4.7 or 4.8 in order to get the system of equations satisfied

by (LK,L∂αx ∂
β
v f), which is of the abstract form

T (F) + AF = B,

where A is a matrix whose coefficients we control and B is the rest we need
to control. Loosely speaking, B is made either of remainders we can control

thanks to the induction assumption, and terms of the form −∂α(K,L)x F ·∇vf ,
for K,L ∈ {1, · · · , d}m+k, whose contribution is the main matter.
• We then invert the operator T + A in order to solve the equation. At

this stage, after integration in velocity (remind that we are interested in
the regularity of moments), we use the changes of variables introduced in
Lemmas 5.1, 5.2 and 5.3.
• What is rather straightforward then is the study of the contribution of

the initial data and of the remainder terms in B. As already said, the

contribution of the terms −∂α(K,L)x F ·∇vf is more serious and involves the
study of integrals of the form∫ t

0

∫
Rd

(∂xi∂
α(K,L)
x F )(s, x− (t− s)a(v))U(t, s, x, v) dvds,

which seem to feature a loss of derivative in x. We recognize the integral
operators introduced and studied in Section 6. This is where the smoothing
estimate of Proposition 6.2 proves to be crucial.
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7.1. End of the proof of Theorem 2.1. For n ≥ 2m − 1, let P(n) be the
following statement:

P(n) : There is T > 0 such that for all test functions

ψ(t, x, v) ∈ L∞(0, T ;Wd+2+n−2m,∞
−r0 ),

setting for all |α| = n,

mψ,α(t, x) =

∫
Rd
∂αx f(t, x, v)ψ(t, x, v) dv,

there exists Λ for which

(7.1)
∑
|α|=n

‖mψ,α‖L2(0,T ;L2
x)
. Λ(T,M).

By Proposition 3.2, it is clear that P(2m− 1) is verified.
Let n ∈ {2m, · · · , 2(m+p)}. Let us assume that n is even, of the form 2(m+k).

We shall not proceed with the case where n is odd, as it follows by completely
similar arguments. Assume that P(2m), · · · ,P(n − 1) are satisfied and let T > 0
be a time on which the estimates (7.1) (for 2m, · · · ,n − 1) are satisfied. We shall
prove that P(n) is also verified. Once this will be done, we deduce by induction that
P(2m), · · · ,P(2(m+p)) are satisfied; we then deduce the required estimates (3.14).

Thanks to the property P(n− 1) applied to the (ψj)j=1,··· ,r, and (2.9), we first
have

(7.2)
∑̀
j=1

‖F j‖
L2(0,T ;H

2(m+k)−1
x )

≤ Λ(T,M).

We can therefore apply Lemma 4.1 and obtain a possible smaller time still de-
noted by T and operators Li,j with coefficients (ϕi,jk,l, ψ

i,j
k,l)i,j,k,l∈{1,··· ,d} belonging

to L∞(0, T ;H2(m+k)−2
−r̃ ) for all r̃ > d/2, with uniform regularity

‖(ϕi,jk,l, ψ
i,j
k,l)i,j,k,l‖L∞(0,T ;H2(m+k)−2

−r̃ )
≤ Λ(T,M).

Let us consider the vector (the precise ordering does not matter)

(7.3) F =
(
LK,L∂αx ∂

β
v f
)
r∈{m−k,··· ,m+k},K,L∈{1,··· ,d}r,|α|+|β|=m+k−r

By Lemma 4.7, it follows that F satisfies the system

(7.4) T (F) + AF = B + R,

where A(t, x, v) is a matrix with coefficients in L2(0, T ;W d+2,∞
x,v ), satisfying

(7.5) ‖A‖L2(0,T ;Wd+2,∞
x,v ) . Λ(T,M).

(The term AF encodes the contribution of the leading order terms in the triple sum
of the right-hand side of (4.22).) On the other hand, R is a remainder satisfying
the estimate

(7.6) ‖R‖L2(0,T ;H0
r̃)
. Λ(T,M)
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for all r̃ < r−d/2 and B is defined as follows: all its components are equal to 0 except
those corresponding to the components associated to some K,L ∈ {1, · · · , d}m+k,
in which case it is equal to

−∂α(K,L)x F · ∇vf.
The next step consists in using the change of variables v 7→ Φ(t, x, v), where Φ
solves (5.1), in order to straighten the vector field T , see Lemma 5.1. To this end,
we use Lemma 5.2 (reduce again T > 0 if necessary) and use the notation ◦Φ to
denote the composition in v with Φ. Setting F = F ◦ Φ, we obtain

(7.7) (∂t + a(Φ) · ∇x)F + (A ◦ Φ)F = B ◦ Φ + R ◦ Φ.

Let A(s, t, x, v) be the operator, whose existence is ensured by the Cauchy-Lipschitz
theorem, as the solution of the following linear ODE

∂sA(s, t, x, v) = A(s, x,Φ(s, x, v))A(s, t, x, v), A(t, t, x, v) = Id.

Thanks to (7.5), we also have

(7.8) ‖A(·, t, ·)‖L∞(0,T ;Wd+2,∞
x,v ) + ‖∂sA(·, t, ·)‖L2(0,T ;Wd+2,∞

x,v ) . Λ(T,M).

By the method of characteristics we get

(7.9)

F(t, x, v) = A(t, 0, x, v)F(0,X(0, t, x, v), v)

+

∫ t

0

A(t, s, x, v)B ◦ Φ(s,X(s, t, x, v), v) ds

+

∫ t

0

A(t, s, x, v)R ◦ Φ(s,X(s, t, x, v), v) ds.

Let ψ(t, x, v) ∈ L∞(0, T ;Wd+2+2k,∞
−r0 ). We multiply the representation formula (7.9)

by ψ(t, x,Φ(t, x, v))|detDvΦ(t, x, v)| and integrate in v to obtain

(7.10)

∫
Rd
F(t, x, v)ψ(t, x,Φ(t, x, v))|detDvΦ(t, x, v)| dv = I0 + I1 + I2

with
(7.11)

I0 =

∫
Rd
A(t, 0, x, v)F(0,X(0, t, x, v), v)ψ ◦ Φ|detDvΦ(t, x, v)| dv,

I1 =

∫ t

0

∫
Rd
A(t, s, x, v)(R ◦ Φ)(s,X(s, t, x, v), v)ψ ◦ Φ|detDvΦ(t, x, v)| dvds,

I2 =

∫ t

0

∫
Rd
A(t, s, x, v)(B ◦ Φ)(s,X(s, t, x, v), v)ψ ◦ Φ|detDvΦ(t, x, v)| dvds.

By the change of variables v 7→ Φ(t, x, v), we have∫
Rd
F(t, x, v)ψ(t, x,Φ(t, x, v))|detDvΦ(t, x, v)| dv =

∫
Rd

F(t, x, v)ψ(t, x, v) dv.

Let us first study this term. Since P(2m), · · · ,P(2(m+k)−1) are satisfied, we can
apply Lemma 4.4 (the assumption (4.8) is indeed verified), which yields, see (4.9)
and (4.10), that for all I, J ∈ {1, · · · , d}m+k,∫

Rd
LI,Jf ψ(t, x, v) dv =

∫
Rd
∂α(I,J)x f ψ(t, x, v) dv + RI,J,ψ,
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where RI,J,ψ is a remainder satisfying the estimate

‖RI,J,ψ‖L2(0,T ;L2
x)
≤ Λ(T,M).

Consequently, recalling the definition of F in (7.3), if we are able to obtain the
bound

‖I0‖L2(0,T ;L2
x)

+ ‖I1‖L2(0,T ;L2
x)

+ ‖I2‖L2(0,T ;L2
x)
≤ Λ(T,M),

then we deduce the bound∑
I,J

∥∥∥∥∫
Rd
∂α(I,J)x fψ dv

∥∥∥∥
L2(0,T ;L2

x)

≤ Λ(T,M),

that is we obtain the sought bound (7.1) at rank n.

7.1.1. Study of I0. Let us begin by treating the contribution of the initial data,
that corresponds to the term I0. First by using estimate (5.3) in Lemma 5.2, the
L∞ bound for A in (7.8), and the estimate

(7.12) ‖(1 + |v|2)−r0/2ψ‖L∞x,v . 1,

we have for all x ∈ Td,∣∣∣∣∫
Rd
A(t, 0, x, v)F(0,X(0, t, x, v), v)(1 + |v|2)r0/2|detDvΦ(t, x, v)| dv

∣∣∣∣
≤ Λ(T,M)

∫
|F(0,X(0, t, x, v), v)|(1 + |v|2)r0/2 dv.

Therefore, we get that

‖I0‖L2(0,T ;L2
x)
≤ Λ(T,M)

∥∥∥∥∫
Rd
‖F(0,X(0, t, ·, v), v)‖L2

x
(1 + |v|2)r0/2 dv

∥∥∥∥
L2(0,T )

.

By using the change of variable y = X(0, t, x, v) + ta(v) = x − tX̃(0, t, x, v) and
Lemma 5.3, we obtain that

‖F(0,X(0, t, ·, v), v)‖L2
x
≤ Λ(T,M)‖F(0, · − ta(v), v)‖L2

x
≤ Λ(T,M)‖F(0, ·, v)‖L2

x

and hence, we deduce that since r > r0 + d/2, for some r′ > d/2, there holds

‖I0‖L2(0,T ;L2
x)
≤ Λ(T,M)

(∫
Rd

dv

(1 + |v|2)r′

) 1
2

‖F(0)‖H0
r
.

By using the fact that at t = 0 we have Φ(0, x, v) = v and L(K,L)|t=0 = ∂
α(K,L)
x we

end up with

‖F(0)‖H0
r

= ‖F(0)‖H0
r
≤ Λ(M)

m+k∑
j=m−k

∑
|α|+|β|=m+k−j

‖∂2jx ∂αx ∂βv f0‖H0
r

and hence we finally obtain that

‖I0‖L2(0,T ;L2
x)
≤ Λ(T,M).
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7.1.2. Study of I1. We treat the other remainder term I1 in a similar fashion. In-
deed, using again estimate (5.3) in Lemma 5.2, (7.8) and (7.12), we first get

‖I1‖L2(0,T ;L2
x)
≤ Λ(T,M)

×
∥∥∥∥∫ t

0

∫
Rd
‖R(s,X(s, t, ·, v),Φ(s,X(s, t, ·, v), v))‖L2

x
(1 + |v|2)r0/2 dvds

∥∥∥∥
L2(0,T )

.

Thanks to the change of variable x 7→ X(s, t, x, v) and to the estimates of Lemma
5.3, it follows that

‖I1‖L2(0,T ;L2
x)
≤ Λ(T,M)

∥∥∥∥∫ t

0

∫
Rd
‖R(s, ·,Φ(s, ·, v))‖L2

x
(1 + |v|2)r0/2 dvds

∥∥∥∥
L2(0,T )

≤ Λ(T,M)

∥∥∥∥∫ t

0

‖(R ◦ Φ)(s)‖H0
r̃
ds

∥∥∥∥
L2(0,T )

≤ Λ(T,M)T ‖R ◦ Φ‖L2(0,T ;H0
r̃)
,

by choosing r̃ > r0 +d/2, which is possible since r > r0 +d. Using again the change
of variables v 7→ Φ(t, x, v), Lemma 5.2 and the estimate (7.6), we thus obtain

‖I1‖L2(0,T ;L2
x)
≤ Λ(T,M).

7.1.3. Study of I2. The main matter thus concerns the contribution of the term I2,
which features an apparently loss of derivative in x. This is however not the case,

thanks to Proposition 6.2. Let K,L ∈ {1, · · · , d}m+k. Writing ∂
α(K,L)
x = ∂x∂

α′

x

with |α′| = |α(K,L)| − 1, we are led to study terms of the form (here F ji stands for
the i-th coordinate of F j):∑̀

j=1

∫ t

0

∫
Rd

(∂x∂
α′

x F
j
i )(s,X(s, t, x, v))ψ(t,X(s, t, x, v),Φ(s,X(s, t, x, v), v))

×AI,JK,L(t, s, ,X(s, t, x, v),Φ(s,X(s, t, x, v), v))Aj(Φ(s,X(s, t, x, v), v))

×∂vif(s,X(s, t, x, v),Φ(s,X(s, t, x, v), v)|detDvΦ(t, x, v)| dvds,

where ‖AI,JK,L‖L∞(0,T ;Wd+2,∞
x,v ) ≤ Λ(T,M).

We use the change of variables v = Ψ(s, t, x, w) to rewrite this expression as∑`
j=1KUj (∂

α′

x F
j
i ), with

(7.13)

Uj(s, t, x, v) = Aj

(
Φ(s, x− (t− s)a(v),Ψ(s, t, x, v))

)
×AI,JK,L

(
t, s, x− (t− s)a(v),Φ(s, x− (t− s)a(v),Ψ(s, t, x, v))

)
× ψ

(
t, x− (t− s)a(v),Φ(s, x− (t− s)a(v),Ψ(s, t, x, v))

)
× ∂vif

(
s, x− (t− s)a(v),Φ(s, x− (t− s)a(v),Ψ(s, t, x, v))

)
× | detDvΦ(t, x,Ψ(s, t, x, v))||detDvΨ(s, t, x, v)|,

where we recall the operators K were introduced in Section 6. In order to apply
Proposition 6.2, we have to estimate, s, t being fixed, Uj in H2+d

r′ , with r′ > d/2 +
2(1 + λ)(1 + d) and r ≥ r′ + r0 (which is possible since r > R as defined in (2.12)).
First, by (2.3), (2.6), (7.8), (5.3) in Lemma 5.2 and estimate (5.8) in Lemma 5.3,
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we can uniformly bound in L∞ all terms involving Aj , Φ, Ψ and their derivatives
(since only at most 2 +d derivatives can be involved). For what concerns ψ, we use

‖(1 + |v|2)−r0/2∂αψ‖L∞x,v . 1, ∀|α| ≤ d+ 2.

We are therefore led to estimate integrals under the form

I =∣∣∣∣∫
Td×Rd

|g(x− (t− s)a(v),Φ(s, x− (t− s)v,Ψ(s, t, x, v)))|2(1 + |v|2)r0+r
′
dvdx

∣∣∣∣ ,
where g = ∂αf , |α| ≤ d + 3. To this end, we can use the change of variables
v 7→ w = Ψ(s, t, x, v) and rely on estimate (5.7) in Lemma 5.3 to obtain the bound

I ≤ Λ(T,M)

∫
Td×Rd

|g(X(s, t, x, w),Φ(s,X(s, t, x, w), w))|2(1 + |w|2)r0+r
′
dxdw.

Next, arguing as for I1, we can use successively the change of variable x 7→ y =
X(s, t, x, w) with the estimates of Lemma 5.3, and the change of variable w 7→ u =
Φ(s, y, w) with estimate (5.3) in Lemma 5.2, to finally obtain

I ≤ Λ(T,M)‖g‖2H0
r
≤ Λ(T,M)‖f‖2H2m−1

r
,

since 2m− 1 ≥ d+ 3 and r > R. As a result we obtain the bound

(7.14) sup
s,t
‖Uj‖H2+d

r′
≤ Λ(T,M)‖f‖2H2m−1

r
≤ Λ(T,M).

We can therefore apply Proposition 6.2 to get the bound

(7.15)

‖KUj,i(F
j
i )‖L2(0,T ;L2

x)
. sup

s,t
‖Uj‖H2+d

r′
‖F ji ‖L2(0,T ;H

2(m+k)−1
x )

≤ Λ(T,M)‖F ji ‖L2(0,T ;H
2(m+k)−1
x )

≤ Λ(T,M),

thanks to estimate (7.2). We deduce

‖I2‖L2(0,T ;L2
x)
≤ Λ(T,M)

and gathering all pieces together, we therefore obtain (7.1) at rank n, and the
induction argument is complete. Theorem 2.1 follows.

7.2. Proof of Corollary 2.2. In order to prove the higher order regularity for the
characteristics, we proceed as in [34, Lemma 5.1].

By Theorem 2.1 and the assumption (2.9), we have for all j = 1, · · · , `,

F j ∈ L2(0, T ;Hn′

x )

and thus by Sobolev embedding, we deduce that for k < n′ − d/2,

(7.16) F j ∈ L2(0, T ;W k,∞
x ).

We set
Z := (Y,W ) := (X − tv − x, V − v).

Let us first prove that Z ∈ L∞(0, T ;W k,∞
x,v ) for k < n′−d/2. Note that by definition

of (X,V ), Z satisfies the equation

Z =

∫ t

0

(Y + v) ds,

∫ t

0

∑̀
j=1

Aj(W + v)F j(Y + x+ tv) ds

 .
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By (2.6) and (7.16), we obtain by induction (on the number of applied derivatives)
that for t ≤ T ,

sup
|α|<n′−d/2

sup
[0,t]

‖∂αx,vZ‖L∞x,v .
∫ t

0

λ(s)

(
1 + sup

|α|<n′−d/2
sup
[0,s]

‖∂αx,vZ‖L∞x,v

)
ds,

where λ is a non-negative function belonging to L2(0, T ), with norm bounded by
Λ(T,M). We deduce our claim thanks to the Gronwall inequality, which yields

(7.17) sup
|α|<n′−d/2

sup
[0,t]

‖∂αx,vZ‖L∞x,v ≤
√
tΛ(T,M).

We deduce in particular from this estimate that for T ′ ∈ (0, T ] small enough, for
all v ∈ Rd, the map x 7→ X(T ′, 0, x, v) is a C1 diffeomorphism.

Next, let us turn to the L∞t L
∞
v L

2
x estimate. We set

N (t) := sup
|α|≤n′

sup
[0,t]

‖∂αx,vZ‖L∞v L2
x
.

By an application of the Faà di Bruno formula, we obtain

N (t) .
∑̀
j=1

∫ t

0

∑
k1,k2,β1,··· ,βk1+k2

Jjk1,k2,β1,··· ,βk1+k2
ds,

with

Jjk1,k2,β1,··· ,βk1+k2
:=∥∥∥|(Dk1

v Aj) ◦ V (s)(Dk2
x F

j) ◦X(s)||∂β1
x,v(X,V )| · · · |∂βk1+k2

x,v (X,V )|
∥∥∥
L∞v L

2
x

,

and where the sum is taken only on indices such that k1 + k2 =: k ≤ |α| ≤ n′,
β1 + · · ·+ βk = |α| with for every j, |βj | ≥ 1 and |β1| ≤ |β2| ≤ · · · ≤ |βk|.

Let us observe that in the sum, if k1 + k2 = k ≥ 2, we necessarily have |βk−1| <
n′ − d/2. Indeed, otherwise, we would have |β1| + · · · + |βk| ≥ 2n′ − d and thus
n′ ≥ 2n′ − d, which means n′ ≤ d. This is impossible by assumption on n′. Next,

• if k2 < n′ − d/2 and k1 + k2 = k ≥ 2 we obtain thanks to the above
observation and (7.17) that for i = 1, · · · , k − 1,

(7.18) ‖∂βix,v(X,V )‖L∞x,v . 1 + T + ‖∂βix,v(Z)‖L∞x,v . Λ(T,M).

Moreover, using (2.6), (7.16) we get

Jjk1,k2,β1,··· ,βk1+k2

≤ ‖Dk1Aj‖L∞x,v‖D
k2F j‖L∞x,v

∥∥∥∥∥
k−1∏
i=1

∂βix,v(X,V )

∥∥∥∥∥
L∞x,v

‖∂βkx,v(X,V )‖L∞v L2
x

≤ Λ(T,M)‖Dk2F j‖L∞x,v (1 +N (s)).

If k = 1, the above estimate is clearly also valid.
• if k2 ≥ n′−d/2, we observe that for every i, |βi| ≤ |βk| ≤ n′−(k−1) < d/2.

In particular |βi| < n′ − d/2 by assumption on n′ and we have this time
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that (7.18) holds for all i = 1, · · · , k. This yields

Jjk1,k2,β1,··· ,βk1+k2
.
∥∥(Dk1

v Aj) ◦ V
∥∥
L∞v L

2
x

∥∥(Dk2
x F

j) ◦X
∥∥
L∞v L

2
x

Λ(T,M)

.
∥∥Dk1

x,vAj
∥∥
L∞v

∥∥(Dk2
x F

j) ◦X
∥∥
L∞v L

2
x

Λ(T,M)

. Λ(T,M)
∥∥(Dk2

x F
j)
∥∥
L2
x
.

To get the last estimate, we restrict to T ′ ≤ T small enough so that we can
use the change of variable y = X(t, 0, x, v) when computing the L2

x norm
of (Dk2

x,vF
j) ◦X.

By combining the above estimates, we obtain that for t ≤ T ′,

N (t) ≤
√
tΛ(T,M) +

∫ t

0

Λ(T,M) sup
j
‖F j(s)‖Hn′x N (s) ds.

By using again (7.16) and the Gronwall inequality, we thus obtain that for t ≤ T ′,

N (t) .
√
tΛ(T,M),

which concludes the proof of Corollary 2.2.

7.3. Proof of Corollary 2.5. The idea, as in [24, Proposition 5.2], consists in
applying Theorem 2.1 with the test function

ψη(v) = e−v·η ∈Wn′,∞
x,v ,

where η ∈ Rd has to be seen as the Fourier variable in velocity. A close inspection
of the proofs reveals that the conclusion of Theorem 2.1 can be refined into

(7.19) ∀η ∈ Rd,
∥∥∥∥∫ fψη dv

∥∥∥∥
L2(0,T0;Hn

′
x )

≤ Λ(T0,M, ‖ψη‖Wn′,∞
v

),

where Λ is a polynomial function. Moreover, ‖ψη‖Wn′,∞
v

. Λ′(|η|), where Λ′ is also

a polynomial function (of degree n′). Since

1/(2π)d/2
∫
fψη dv = Fvf(t, x, η),

we deduce from (7.19) that for some p > 0 taken large enough,∥∥∥f̂(t, k, η)(1 + |k|2)n
′/2(1 + |η|2)−p/2

∥∥∥
L2(0,T0;L2(Zd×Rd))

< +∞,

which means that f ∈ L2(0, T0;Hn′,−p
x,v ).

8. Application to classical models from physics

The goal of this section is to briefly explain why both Vlasov-Poisson and rela-
tivistic Vlasov-Maxwell enter the abstract framework, and thus why Theorem 2.1
(and its corollaries) apply to these classical models.
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8.1. Vlasov-Poisson. The Cauchy problem for the Vlasov-Poisson system (1.2)
was studied (among many other references)

• for what concerns (global) weak solutions, in [2],
• for what concerns local strong solutions in [60], and [8, 46, 53, 55, 27, 10, 39]

for global strong solutions.

Let us check the following structural assumptions for (1.2).
• Assumptions on the advection field. In this model, a(v) = v, so that all required
assumptions on a are straightforward properties. One can take λ = 0 in (2.4).
• Assumptions on the force field. For what concerns the force field F , we can write
` = 1, A1 = 1 and F 1 = −∇xφ, where φ is computed only thanks to the moment
of order 0 of f only, that is ψ1 = 1 (thus r0 = 0) and

mψ1 =

∫
Rd
f dv.

The assumption (2.9) follows straightforwardly from the Poisson equation, as for
all n ∈ N, there holds

∀t ≥ 0, ‖F 1(t)‖Hnx . ‖mψ1
(t)‖Hn−1

x
.

We however do not need the smoothing effect due to the Poisson equation. It follows
directly that both estimates (2.9) and (2.10) hold. The stability estimate (2.11)
holds because of the same estimate, by linearity of the Poisson equation. It turns out
that using the smoothing estimate, we can obtain a stronger version of Theorem 2.1:
we embed this situation in what we refer to as transport/elliptic systems, and refer
to Theorem 9.1 in Section 9.

Note also that the Vlasov-Poisson system with dynamics constrained on geodesics
introduced in the context of stellar dynamics in [19] enter the abstract framework
as well (and in this model there is no smoothing of the force field).

8.2. Relativistic Vlasov-Maxwell. The Cauchy problem for the relativistic Vlasov-
Maxwell system (1.3) was studied (among many other references)

• for what concerns (global) weak solutions, in [20],
• for what concerns (local) strong solutions in [61, 62, 17, 6, 26, 29, 27, 56,

14, 44, 51, 47].

Let us check the following structural assumptions for (1.3).
• Assumptions on the advection field. In this model, a(v) = v̂, and one can check
by a straightforward induction that

‖∂αv v̂‖L∞v ≤ Cα, ∀α.

We have a(Rd) = B(0, c) and there holds the explicit formula

∀w ∈ B(0, c), a−1(w) =
w√

1− |w|2/c2
.

It follows that one can take λ = 2 in (2.4).
• Assumptions on the force field. For what concerns the force field F , we observe
that we can take ` = 4 and write

(8.1) A1 = 1, F 1 = E,
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and setting B = (B1, B2, B3) in an orthonormal basis (e1, e2, e3),

(8.2)

A2 = v̂1, F 2 = B2e3 −B3e1,

A3 = v̂2, F 3 = B3e1 −B1e3,

A4 = v̂3, F 4 = B1e2 −B2e1.

The electromagnetic field (E,B) is computed only from initial data (E0, B0) and
the moments of order 0 and 1, that correspond to ψ1 = 1, ψ2 = v̂ (so that r0 = 0)
and

mψ1
=

∫
Rd
f dv, mψ2

=

∫
Rd
fv̂ dv

The assumption (2.9) follows from classical energy estimates for Maxwell equations:
we have for all n ∈ N and all t ≥ 0,

‖(E,B)‖L2(0,t;Hnx )
≤ Cnt3/2

2∑
i=1

‖mψi‖L2(0,t;Hnx )
+ ‖(E,B)(0)‖L2(0,t;Hnx )

,

see e.g. [36, Lemma 3.2]. The estimate (2.10) is proved similarly. The stability esti-
mate (2.11) holds because of the same energy estimate, by linearity of the Maxwell
equations.

8.3. Remarks. Some remarks about possible generalizations of the abstract frame-
work are in order.

• It is possible to add a smooth force, of Ck regularity with k large enough,
and still adapt the results of Theorem 2.1, without significantly modifying
the analysis. This allows for instance to consider Vlasov-Poisson with a
smooth external magnetic field.
• The so-called relativistic gravitational Vlasov-Poisson system (which may

be relevant for galactic dynamics) enters the abstract framework as well, by
a combination of the estimates of Section 8.1 and 8.2 (see e.g. [28, 33, 43, 45]
for some references about this system).
• The divergence-free (in v) condition for F is not an absolute requirement

for the analysis. It may be dropped up to introducing more complicated
formulas. In particular, it is likely that fluid/kinetic systems for sprays
such as Vlasov-Stokes or Vlasov-Navier-Stokes in dimension d = 2 enter
this framework (or a slightly modified version of if) as well. We refer e.g.
to [40, 15, 18, 16] for some references about these equations. See also [7, 49]
for other fluid/kinetic systems.
• Note that the so-called non-relativistic Vlasov-Maxwell system (that is Sys-

tem (1.3) with v replacing all occurences of v̂) does not enter the abstract
framework. Indeed the assumption (2.6) is not satisfied. However we claim
that (2.6) is crucial only for having a good local well-posedness theory in
Hnr spaces. This means that without (2.6), we can still obtain a result sim-
ilar to that of Theorem 2.1, except that we have to assume the existence
of a solution of (2.1) with the required regularity. For what concerns the
non-relativistic Vlasov-Maxwell system, such solutions do exist, following
Asano [6], which requires the introduction of Sobolev spaces with loss of
integrability in velocity.
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9. The case of transport/elliptic type Vlasov equations

9.1. An improvement of Theorem 2.1. Let us assume in this section that the
following strengthened version of (2.9) is verified:

(9.1)

‖F j‖L2(0,t;Hnx )

≤ Γ(j)
n

t, ‖mψ1
‖L2(0,t;Hn−1

x ), · · · , ‖mψr‖L2(0,t;Hn−1
x ),

∑̀
j=1

‖F j(0)‖Hnx

 .

In other words, the force is smoothed out and gains one derivative compared to the
distribution function. We refer to such a situation as the transport/elliptic type
case. This includes in particular the Vlasov-Poisson system. We then have the
following version of Theorem 2.1. This is an improved version in the sense that the
higher regularity we ask for is only regularity in x and not at all in v (compare (9.2)
below to (2.13) in Theorem 2.1).

Theorem 9.1. Let n ≥ N and r > R. Let n′ > n be an integer such that n >

bn
′

2 c+d+1. Assume that f0 ∈ Hnr and F j(0) ∈ Hn′

x for all j ∈ {1, · · · , `}. Assume
furthermore that the initial data f0 satisfy the following higher space regularity:

(9.2) ∂αx f0 ∈ H0
r , ∀|α| = n′.

Then there is T > 0 such that the following holds. There exists a unique solution
(f(t), F (t)) with initial data (f0, F (0)) to (2.1) such that f(t) ∈ C(0, T ;Hnr ).

Moreover, for all test functions ψ ∈ L∞(0, T ;Wn′,∞
−r0 ), we have

(9.3)

∫
fψ dv ∈ L2(0, T ;Hn′

x )

As in Corollary 2.5, we may deduce as well under the assumptions of Theorem 9.1
that

(9.4) f ∈ L2(0, T ;Hn′,−∞
x,v ).

Proof of Theorem 9.1. The beginning of the proof is the same as for Theorem 2.1
(of which we keep the notations). Let us set in this context

(9.5) M := ‖f0‖H2m−1
r

+

2p∑
k=0

∑
|α|=2m+k

‖∂αx f0‖H0
r

+
∑̀
j=1

‖F j(0)‖
H

2(m+p)
x

,

We proceed with the same induction argument, treating all terms similarly except
for‖ what concerns the treatment of the term I0 for which the following improvement
in Section 7. The idea will be to use integration by parts in v to trade derivatives in v
against derivatives in x, allowing to obtain estimates depending on (9.5) (compared
to (3.13) for Theorem 2.1).

First note using the smoothing estimate (9.1) that we improve (7.2) to

(9.6)
∑̀
j=1

‖F j‖
L2(0,T ;H

2(m+k)
x )

≤ Λ(T,M).

‖We also remark that in order to treat the term I2, we do not absolutely need to use Propo-
sition 6.2: we can indeed rely on the smoothing estimate (9.6) on the force instead and argue as

we did for I1. This observation will be useful later in order to treat other Vlasov models.
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We can use this improved estimate with Remark 4.10 to deduce that the coefficients
of A (as appearing in (7.4)) satisfy the improved form of (7.5)

(9.7) ‖A‖L2(0,T ;Wp,∞
x,v ) . Λ(T,M), ∀p < 2m− d/2− 1.

Therefore we deduce the improved form of (7.8):

(9.8) ‖A(·, t, ·)‖L∞(0,T ;Wp,∞
x,v ) . Λ(T,M), ∀p < 2m− d/2− 1.

The treatment of I0 then leads to the study of terms of the general form

J =

∫
Rd

(∂αx ∂
β
vF)(0,X(0, t, x, v), v)m(t, x, v) dv,

where, for j = m− k, · · · ,m+ k, |α|+ |β| = m+ k + j, |α| ≥ 2j, and

‖m‖L∞(0,T ;HN−r′−r0 )
≤ Λ(T,M),

for all N < 2m − d/2 − 1 and all r′ > d/2. If |β| = 0, there is nothing special to
do, as only derivatives in x are involved, so let us assume that |β| ≥ 1. We write

∂βv = ∂β
′

v ∂v. We have

J =

∫
Rd
∂v

[
(∂αx ∂

β′

v F)(0,X(0, t, x, v), v)
]
m(t, x, v) dv

−
∫
Rd

(∂αx ∂
β′

v )(∂vX(0, t, x, v) · ∇xF)(0,X(0, t, x, v), v)m(t, x, v) dv,

and thus by integration by parts in v, we get

J = −
∫
Rd

[
(∂αx ∂

β′

v F)(0,X(0, t, x, v), v)
]
∂vm(t, x, v) dv

−
∫
Rd

(∂αx ∂
β′

v )(∂vX(0, t, x, v) · ∇xF)(0,X(0, t, x, v), v)m(t, x, v) dv.

We therefore observe that this procedure allows to trade derivatives in v against
derivatives in x.

Assume now that one can write, for some l ∈ {1, · · · , |β|},

J =
∑
|β′|≤l

∑
|α′|≤|α|+|β|−l

∫
Rd

[
(∂α

′

x ∂
β′

v F)(0,X(0, t, x, v), v)
]
mα′,β′(t, x, v) dv +Rl

where

(9.9) ‖mα′,β′‖L∞(0,T ;HNl−r′−r0 )
≤ Λ(T,M),

for all Nl < 2m−d/2−1−|β|+ l and all r′ > d/2, and Rl is a remainder satisfying

‖Rl‖L2(0,T ;L2
x)
≤ Λ(T,M).

Let us show that this property holds as well for at rank l − 1. Following the same
integration by parts argument as above, we may write

J −Rl = J1 + J2 + J3
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where

J1 =
∑

|α′|≤|α|+|β|−l

∫
Rd

[
(∂α

′

x F)(0,X(0, t, x, v), v)
]
mα′,0(t, x, v) dv,

J2 =−
∑
|β′|≤l

∑
β′=(β′′,j)

∑
|α′|≤|α|+|β|−l∫

Rd

[
(∂α

′

x ∂
β′′

v F)(0,X(0, t, x, v), v)
]
∂vjmα′,β′(t, x, v) dv,

J3 =−
∑
|β′|≤l

∑
β′=(β′′,j)

∑
|α′|≤|α|+|β|−l∫

Rd
(∂α

′

x ∂
β′′

v )(∂vjX(0, t, x, v) · ∇xF)(0,X(0, t, x, v), v)mα′,β′(t, x, v) dv.

The terms J1 and J2 have the good form already. For J3, by using Leibniz rule, we
observe that we need to study terms of the form

J =

∫
Rd
∂γx,vX(0, t, x, v)∂η1x ∂

η2
v F(0,X(0, t, x, v), v)mα′,β′(t, x, v) dv,

with |η2| ≤ |β′′| = l − 1, 1 ≤ |η1| ≤ |α′|+ 1, and |γ| = |α′|+ |β′′| − |η1| − |η2|+ 2.
Assume first that |η1|+ |η2| ≤ 2m−1. If |η1|+ |η2| < 2m−1−d, then by Sobolev

embedding we can bound

‖(1 + |v|2)r/2(∂η1x ∂
η2
v F)(0,X(0, t, x, v), v)‖L∞x,v ≤ ‖f0‖H2m−1

r
≤ Λ(M).

Since 0 < |γ| ≤ 2(m+ k), we use (9.6) and Lemma 5.2 to get

‖∂γX‖L∞(0,T ;L∞v L
2
x)
≤ Λ(T,M).

(This is where the elliptic estimate (9.1) is crucially used.) Furthermore, since
2m− d/2− 1− 2p > d, we can bound

‖mα′,β′‖L∞(0,T ;W0,∞
−r′−r0

) ≤ Λ(T,M),

for r′ > d/2 such that r > r′ + r0 + d. Therefore such terms satisfy a bound

‖J‖L2(0,T ;L2
x,v)
≤ Λ(T,M),

and thus can be put into the remainder Rl−1. If |η1| + |η2| ≥ 2m − 1 − d, then
|γ| ≤ 2k+d+ 1. Since 2m−d− 1 > d/2, we can use this time ‖∂γX‖L∞(0,T ;L∞x,v)

≤
Λ(T,M) and again, arguing as in the treatment of I0 in the proof of Theorem 2.1,
such terms are remainders.

Otherwise |η1|+ |η2| ≥ 2m. Then we have |γ| ≤ 2k and thus 2(m+k)−|γ| ≥ 2m.
We set in this case mη1,η2 := ∂γx,vXmα′,β′ . In order to show that ∂γx,vXmα′,β′ has
the required regularity, we are led to study terms of the form

J̃ = ‖∂ax,v∂γx,vX ∂bx,vmα′,β′‖L∞(0,T ;H0
−r′−r0

), |a|+ |b| = Nl−1,

for all Nl < 2m − d/2 − 1 − |β| + l − 1 and all r′ > d/2. Assume first that
|a| < 2m− d/2, then we have |a|+ |γ| < 2(m+ k)− d/2 and we use estimate (5.7)
in Lemma 5.2 to get ‖∂ax,v∂γx,vX‖L∞(0,T ;L∞x,v)

≤ Λ(T,M), and apply (9.9) to bound

‖∂bx,vmα′,β′‖L∞(0,T ;H0
−r′−r0

) ≤ Λ(T,M).
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Otherwise, |a| ≥ 2m − d/2. Since we have 2(m + k) − |γ| ≥ Nl−1 for all Nl−1 <
2m− 2− |β|+ l, and we can use estimate (5.7) in Lemma 5.2 to get∑

|a|≤Nl−1

‖∂ax,v∂γx,vX‖L∞(0,T ;L∞v L
2
x)
≤ Λ(T,M).

Since |b| = Nl−1 − |a| ≤ Nl−1 − 2m + d/2, we have Nl − |b| ≥ 2m + 1 − d/2 > d.
As a result, by (9.9) and the Sobolev embedding we get that

‖∂bx,vmα′,β′‖L∞(0,T ;W0,∞
−r′−r0

) ≤ Λ(T,M).

In all cases, we have obtained
J̃ ≤ Λ(T,M).

Therefore the corresponding terms of J3 can be written under the form∫
Rd

(∂η1x ∂
η2
v F)(0,X(0, t, x, v), v)mη1,η2(t, x, v) dv,

with ‖mη1,η2‖L∞(0,T ;H
Nl−1

−r′−r0
)
≤ Λ(T,M) for all Nl−1 < 2m− 1− |β|+ (l − 1) and

r′ > d/2.
We conclude by induction that we can write at rank l = 0

J =
∑

|α′|≤m+k+j

∫
Rd

[
(∂α

′

x F)(0,X(0, t, x, v), v)
]
mα′,0(t, x, v) dv +R

with ‖mα′,β′‖L∞(0,T ;HN−r′−r0 )
≤ Λ(T,M) for all N < 2m− 1− |β| and r′ > d/2 and

‖R‖L2(0,T ;L2
x)
≤ Λ(T,M) is a remainder.

We then note that 2m− 2− 2k > d, so that

‖mα′,β′‖L∞(0,T ;W0,∞
−r′−r0

) ≤ Λ(T,M).

Arguing as in the previous treatment of I0 in the proof of Theorem 2.1, we finally
conclude that

(9.10) ‖I0‖L2(0,T ;L2
x)
≤ Λ(T,M)

m+k∑
j=m−k

∑
|α|=m+k−j

‖∂αx f0‖H0
r
.

This allows to conclude the proof.
�

As already noted in the proof of Theorem 9.1, we actually do not need to use
Proposition 6.2 to treat the term I2 in view of Theorem 9.1: we can indeed rely
on the smoothing estimate (9.1) on the force instead. Furthermore, one can obtain
L∞t estimates instead of the L2

t theory that we have developped. This observation
implies the following fact: replacing (9.1) by the slightly weaker estimate (in the
sense that it is implied by (9.1)):

(9.11)

‖F j‖L2(0,t;Hnx )

≤ Γ(j)
n

t, ‖mψ1‖L∞(0,t;Hn−1
x ), · · · , ‖mψr‖L∞(0,t;Hn−1

x ),
∑̀
j=1

‖F j(0)‖Hnx

 .

together with an associated stability estimate replacing (2.11) with L∞t norms in-
stead of L2

t for the moments on the right-hand side, then Theorem 9.1 still holds.
It suffices to estimate all terms (that is to say the moments, I0, I1, I2, · · · ) in
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L∞(0, T ;L2
x) instead of L2(0, T ;L2

x) as previously. This remark is useful in par-
ticular to treat the so-called Vlasov-Darwin model from plasma physics, that we
introduce in the following paragraph.

9.2. Vlasov-Darwin. The Vlasov-Darwin system is another model that allows
to describe the dynamics of charged particles in a plasma, which stands on stage
between Vlasov-Poisson and relativistic Vlasov Maxwell. Like Vlasov-Poisson, it
can be derived from Vlasov-Maxwell in the non-relativistic regime, that is to say
in the limit c → +∞. The difference is that Vlasov-Darwin happens to be a
higher oder approximation than Vlasov-Poisson, see [11]; in particular it retains self-
induced magnetic effects that have disappeared completely in the Vlasov-Poisson
dynamics. It reads

(9.12)



∂tf + v̂ · ∇xf +

(
E +

1

c
v̂ ×B

)
· ∇vf = 0,

E = −∇xφ−
1

c
∂tA, B = ∇x ×A,

−∇xφ =

∫
R3

f dv −
∫
T3×R3

f dvdx,

−∆xA =
1

c
P
∫
R3

v̂f dv, ∇x ·A = 0,

where c > 0 is the speed of light and P denotes the Leray projector. The Cauchy
problem for the Vlasov-Darwin system (1.3) was studied (among many other refer-
ences):

• for what concerns (global) weak solutions, in [50],
• for what concerns strong solutions in [50, 57, 59].

To embed this system into the abstract framework, we need to make the addi-
tional assumption that all initial conditions f0 that are considered are a.e. non-
negative. By a standard property of the Vlasov equation, any associated solution
f(t) is also a.e. non-negative.
• Assumptions on the advection field. In this model a(v) = v̂, which is already
treated for the relativistic Vlasov-Maxwell case.
• Assumptions on the force field. We have the decomposition (8.1)–(8.2) as well.
Let us set

E = EL + ET , EL = ∇xφ, ET = −1

c
∂tA.

and introduce

ψ1 = 1, ψ2 = v̂, ψ3 =
v̂ ⊗ v̂√

1 + |v|2/c2
, ψ3 = Id−mψ3 ,

(so that r0 = 0) and

mψi =

∫
Rd
ψif dv,

where mψ3 and mψ4 are symmetric matrices. Since EL and ET derive from poten-
tials solving a Poisson equation, we have

∀t ≥ 0, ‖(EL, B)(t)‖Hnx .
2∑
i=1

‖mψi(t)‖Hn−1
x
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and thus

‖(EL, B)‖L∞(0,t;Hnx )
.

2∑
i=1

‖mψi(t)‖L∞(0,t;Hn−1
x ).

For what concerns ET , this is a little more subtle; this is where we need that f(t) ≥ 0
a.e. As in [50, Lemma 2.10], we obtain that ET satisfies the inhomogeneous elliptic
equation

(9.13) −∆ET +
1

c
mψ4

ET = −1

c
(mψ4

EL −mψ2
×B −∇x : mψ3

) .

We fix the time t ≥ 0 which is a parameter here (we take the L∞t norm in the end).
Let n > d. By [50, Lemma 2.10], which relies on the fact that mψ4 is actually a
semi-definite symmetric matrix, it follows that (9.13) has a unique solution ET in
H1
x, with the bound

‖ET ‖H1
x
. ‖mψ4

EL‖H−1
x

+ ‖mψ2
×B‖H−1

x
+ ‖∇ : mψ3

‖H−1
x

. ‖mψ4
EL‖L2

x
+ ‖mψ2

×B‖L2
x

+ ‖mψ3
‖L2

x

. ‖mψ4
‖Hnx ‖EL‖Hnx + ‖mψ2

‖Hnx ‖B‖Hnx + ‖mψ3
‖Hnx

.

(
1 +

2∑
i=1

‖mψi(t)‖Hnx

)(
‖mψ4‖Hnx + ‖mψ2‖Hnx + ‖mψ3‖Hnx

)
.

Then assume by induction that we have a bound of the form

(9.14) ∀k = 1, · · · , N, ‖ET ‖Hkx . Γk
(
‖mψ1‖Hnx , · · · , ‖mψ4‖Hnx

)
,

for N ≤ n, where Γk is a polynomial function. Assume first that N < n− d/2. Let
|α| = N . We note that ∂αxET satisfies

−∆∂αxET +
1

c
mψ4∂

α
xET = −1

c
∂αx (mψ4EL −mψ2 ×B −∇x : mψ3)− [∂αx ,mψ4 ]ET .

We have by standard tame Sobolev estimates
(9.15)
‖∂αx (mψ4

EL −mψ2
×B −∇x : mψ3

) ‖H−1
x
.(

1 +

2∑
i=1

‖mψi(t)‖Hnx

)(
‖mψ4‖Hnx + ‖mψ2‖Hnx + ‖mψ3‖Hnx

)
.

Since N < n− d/2, we can use the Sobolev embedding to obtain

‖[∂αx ,mψ4 ]ET ‖H−1
x
. ‖mψ4‖WN,∞

x
‖ET ‖HNx

. ‖mψ4‖Hnx Γk
(
‖mψ1‖Hnx , · · · , ‖mψ4‖Hnx

)
.

We apply again the H1
x estimate of [50, Lemma 2.10] to obtain a bound of the form

‖ET ‖HN+1
x
. ΓN+1

(
‖mψ1

‖Hnx , · · · , ‖mψ4
‖Hnx

)
.

We deduce by induction that for all N < n− d/2,

‖ET ‖HN+1
x
. ΓN+1

(
‖mψ1

‖Hnx , · · · , ‖mψ4
‖Hnx

)
.

In particular, since n > d, we deduce in particular

(9.16) ‖ET ‖L∞x . Γ
(
‖mψ1

‖Hnx , · · · , ‖mψ4
‖Hnx

)
.



PROPAGATION OF HIGHER SPACE REGULARITY FOR VLASOV EQUATIONS 49

Now assume we have (9.14) for some N ≤ n. We have the tame Sobolev estimate

‖[∂αx ,mψ4
]ET ‖H−1

x
. ‖mψ4

‖Hn(‖ET ‖HNx + ‖ET ‖L∞x )

. ‖mψ4‖Hnx ΓN
(
‖mψ1‖Hnx , · · · , ‖mψ4‖Hnx

)
,

by (9.14) at rank N and (9.16). Thus using the H1
x estimate of [50, Lemma 2.10],

we obtain (9.14) at rank N + 1. By induction, we conclude that

‖ET ‖L∞(0,T ;Hn+1
x ) . Γn+1

(
‖mψ1

‖L∞(0,T ;Hnx )
, · · · , ‖mψ4

‖L∞(0,T ;Hnx )

)
,

which is an estimate of the requested form (9.11). A stability estimate of the same
form also holds because of similar considerations.

10. On the regularity assumptions of Theorem 2.1

The goal of this short last section is to discuss the type of regularity assumptions
which could be maybe conceivable for proving propagation of higher reguliarity.

Example 1. Consider the free transport equation

(10.1) ∂tf + v∂xf = 0,

set in R× R to simplify the discussion. Let ϕ(v) be a C∞ function, with compact
support in [−1/2, 1/2] and such that

∫
R ϕdv = 0. Let g be the piecewise continuous

function defined by g(x) = 1 for x ∈ [−1, 1] and 0 elsewhere. Observe that in the
sense of distributions, we have g′(x) = δx=−1− δx=−1, where δ stands for the Dirac
measure. We consider the initial condition

f |t=0 = g(x)ϕ(v) ∈ L2
x,v,

and the solution to (10.1) reads

f(t, x, v) = g(x− tv)ϕ(v).

It follows by explicit computations that ρ(t, x) :=
∫
R f dv satisfies

∂xρ(t, x) = ϕ

(
x+ 1

t

)
− ϕ

(
x− 1

t

)
,

∂kxρ(t, x) =
1

tk−1

(
ϕ(k−1)

(
x+ 1

t

)
− ϕ(k−1)

(
x− 1

t

))
, ∀k ∈ N∗.

We have for t < 4,

‖∂kxρ(t)‖2L2
x

=
1

t2(k−1)

(∥∥∥∥ϕ(k−1)
(
x+ 1

t

)∥∥∥∥2
L2
x

+

∥∥∥∥ϕ(k−1)
(
x− 1

t

)∥∥∥∥2
L2
x

)
,

since ϕ is compactly supported in [−1/2, 1/2], and thus

‖∂kxρ(t)‖2L2
x

=
2

t2(k−1)−1
‖ϕ(k−1)‖2L2

x
.

We deduce that for any T > 0, ρ /∈ L2(0, T ;H2
x). However ρ(0, x) = 0 ∈ Hk

x for all
k ∈ N.

This example shows that regularity of moments at initial time may not be propa-
gated, and a more precise information such as (2.13) is somehow required to obtain
higher regularity for moments.

Example 2. Consider the equation

(10.2) ∂tf + v∂xf + F (t, x)∂vf = 0,
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on T× R, with

F (t, x) =

∫
R
ψ(v)f(t, x, v) dv,

where ψ ∈ C∞c (Rd) with compact support in [−1/2, 1/2]. It is clear that (10.2)
enters the abstract framework of this work.

We consider the initial condition

f |t=0 = f
(1)
0 + f

(2)
0 ,

where f
(2)
0 is a smooth non-negative function, with support in T× [−1/2, 1/2] and

f
(1)
0 is a smooth non-negative function, with support in T× [1, 2].

Consider f (1) the solution of (10.2) associated to the initial condition f
(1)
0 , and

assume that it is defined on an interval [0, T ], for T > 0 small enough. Now define
f (2) as the solution on [0, T ] of the linear kinetic transport equation

∂tf + v∂xf +

(∫
R
ψ(v)f (1) dv

)
∂vf = 0,

with initial condition f
(2)
0 .

Because of the form of the force F (notably because ψ is localised in [−1/2, 1/2]),
we observe that up to reducing T > 0, the solution f on [0, T ] of (10.2) can be
written as

f = f (1) + f (2),

since T > 0 can be chosen small enough so that the support in velocity of f (2)(t)
is disjoint from that of ψ, and thus∫

R
ψ(v)f (2)(t) dv = 0.

Now let k ∈ N and assume that there is (x0, v0) ∈ T×(1, 2) such that f |t=0(x0, v0) 6=
0 and is locally Hk around this point. Because of the assumptions on the supports,

this is equivalent to ask that f
(2)
0 (x0, v0) 6= 0 and is locally Hk around this point.

However we can choose (independently of f
(2)
0 ) f

(1)
0 so that

∫
R ψ(v)f (1) dv is not

Hk, in such a way that f (2)(t) (and thus f(t)) is not locally Hk around points
of the form (X(0, t, x0, v0), V (0, t, x0, v0)), where (X,V ) denote the characteristics
associated to F , as defined in (1.7).

This example shows that local regularity may not be propagated (along charac-
teristics), contrary to what happens for the class of PDEs considered in [12]. This
is due to the “non-locality” in velocity. Therefore a global regularity assumption is
required in order to obtain propagation of higher regularity.

This example can (also) be slightly modified, in order to prove that a local version
of (2.13) cannot either be propagated into higher local regularity of moments, see
the next (and last) example.

Example 3. Consider the equation

(10.3) ∂tf + v∂xf + F (t, x+ 1/4)∂vf = 0,

on T × R (here we identify T with [0, 1) with periodic boundary conditions). Let
us consider as in the previous example

F (t, x) =

∫
R
ψ(v)f(t, x, v) dv.
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We consider the initial condition

f |t=0 = f
(1)
0 + f

(2)
0 ,

where f
(1)
0 is a non-negative function, with compact support in [0, 1/8]×R and f

(2)
0

is a non-negative function, with compact support in [1/4, 3/8]× R.
Observe that because of the shift in the argument of the force, by looking at the

supports in x, the solution f (2) associated to the initial condition f
(2)
0 is equal to

f
(2)
0 (t, x− tv, v) on [0, T ], for T > 0 small enough. Moreover, we have(∫

R
ψ(v)f (2)(t, x+ 1/4, v) dv

)
∂vf

(2) = 0.

Now define f (1) as the solution on [0, T ] of the linear kinetic transport equation

∂tf + v∂xf +

(∫
R
ψ(v)f

(2)
0 (x+ 1/4− tv, v) dv

)
∂vf = 0,

with initial condition f
(2)
0 .

We observe that up to reducing T > 0, the solution f on [0, T ] of (10.2) can be
written as

f = f (1) + f (2).

Indeed, by looking at the supports in x, we can impose T > 0 small enough so that(∫
R
ψ(v)f (1)(t, x+ 1/4, v) dv

)
∂vf

(2) = 0,(∫
R
ψ(v)f (1)(t, x+ 1/4, v) dv

)
∂vf

(1) = 0.

Now let k ∈ N and assume that there is x0 ∈ (0, 1/8) such that
∫
R f |t=0(x0, v) dv 6= 0

and f |t=0 is locally Hk
x around this point. This is equivalent to ask for the fact that∫

R f
(1)
0 (x0, v) dv 6= 0 and f

(1)
0 is locally Hk

x around this point. This corresponds to

a local analogue of (2.13). However we can choose (independently of f
(1)
0 ) f

(2)
0 so

that
∫
R ψ(v)f

(2)
0 (x− tv, v) dv is not locally Hk, in such a way that the moments in

velocity of f (1)(t) (and thus of f(t)) are not locally Hk
x around points of the form

X(0, t, x0, v0), for some v0 ∈ R.
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