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Abstract. In this paper, we study the quasineutral limit (in other
words the limit when the Debye length tends to zero) of Vlasov-Poisson
like equations describing the behaviour of ions in a plasma. We consider
massless electrons, with a charge density following a Maxwell-Boltzmann
law. For cold ions, using the relative entropy method, we derive the
classical Isothermal Euler or the (inviscid) Shallow Water systems from
fluid mechanics. In a second time, we study the combined quasineutral
and strong magnetic field regime for such plasmas.

1. Introduction

1.1. Physical motivation. For high enough kinetic temperatures exceed-
ing the atomic ionization energy, atoms tend to decompose into electrons
and ions (that is, negatively and positively charged particles): a plasma is a
physical or chemical system where such a ionization has occured. Roughly
speaking, we simply consider that plasmas are gases made of positive and
negative charges. Unlike gases, plasmas are highly conductive. As a conse-
quence, particles interact with each other by creating their own electromag-
netic fields which can dramatically affect their behaviour.

The plasma state is considered as the fourth state of matter. Actually
it is the most common one in the universe : it is widely recognized that at
least 95% of the matter consists of it! For instance, the suns and other stars
are filled with plasma, so is the interstellar medium and so on. Terrestrial
plasmas are also quite easy to find: they appear in flames, lightning or in
the ionosphere. For the last decades, there has been an increasing interest
in creating artificial plasmas, for experimental or industrial purposes. For
instance, neon lamps or plasma displays for televisions are now part of our
everyday life. An extremely promising application of plasmas consists in the
fusion energy research (by magnetic or inertial confinement). This paper
specifically aims at rigorously deriving some mathematical models which
would help to understand the physics in tokamaks, which are the boxes in
which plasmas from magnetic confinement fusion are contained.

1.1.1. Basic kinetic models for plasmas. We adopt a statistical description of
the plasma: we describe the behaviour of the charged particles by considering
kinetic equations satisfied by their repartition function. That means that we
do not follow particles one by one by solving Newton equations but are rather
interested in their collective behaviour.

We present the mathematical models we are going to study in the follow-
ing. In order to establish them, we have to make some standard approxima-
tions which we now explain.
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• Assumption 1: We assume the plasma to be collisionless. Thus,
we will consider Vlasov-like equations without collision operators.
• Assumption 2: The plasma is non-relativistic and the electric field
E is electrostatic. This means that we consider electromagnetic fields
that satisfy the electrostatic approximation of the Maxwell equations:{

rotE = 0,
divE = ρ

ε0
.

We can also consider an additional magnetic field B satisfying

divB = 0

and it has to be stationary in time in order to be consistent with the
electrostatic approximation. The electromagnetic fields act on the
charged particles (with charge q) through the Lorentz force:

F = q(E + v ∧B).

• Assumption 3: The plasma evolves in a domain without bound-
aries. This means in particular that we may restrict to periodic data
in the space variable, which may seem unrealistic, but which is com-
monly done in plasma physics and mathematics.

We discuss the physical relevancy of these assumptions in the following Re-
mark:

Remark 1.1. • Discussion on A1: Let Λ = 4πN0

(
ε0T
N0e2

)3/2
, where

N0 is the average number density of particles, ε0 is the vacuum per-
mittivity, T the average temperature of the plasma and e is the fun-
damental electric charge.

The typical collision frequency is given by:

ωc =
e4 log Λ

4πε2
0m

1/2

N0

T 3/2
.

So the plasma can be considered as collisionless if it is diffuse and
high temperature. Most plasmas can be considered as collisionless to
a very good approximation [12].
• Discussion on A2: The electrostatic approximation is relevant as
soon as

cτ

L
� 1.

denoting by c the speed of light, τ the characteristic observation time
and L the characteristic observation length. Therefore this approxi-
mation often appears as reasonable in practical situations for terres-
trial plasmas. At least, it is valid for short observation lengths.
• Discussion on A3: By ignoring boundary effects, we neglect some
important physics, such as the formation of the Debye sheath near
walls, which are boundary layers often surrounding plasmas confined
in some material. Very few seems to be mathematically known about
this phenomenon, starting from a Vlasov-Poisson equation.

Within these approximations, the kinetic system reads:
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(1.1)


∂tfi + v.∇xfi + qi/mi (E + v ∧B) .∇vfi = 0
∂tfe + v.∇xfe + qe/me (E + v ∧B) .∇vfe = 0
E = −∇xV
−∆xV = 1

ε0

(
qi
∫
fidv + qe

∫
fedv

)
,

with x ∈ Rn or Tn = (R/Z)n , v ∈ Rn, t ∈ R+. We can associate to these
equations the initial conditions:

(1.2)
{
fi,|t=0 = fi,0, fi,0 ≥ 0,

∫
fi,0dvdx = 1,

fe,|t=0 = fe,0, fe,0 ≥ 0,
∫
fe,0dvdx = 1.

The parameter n is the space dimension, equal to 1, 2 or 3 in the following.
Quantity fi (resp. fe) is interpreted as the density distribution of ions (resp.
electrons) : f(t, x, v)dxdv is interpreted as the probability of finding particles
at time t with position x and velocity v. The parameter mi (resp. me) is
the mass of one ion (resp. electron). Likewise, qi (resp. qe) is the charge of
one ion (resp. electron). For simplicity we will take qe = −e and qi = e .

We now intend to reduce the two transport equations into only one. To
this end, we can observe that the mass ratio between electrons and ions is
very small:

me

mi
� 1,

so that qualitatively the two types of particles have really different dynamical
behaviour. Therefore we make the additional approximation for our idealized
model:

• Assumption 4: The mass ratio between ions and electrons is infi-
nite: mi

me
= +∞.

This remark allows to reduce System (1.1) to only one transport equation.
Depending on the interpretation of Assumption 4, we get two classes of
models:

Infinite mass ions (mi = +∞). One can consider the point of view of elec-
trons, from which ions are very slow, motionless at equilibrium:

(1.3) ni =
∫
fidv = 1.

Then, assuming there is no magnetic field, system (1.1) written in dimen-
sionless variables reduces to the classical Vlasov-Poisson system:

(1.4)


∂tf + v.∇xf + E.∇vf = 0
E = −∇xV
−∆xV =

∫
fdv − 1

f|t=0 = f0 ≥ 0,
∫
f0dvdx = 1.

This system was intensively studied in the mathematical literature (for
n = 3 in particular) and the Cauchy-Problem is rather well understood.
We refer to the works of Arsenev [1], Horst and Hunze [20] for global weak
solutions, DiPerna and Lions [11] for global renormalized solutions, Pfaffel-
moser [27], Schaeffer [30] for classical solutions, Lions and Perthame [22] for
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weak solutions with high order velocity moments and Loeper [23] on the
uniqueness problem.

Massless electrons (me = 0). Otherwise, one can consider the viewpoint of
ions : electrons then move very fast and quasi-instantaneously reach their
local thermodynamic equilibrium1. Then their density ne follows the classical
Maxwell-Boltzmann law (see [21]) :

(1.5) ne =
∫
fedv = d(x) exp

(
eV

kBTe

)
,

where V denotes the electric potential, kB is the Boltzmann constant, Te
the average temperature of the electrons, d ∈ L1(Rn) is a term due to an
external potential preventing the particles from going to infinity (we also
refer to [3] and references therein).

More precisely, we have:

(1.6) d(x) = n0e
−H(x)
kBTe ,

where n0 ∈ R is a normalizing constant and H is the external confining
potential.

The Poisson equation then reads:

(1.7) −∆xV =
∫
fdv − d exp

(
eV

kBTe

)
.

One should notice that in this case, in general∫ (∫
fdv − d exp

(
eV

kBTe

))
dx 6= 0,

meaning that global neutrality does not hold, since the total charge of elec-
trons is not a priori fixed2.

We may also consider the case when the total charge of the electrons is
fixed, in which case the Poisson equation reads:

(1.8) −∆xV =
∫
fdv −

d exp
(

eV
kBTe

)
∫

Rn d exp
(

eV
kBTe

)
dx
.

The existence of global weak solutions to these two systems in dimen-
sion three has been investigated by Bouchut [3]. We will recall some of the
properties of these solutions in Section 2.

An approximation widely used in plasma physics consists in linearizing
the exponential law:

(1.9) ne = d

(
1 +

eV

kBTe

)
.

1Actually since me � mi, the typical collision frequency for the electrons is much larger
than for the ions and thus collisions for the electrons may be not negligeable: for this
reason they can reach their local thermodynamic equilibrium.
2This feature will prevent us from studying this system on the torus; instead we will do
so on the whole space R3.
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This approximation is valid from the physical point of view as long as:
eV

kBTe
� 1,

that is as long as the electric energy is small compared to the kinetic energy.
We will consider this law in the case of the torus Tn (with n = 1, 2 or 3),

thus we do not need a confining potential (and we take d = 1).
In the following we will only focus on models with such Maxwell-Boltzmann

laws.

1.1.2. The Debye length. We define now the Debye length λ(α)
D as:

(1.10) λ
(α)
D =

√
ε0kBTα
Nαe2

,

where kB is the (universal) Boltzmann constant, Tα and Nα are respectively
the average temperature and density of electrons (for α = e) or ions (for
α = i).

The Debye length is a fundamental parameter which is of tremendous
importance in plasmas. It can be interpreted as the typical length below
which charge separation occurs.

In plasmas, this length may vary by many orders of magnitude (Typical
values go from 10−3m to 10−8m). In practical situations, for terrestrial
plasmas, it is always small compared to the other characteristic lengths under
consideration, in particular the characteristic observation length, denoted by
L. Actually, the condition λD � L is sometimes required in the definition
itself of a plasma.

Therefore, if we set:
λD
L

= ε� 1,

then in many regimes, it is relevant, after considering relevant dimensionless
variables, to consider that the Poisson equation formally reads :

−ε2∆xVε = ± (ni − ne) .

The quasineutral limit precisely consists in considering the limit ε→ 0.

1.1.3. Why quasineutral fluid limits ? From the numerical point of view,
kinetic equations are harder to handle than fluid equations. Indeed the main
difficulty is that we have to deal with a phase space of dimension 6 (for
x, v ∈ R3). Actually, another outstanding problem for simulating plasmas
is the following : there are characteristic lengths and times of completely
different magnitude (think of the Debye length and the observation length)
that make numerics really delicate.

In this work, we particularly aim at getting simplified hydrodynamic sys-
tems after taking quasineutral limits. Simplified fluid models have some
advantages:

• With a fluid description, we deal with a phase space of lesser dimen-
sion. Furthermore after taking the limit we now handle only one
characteristic time and length. For these reasons, numerical simula-
tions are easier to perform.
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Of course it is well-known that the fluid approximation is not
always accurate for simulations of plasmas, but it is nevertheless
valid in some regimes that we may describe in the analysis. So it is
important to be aware of the physical assumptions we make when
we derive the equations.
• Macroscopic quantities, such as charge density or current density
are easier to experimentally measure (by opposition, the repartition
function is out of reach). So this is a way to check if the initial
modeling is accurate or not.
• A simplified fluid description can help us to qualitatively describe
the behaviour of the plasma.

The derivation of limit models is deeply linked to issues related to the re-
search project of magnetic confinement fusion. For the last few years, there
has been a wider interest in finding simplified systems to model quasineu-
tral plasmas for devices such as tokamaks. Therefore a good mathematical
understanding of these becomes important, as it would establish some theo-
retical basis to compare various models, like gyrokinetic, gyrofluid, MHD or
Euler-like equations and understand their range of validity.

In this paper, we will focus on two kinds of quasineutral problems. In
both problems, the starting point is the Vlasov-Poisson system with massless
electrons (in other words with electrons following a Maxwell-Boltzmann law).
First we will investigate the quasineutral limit alone, then we will in addition
consider a large magnetic field and study the behaviour of the plasma in this
regime.

1.2. Quasineutral limit of the Vlasov-Poisson system with mass-
less electrons. In the first place, we are interested in the quasineutral limit
for Vlasov-Poisson systems with Boltzmann-Maxwell laws and without mag-
netic field. We will focus in particular on the limit ε → 0 for the following
dimentionless system (we refer to the Annex for details on the scaling):
System (S) : Maxwell-Boltzmann law (for x ∈ R3,v ∈ R3, t ∈ R+)

(1.11)


∂tfε + v.∇xfε + Eε.∇vfε = 0
Eε = −∇xVε
−ε∆xVε =

∫
fεdv − deVε

fε,|t=0 = f0,ε ≥ 0,
∫
f0,εdvdx = 1.

The method of proof we follow allows also to treat the case of variants
of system (S), so we will mention the results we can get, without providing
complete proofs, for the systems:

• System (S’) : Maxwell-Boltzmann law with fixed total charge (for
x ∈ R3, v ∈ R3, t ∈ R+)

(1.12)


∂tfε + v.∇xfε + Eε.∇vfε = 0
Eε = −∇xVε
−ε∆xVε =

∫
fεdv − deVεR

deVε

fε,|t=0 = f0,ε ≥ 0,
∫
f0,εdvdx = 1.

• System (L) : Linearized Maxwell-Boltzmann law (for x ∈ Tn, v ∈
Rn, t ∈ R+ and n = 1, 2, 3)
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(1.13)


∂tfε + v.∇xfε + Eε.∇vfε = 0
Eε = −∇xVε
Vε − ε∆xVε =

∫
fεdv − 1

fε,|t=0 = f0,ε ≥ 0,
∫
f0,εdvdx = 1.

For systems (S) and (S’) we will from now on assume the boundedness
properties on d(x) = e−H(x):

d = e−H ∈ L1 ∩ L∞(R3).(1.14)
∇xH ∈W s,∞ for any s ∈ N.(1.15)

For instance, this holds for H(x) =
√

1 + |x|2.

Remark 1.2. From the mathematical viewpoint, we have to add the confining
potential H to ensure that the local density of electrons belongs to L1(R3).

1.2.1. Formal derivation of the isothermal Euler system from systems (S)
and (S’). We will prove the local in time strong convergence of the charge
density and current density:(

ρε :=
∫
fεdv, Jε :=

∫
fεvdv

)
to the local strong solution (ρ, ρu) to some Euler-type system, for initial data
close (in some sense to be made precise later) to monokinetic data that is,

fε(t, x, v) ∼ ρε(t, x)δv=uε(t,x),

with uε = Jε
ρε
.

Let us show now how we can guess what is the limit system. First, by
integrating the Vlasov equation against 1 and v, we straightforwardly get
the local conservation laws satisfied by the first two moments.

∂tρε +∇x.Jε = 0,(1.16)

∂tJε +∇x :
(∫

v ⊗ vfεdv
)

= ρεEε.(1.17)

Let us directly consider monokinetic data, i.e. fε(t, x, v) = ρε(t, x)δv=uε(t,x).
The local conservations laws reduce to:

(1.18) ∂tρε +∇x.(ρεuε) = 0.

(1.19) ∂t(ρεuε) +∇x : (ρεuε ⊗ uε) = −ρε∇xVε.
In the case of (S) the Poisson equation reads:

−ε∆xVε =
∫
fεdv − deVε .

Since ρε and Jε are uniformly bounded in L∞t (L1
x), the following conver-

gences hold (up to a subsequence) in the sense of distributions: ρε ⇀ ρ and
Jε ⇀ J .

If we formally pass to the limit ε→ 0 we get:

(1.20) deV = ρ.
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Consequently, we have V = log (ρ/d) and therefore −∇xV = −∇xρρ + ∇xdd .
Notice that ∇xdd = −∇xH. Thus, the asymptotic equation we can expect
is the following compressible Euler-type model (which can be interpreted as
the isothermal Euler equation with an external confining force):

(1.21)
{
∂tρ+∇x.(ρu) = 0,
∂tu+ u.∇xu = −∇xρρ −∇xH.

In the case of (S’) the Poisson equation reads:

(1.22) −ε∆xVε =
∫
fεdv −

deVε∫
deVεdx

.

If we formally pass to the limit ε→ 0 we get:

(1.23)
deV∫
deV dx

= ρ.

Consequently we have V = log
(ρ
d

∫
deV dx

)
and so, we get the same Euler

equation (1.21).

Remark 1.3. (Physical signification of monokinetic data)
We define:

Ti,ε =
1

3ρε

∫
fε

∣∣∣∣v − Jε
ρε

∣∣∣∣2 dvdx.
The quantity Ti,ε is nothing but the scaled temperature of the ions.
Considering monokinetic data corresponds to the "cold ions" assumption,

that is: ∫
f

∣∣∣∣v − J

ρ

∣∣∣∣ dvdx = 0,

which means that we consider that the temperature of ions is equal to 0.
More precisely, the cold ions approximation means from the physical point

of view that
Ti � Te.

It turns out that this approximation is highly relevant for terrestrial plas-
mas and widely used in plasma physics, especially in the study of tokamak
plasmas.

There are two main physical reasons why it is relevant to consider that
the temperature of electrons is much higher than the temperature of ions :
first of all , there exist many plasma sources which can heat the electrons
more strongly than the ions. Second notice that energy transfer in a two-
body collision is much more efficient if the masses are similar. Thus, since
ions and electrons have very different masses, there is almost no transfer of
energy from the electrons to the ions. For instance this approximation is used
in order to derive the classical Hasegawa-Mima equation ([19]).

Remark 1.4. Nevertheless we observe in the isothermal Euler limit system
(1.21) that the ions evolve as if they had the temperature of electrons (of
order 1) ! Moreover, ions seem to have better confinement properties than
expected, since they feel the confining potential in the limit equation.



QUASINEUTRAL LIMIT FOR VLASOV-POISSON 9

Remark 1.5. For (L) the corresponding Euler-type system is the following:

(1.24)
{
∂tρ+∇x.(ρu) = 0,
∂tu+ u.∇xu = −∇xρ.

Actually System (1.24) can be interpreted in 1D or 2D as an inviscid
Shallow Water system (and ρ is then understood as the depth of the fluid).
This quite remarkable fact is one amongst many analogies between geophysics
and plasma physics models (see for instance the work of Hasegawa and Mima
[19] and the review paper [10]). For instance the concept of "zonal flows" is
used in both fields and the mechanism responsible for their generation may
be the same. Only the name differs: drift waves for plasma physics, Rossby
waves for geophysics, see Cheverry, Gallagher, Paul and Saint-Raymond for
a recent mathematical study [8].

1.2.2. Principle of the proof : the relative entropy method. The relative en-
tropy method (also referred to as the modulated energy method) was first
introduced in kinetic theory independently by Golse [4] in order to study
the convergence of solutions to a scaled Boltzmann equation to solutions
of incompressible Euler for well-prepared data and some technical assump-
tions (see Saint-Raymond [29] for the latest developments on the topic) and
by Brenier [5] in order to derive incompressible Euler equations from the
quasineutral Vlasov-Poisson equation for electrons in a fixed background of
ions.

More precisely Brenier shows the convergence as ε → 0 of the first two
moments (ρε, Jε) := (

∫
fεdv,

∫
vfεdv) of the starting system:

(1.25)


∂tfε + v.∇xfε + Eε.∇vfε = 0
Eε = −∇xVε
−ε∆xVε =

∫
fεdv − 1

fε,|t=0 = f0,ε ≥ 0,
∫
f0,εdvdx = 1.

to the smooth solution of the limit system which is the classical incompress-
ible Euler system:

(1.26)

 ρ = 1
∂tu+ u.∇xu+∇xp = 0
div u = 0.

Brenier treated the case of well-prepared monokinetic data (i.e. cold
electrons); the convergence was then generalized by Masmoudi [25] for ill-
prepared monokinetic data.

We mention the works [2], [6], [7], [14], [15], [28] which also use the relative
entropy method in order to derive fluid equations from Vlasov-like systems.

The principle of the method is the following. For system (S), it can be
shown that the following functional is non-increasing:

(1.27) Fε(t) =
1
2

∫
fε|v|2dvdx+

ε

2

∫
|∇xVε|2dx+

∫
d(x)(Vε − 1)eVεdx.

We call this functional the energy of the system.
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We then consider the functional Hε which is built as a modulation of this
energy:
(1.28)

Hε(t) =
1
2

∫
fε|v−u|2dvdx+

ε

2

∫
|∇xVε|2dx+

∫
(deVε log

(
deVε/ρ

)
−deVε+ρ)dx,

with (ρ, u) a smooth solution to Isothermal Euler.
Quite surprisingly, it turns out that the last term of Hε is similar to the

usual relative entropy for collisional (such as Boltzmann or BGK) equations.
What we want to prove is that this functional is in fact a Lyapunov func-

tional. We will show that indeed, Hε satisfies some stability estimate:

Hε(t) ≤ Hε(0) +Gε(t) + C

∫ t

0
‖∇xu‖L∞Hε(s)ds,(1.29)

with Gε(t)→ε→0 0 uniformly in time.
Then, assuming that the initial conditions is well-prepared in the sense

that

Hε(0)→ε→0 0,

this yields that Hε(t)→ε→0 0, thus proving the strong convergence in some
sense (which will be made precise later on) to smooth solutions of the isother-
mal Euler equation, as long as the latter exist. The proof relies on the fine
algebraic structure of the nonlinearities in systems (S) and (S’). One ma-
jor advantage of this method is that it only requires weak regularity on the
solutions to the initial system but allows to prove limits in a strong sense.
Nevertheless, it requires a good understanding of the Cauchy problem for
the limit system (in particular, we must have a notion of stability for the
limit). It should be noticed that even if we considered very smooth solutions
(say for instance Hs with s large) to the initial system, we would not be able
to propagate uniform bounds and thus prove compactness. Indeed, the only
uniform controls we have are the energy bound and the conservation of Lp
norms of the number density.

Basically this is nothing but a stability result : roughly speaking , this
result tells us that monokinetic solutions are stable with respect to pertur-
bations of the energy.

Let us mention that the method used for these two systems can also apply
to the quasineutral limit for an isothermal Euler-Poisson version of system
(S) studied by Cordier and Grenier [9]. We refer to Section 4.3.

1.3. Quasineutral limit for the Vlasov-Poisson equation with mass-
less equations and with a strong magnetic field. Next we are interested
in the behaviour of the plasma if one applies an intense magnetic field. Such
a regime is particularly relevant for plasmas encountered in magnetic confine-
ment fusion research. Plasmas are expected to be confined inside tokamaks
thanks to this magnetic field. One challenging mathematical problem is to
rigorously prove if this strategy is likely to succeed or not.

In this paper, we consider the simplest geometric case of a constant mag-
netic field with a fixed direction and a fixed (large) intensity.
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1.3.1. Scaling of the Vlasov equation. We first introduce some notations:

Notations. Let (e1, e2, e‖) be a fixed orthonormal basis of R3.
• The subscript ⊥ stands for the orthogonal projection on the plane

(e1, e2), while the subscript ‖ stands for the projection on e‖ .
• For any vector X = (X1, X2, X‖), we define X⊥ as the vector (Xy,−Xx, 0) =
X ∧ e‖.

We consider a strong magnetic field of the form:

B = Be‖.

Roughly speaking, “strong” means that |B| ∼ 1/ε. With this time a quasineu-
tral ordering of the form

λD
L

= εα,

where α > 0 is an arbitrary parameter, we get in the end the quasineutral
system:

(1.30)


∂tfε + v.∇xfε +

(
Eε + v∧e‖

ε

)
.∇vfε = 0

Eε = −∇xVε
−ε2α∆xVε =

∫
fεdv − deVεR

deVεdx

fε,|t=0 = f0,ε,
∫
f0,εdvdx = 1.

We refer to the Annex for details on the scaling. The range of parameters
α > 1 is particularly relevant from the physical point of view.

1.3.2. Comments on the expected result. We will study the limit, once again
by using the relative entropy method and show the convergence of the first
two moments (ρε, uε) (defined as before) to smooth solutions to the system:

(1.31)

{
∂tρ+ ∂x‖(ρw‖) = 0,

∂tw + w‖∂x‖w = −
∂x‖ρ

ρ − ∂x‖H.

We observe that there is no more dynamics in the orthogonal plane (that
is, in the x⊥ variable), which can be interpreted as a good confinement result.

For the study of this limit we will have to face more technical difficulties
than without magnetic field. Indeed, the strong magnetic field engenders
time oscillations of order O(1/ε) on the number density. Consequently in
order to show strong convergence we will have to:

• filter out the time oscillations.
• add some correction of order O(ε) to the limit (ρ, w) in order to get
an approximate zero of the so-called acceleration operator (5.13).

The striking point here is that we can study the limit for any value of α.
In contrast, for the system describing the electrons with heavy ions:

∂tfε + v.∇xfε +
(
Eε + v∧e‖

ε

)
.∇vfε = 0

Eε = −∇xVε
−ε2α∆xVε =

∫
fεdv − 1

fε,|t=0 = f0,ε,
∫
f0,εdvdx = 1.
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it seems primordial to take α = 1, so that the Debye length and the Larmor
radius vanish at the same rate. This specific scaled system was studied by
Golse and Saint-Raymond in [14].

The heuristic underlying reason is that the Poisson equation with a Maxwell-
Boltzmann law is in some sense more stable in the quasineutral limit than
the "usual" one. Indeed the electric potential is in the limit explicitly a func-
tion of ρ, whereas in the "usual" case, it appears as a Lagrange multiplier
or equivalently as a pressure.

Remark 1.6. We could as well set λDL = δ and let ε, δ go to 0 independently.
One can readily check that we would get the same results.

Remark 1.7. We may also consider the linearized Maxwell-Boltzmann law
and perform the same convergence analysis.

1.4. Outline of the paper. The following of this article is organized as
follows. First in section 2, we recall some elements on the global weak
solutions theory for systems (S), (S’) and (L) and recall some useful a priori
uniform bounds. This theory is due to Arsenev [1] and Bouchut [3]. Then,
we will present the local conservation laws satisfied by the two first moments
of our solutions.

In section 3, we will focus on the quasineutral limit from the Vlasov-
Poisson System (S) to an isothermal Euler system, using the relative entropy
method (Theorem 3.1). The crucial step is to show the algebraic identity
(3.19) that describes the decay of the relative entropy and from which we
will be able to get a stability inequality.

In section 4, we give extensions of the method for systems (S’) and (L)
(Theorems 4.1 and 4.2), by only sketching the proofs. We will show that this
method can also be applied to the quasineutral limit of a system previously
studied by Cordier and Grenier [9].

Finally, in section 5, we investigate the combined quasineutral and large
magnetic field regime for system (S). The convergence result is stated in
Theorem 5.1.

2. Global weak solutions and local conservation laws for the
Vlasov-Poisson systems

2.1. Global weak solutions theory. Following Arsenev [1], it is straight-
forward to build global weak solutions to System (L), for any fixed ε > 0.

Theorem 2.1. Let n = 1, 2 or 3. We consider the functional:

(2.1) Eε(t) =
1
2

∫
fε|v|2dvdx+

1
2

∫
V 2
ε dx+

ε

2

∫
|∇xVε|2dx.

For any ε > 0 and initial data f0,ε ≥ 0 bounded in L1 ∩ L∞(R2d) such that
Eε(0) is finite, there exists a global weak solution to (L) with fε ∈ L∞t (L1

x,v)∩
L∞t,x,v and Eε(t) is non-increasing.

Following Bouchut [3], we obtain the existence of global weak solutions
to system (S) and (S’). We recall that d satisfies assumptions (1.14-1.15) (in
particular, d ∈ L1(R3)).
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Theorem 2.2. For any ε > 0 and initial data f0,ε ≥ 0 bounded in L1 ∩
L∞(R6) and satisfying

∫
(1 + |x|2 + |v|2)f0,εdxdv <∞:

• The case of (S) Let Fε(t) be the functional defined as follows:

(2.2) Fε(t) =
1
2

∫
fε|v|2dvdx+

∫
d(x)(Vε − 1)eVεdx+

ε

2

∫
|∇xVε|2dx.

If Fε(0) is finite, there exists fε ∈ L∞t (L1
x,v) ∩ L∞t,x,v global weak

solution to (S) with Fε(t) non-increasing.
• The case of (S’): Let Gε(t) be the functional defined as follows:

Gε(t) =
1
2

∫
fε|v|2dvdx+

∫
d(x)

(
Vε − log

(∫
deVεdx

))
eVε∫
deVεdx

dx

+
ε

2

∫
|∇xVε|2dx.

(2.3)

If Gε(0) is finite,there exists fε ∈ L∞t (L1
x,v) ∩ L∞t,x,v global weak

solution to (S’) with Gε(t) non-increasing.
In addition, in both cases, we have : Vε ∈ L∞t (L6

x) and esssupt,x Vε <∞.
In particular it means that eVε ∈ L∞t,x.

The main difficulties in [3] are to get estimates for the electric potential
in the Marcinkiewicz space M3 to provide some strong compactness, and to
use a relevant regularization scheme to preserve the energy inequality.

We assume from now on that the initial data satisfy the uniform estimates
:

∀ε > 0, f0,ε ≥ 0,(2.4)
∀ε > 0, f0,ε ∈ L1 ∩ L∞(Rn), uniformly in ε,(2.5)

∃C > 0, ∀ε > 0, Eε(0) ≤ C (resp. Fε, Gε).(2.6)

Using a very classical property for Vlasov equations with zero-divergence
in v force fields, we get the following unifom in ε estimates.

Lemma 2.1. For fε global weak solution of (L) (resp. (S), resp. (S’) we
have

• (Conservation of Lp norms) For any p ∈ [1,+∞], for any t ≥ 0,
‖fε(t)‖Lpx,v ≤ ‖fε(0)‖Lpx,v .
• (Maximum principle) If fε(0) ≥ 0 then for any t ≥ 0, fε(t) ≥ 0.
• (Bound on the energy) ∀t ≥ 0, Eε(t) ≤ C (resp. Fε, resp. Gε).

Lemma 2.2. Define Jε(t, x) =
∫
fεvdv. Then Jε ∈ L∞t (L1

x) uniformly with
respect to ε.

Proof. Actually by the same method, we can also prove that Jε ∈ L∞t (Lpx)
for some p > 1 depending on the space dimension, but this result is sufficient
for our purpose. The proof is very classical. We can first notice that there
exists C > 0 independent of ε, such that:∫

fε|v|2dvdx ≤ C.
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For (L) this is clear by conservation of the energy since all the terms are
non-negative.

In the case of (S) we observe∫
fε|v|2dvdx ≤ Fε(t)− 2

∫
d(Vε − 1)eVεdx

≤ Fε(0) + 2‖d‖L1 ,

since for any x ∈ R, (x − 1)ex ≥ −1. The case of (S’) is of course similar.
Then we can simply write by positivity of fε:∣∣∣∣∫ fεvdv

∣∣∣∣ ≤ ∫ fε|v|dv ≤
∫
|v|≤1

fεdv +
∫
|v|≥1

fε|v|2dv,

so that: ‖Jε‖L∞t (L1
x) ≤ 1 + C.

�

2.2. Local conservation laws. For system (L), global weak solution in the
sense of Arsenev are known to satisfy the following local conservation laws:

Lemma 2.3. Let ε > 0. Let fε be a global weak solution to (L) with initial
data satisfying the assumptions (2.4-2.6). Denote by ρε(t, x) :=

∫
fε(t, x, v)dv

and Jε :=
∫
fεvdv. Then the following conservation laws hold in the distri-

butional sense:

(2.7) ∂tρε +∇x.Jε = 0.

∂tJε +∇x :
(∫

v ⊗ vfεdv
)

=− 1
2
∇x(Vε + 1)2

+εdivx(∇xVε ⊗∇xVε)−
ε

2
∇x|∇xVε|2.

(2.8)

This is also the case for (S) and (S’).

Lemma 2.4. Let ε > 0. Let fε be a global weak solution to (S) or (S’) with
initial data satisfying the assumptions (2.4-2.6). We denote the two first
moments by ρε(t, x) :=

∫
fε(t, x, v)dv and Jε :=

∫
fεvdv for any solution fε

to (S) or (S’). The local conservation of charge reads:

(2.9) ∂tρε +∇x.Jε = 0.

The local conservation of current reads in the case of (S):
(2.10)

∂tJε+∇x :
(∫

v ⊗ vfεdv
)

= −d∇x(eVε)+εdivx(∇xVε⊗∇xVε)−
ε

2
∇x|∇xVε|2,

and in the case of (S’):
(2.11)

∂tJε+∇x :
(∫

v ⊗ vfεdv
)

= − d∫
deVεdx

∇x(eVε)+ε divx(∇xVε⊗∇xVε)−
ε

2
∇x|∇xVε|2.

Proof. Let us briefly explain how we proceed. The main idea is to test
the Vlasov equations against test functions of the form ϕ(t, x)Ψ( vR) and
ϕ(t, x)Ψ( vR)v, with Ψ a compactly supported smooth function, and then to
let R go to +∞. The limit is obtained by a dominated convergence argument,
using that:

• fε|v|2 ∈ L∞t L1
x,v, thanks to the energy inequality.
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• Using a classical real interpolation argument, we have (in three di-
mensions, the case of lower dimensions is similar and easier):

ρε ∈ L∞t L5/3
x .

By elliptic regularity and Sobolev inequality, we obtain for each Pois-
son equation (for (L), (S) or (S’)):

Eε ∈ L∞t L15/4
x .

For (S) (and also for (S’)), this is achieved by considering deVε as a
source in L∞t L∞x .

We emphasize that this estimate is not uniform in ε, but this does
not matter, since we work for any fixed ε > 0.

This entails that ρεEε ∈ L∞t L
15/13
x .

Finally the local conservation of current in their present forms is obtained
through some elementary computations using the Poisson equations.

�

3. From (S) to Isothermal Euler

The isothermal Euler equations (1.21) are hyperbolic symmetrizable. We
can perform the change of unknown functions (ρ, u) 7→ (log ρ

d , u) that leads
to the system:

(3.1)
{
∂t log(ρd) +∇x.u+ u.∇x log(ρd)−∇xH.u = 0,
∂tu+ u.∇xu+∇x log(ρd) = 0.

(we recall that by definition, d = e−H).
Therefore, using classical results on hyperbolic symmetrizable systems

([24]), we get the local existence of smooth solutions:

Proposition 3.1. For any initial data ρ0 > 0, u0 such that ρ0 ∈ L1(R3),
log(ρ0

d ) ∈ Hs(R3) and u0 ∈ Hs(R3) for s > 3
2 + 1, there is existence and

uniqueness of a local smooth solution ρ > 0 and u to (3.1) such that :

(3.2) log
ρ

d
, u ∈ C0

t ([0, T ∗[, Hs(R3)) ∩ C1
t ([0, T ∗[, Hs−1(R3))

(3.3) ρ ∈ C1([0, T ∗[×R3)

for some T ∗ > 0.

Since shocks may occur for large times, we will have to restrict to local
results. We now prove the convergence of the charge and current density to
the smooth solution to (3.1), as long as the latter exist.

Theorem 3.1 (The case of (S)). Let ρ0 > 0, u0 verifying the assumptions of
Proposition 3.1 and ρ, u the corresponding strong solutions of system (1.21).
We assume that the sequence of initial data (f0,ε) satisfies the assumptions
(2.4-2.6) and:

(3.4)
∫
f0,ε|v − u0|2dvdx→ 0,

(3.5) ‖
√
ε∇xV0,ε‖L2 → 0,
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(3.6)
∫ (

deV0,ε log(deV0,ε/ρ0)− deV0,ε + ρ0

)
dx→ 0,

where V0,ε is solution of the nonlinear Poisson equation:

−ε∆xV0,ε =
∫
f0,εdv − deV0,ε .

Then ρε weakly converges to ρ and Jε weakly converges to ρu in L1. Fur-
thermore we have the following local in time strong convergences: uε = Jε/ρε
strongly converges to u in the following sense:∫

|uε − u|2ρεdx→ 0

in L∞t and √
deVε → √ρ

in L∞t (L2
x).

Remark 3.1 (On the class of admissible initial data satisfying assump-
tions (2.4-2.6)and (3.4-3.6)). This class is not empty : indeed it includes
Maxwellians of the form

(3.7) f0,ε(x, v) =
ρ0,ε(x)

(2πTi,ε)3/2
e
−|v−u0(x)|2

2Ti,ε ,

where ρ0,ε is computed by the Poisson equation after having previously chosen
V0,ε such that (3.5) and (3.6) hold ( for example, we can simply take V0,ε = V0

with V0 safisfying deV0 = ρ0 and (3.5) and (3.6) trivially hold) and Ti,ε →ε→0

0 (cold ions approximation).

Proof. Let (ρ, u) verifying the regularity of (3.2-3.3) (for the moment ρ and
u do not a priori satisfy the isothermal Euler equations).

We recall that the energy for system (S) is the following functional:

Fε(t) =
1
2

∫
fε|v|2dvdx+

ε

2

∫
|∇xVε|2dx+

∫
d(Vε − 1)eVεdx.

The first two terms correspond to the energy for the quasineutral Vlasov-
Poisson limit studied by Brenier in [5]. Therefore we accordingly modulate
this quantity by considering:

1
2

∫
fε|v − u|2dvdx+

ε

2

∫
|∇xVε|2dx.

Let us now look at mε := deVε . We can notice that:∫
d(Vε − 1)eVεdx =

∫
(mε log (mε/d)−mε)dx.

As mentioned in the introduction, we observe a strong analogy with the
relative entropy in collisional kinetic equations (we refer to [29] for a reference
on the topic). So by analogy, we modulate this quantity and hence consider
the following relative entropy:
(3.8)

Hε(t) =
1
2

∫
fε|v−u|2dvdx+

∫
(mε log (mε/ρ)−mε+ρ)dx+

ε

2

∫
|∇xVε|2dx.
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Later on, the well known inequality (which is a plain consequence of the
inequality x− 1 ≥ log x, for x > 0) will be very useful:

(3.9)
∫

(
√
a−
√
b)2dx ≤

∫
(a log(a/b)− a+ b)dx.

We want to show that Hε(t) satisfies the inequality:

Hε(t) ≤ Hε(0) +Gε(t) + C

∫ t

0
‖∇xu‖L∞Hε(s)ds,(3.10)

with Gε(t)→ 0 uniformly in time.
We show how we can deduce this kind of estimate (the computations can

be rigorously justified using the local conservation laws of Lemma 2.4). Since
the energy is non-increasing, we have:

(3.11)
dHε(t)
dt

≤ Iε(t),

with:

Iε(t) :=
∫
∂tfε

(
1
2
|u|2 − v.u

)
dvdx+

∫
fε∂t

(
1
2
|u|2 − v.u

)
dvdx

+
∫
∂t (mε log(d/ρ)) dx+

∫
∂tρdx.

(3.12)

Let us first focus on the first two terms of Iε(t). Thanks to the Vlasov
equation satisfied by fε and after integrating by parts, we get:

∫
∂tfε

(
1
2
|u|2 − v.u

)
dvdx+

∫
fε∂t

(
1
2
|u|2 − v.u

)
dvdx

=
∫
fε (∂t + v.∇x + Eε.∇v)

(
1
2
|u|2 − v.u

)
dvdx

=
∫
fε(u− v).(∂t + v.∇x)udvdx−

∫
fεEε.udvdx

=
∫
fε(u− v).(∂t + u.∇x)udvdx−

∫
fε(u− v). ((u− v).∇xu) dvdx

−
∫
ρεEε.udx.

(3.13)

We can use the Poisson equation to compute the last term of (3.13).
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−
∫
ρεEε.udx =

∫
ρε∇xVε.udx

=
∫
deVε∇xVε.udx− ε

∫
∆xVε∇xVε.udx

=
∫
d∇xeVε .udx− ε

∫
∇x : (∇xVε ⊗∇xVε)udx+ ε

∫
1
2
∇x|∇xVε|2udx

= −
∫
deVε divx udx−

∫
eVε∇xd.udx+ ε

∫
D(u) : (∇xVε ⊗∇xVε)dx

− ε

∫
1
2
|∇xVε|2 divx udx,

where D(u) = 1
2

(
∂xiuj + ∂xjui

)
i,j

is the symmetric part of ∇xu = (∂xiuj)i,j .
We now focus on the last two terms of Iε(t):

∫
∂t (mε log(d/ρ)) dx+

∫
∂tρdx =

∫
(−deVε/ρ+ 1)∂tρ+

∫
d∂te

Vε log(d/ρ)dx

=
∫

(−deVε/ρ+ 1)∂tρ+ ε

∫
∂t∆xVε log(d/ρ)dx

−
∫

divx Jε log(d/ρ)dx,

(3.14)

using the Poisson equation and the local conservation of mass:

∂tρε = −divx Jε.

We observe that:

∫
fε(u− v).∇x log

ρ

d
dvdx

=
∫
ρεu.∇x log

ρ

d
dx−

∫
Jε.∇x log

ρ

d
dx

=
∫
deVεu.∇x log

ρ

d
dx− ε

∫
∆xVεu.∇x log

ρ

d
dx

+
∫
Jε.∇x log

ρ

d
dx.

(3.15)

Consequently, according to (3.13) and (3.14) we get:
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Iε(t) =
∫
−deVε(∂tρ+∇x.u+ u.∇x log ρ)dx+

∫
∂tρdx

+
∫
fε(u− v)

(
∂tu+ u.∇xu+∇x log

ρ

d

)
dvdx

+ε
∫

∆xVεu.∇x log
ρ

d
dx+ ε

∫
∂t∆xVε log(d/ρ)dx

−
∫
fε(u− v) ((u− v).∇xu) dvdx+ ε

∫
D(u) : (∇xVε ⊗∇xVε)dx

−ε
∫

1
2
|∇xVε|2 divx udx.

(3.16)

Let us now introduce the so-called acceleration operator A:

(3.17) A(u, ρ) =
(
∂t log ρ

d +∇x.u+ u.∇x log ρ
d −∇xH.u

∂tu+ u.∇xu+∇x log ρ
d

)
.

We observe that :∫
ρ(∇x.u+ u∇x log ρ)dx =

∫
(ρ∇xu+ u.∇xρ)dx

=
∫
∇x.(ρu)dx = 0,

(3.18)

and thus
∫
A(u, ρ).

(
ρ
0

)
dx =

∫
∂tρdx.

Gathering the pieces together we have proved:

Iε(t) =
∫
A(u, ρ).

(
−deVε + ρ
ρεu− Jε

)
dx

+ε
∫

∆xVεu.∇x log
ρ

d
dx+ ε

∫
∂t∆xVε log(d/ρ)dx

−
∫
fε(u− v) ((u− v).∇xu) dvdx+ ε

∫
D(u) : (∇xVε ⊗∇xVε)dx

−ε
∫

1
2
|∇xVε|2 divx udvdx.

(3.19)

We are now ready to prove that Hε satisfies the expected stability inequal-
ity.

It is readily seen that there exists a constant independent of ε such that:∣∣∣∣∫ fε(u− v) ((u− v).∇xu) dvdx
∣∣∣∣ ≤ C ∫ fε|u− v|2‖∇xu‖L∞dvdx,∣∣∣∣ε ∫ D(u) : (∇xVε ⊗∇xVε)dx

∣∣∣∣ ≤ C ∫ ε|∇xVε|2‖∇xu‖L∞dx.
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We consider now:

Gε(t) :=
∫ t

0

(
ε

∫
∆xVεu.∇x log

ρ

d
dx+ ε

∫
∂s∆xVε log(d/ρ)dx

)
ds

=
∫ t

0

(
−ε
∫
∇xVε.∇x

(
u.∇x log

ρ

d

)
dx− ε

∫
∂s∇xVε.∇x log(d/ρ)dx

)
ds

=
∫ t

0
−
√
ε

∫ √
ε∇xVε.∇x

(
u.∇x log

(ρ
d

))
dxds+

√
ε

∫ t

0

∫ √
ε∇xVε.∂s∇x log(d/ρ)dxds

−
√
ε

∫ √
ε∇xVε(t, x).∇x log(d/ρ(t, x))dx+

√
ε

∫ √
ε∇xVε(0, x).∇x log(d/ρ(0, x))dx.

Thanks to the conservation of the energy,
√
ε∇xVε is bounded uniformly

with respect to ε in L∞t (L2
x). Consequently, using Cauchy-Schwarz inequal-

ity, we get for any 0 ≤ t ≤ T :

Gε(t) ≤ C
√
ε‖
√
ε∇xVε‖L∞t (L2

x) ×(
‖∇x(u.∇x log ρ/d)‖L∞t (L2

x) + ‖ log(ρ/d)‖
W 1,∞
t (H1

x)

)
,

and so we have Gε(t)→ 0 when ε→ 0, locally uniformly in time.
Finally since

Hε(t) ≤ Hε(0) +
∫ t

0
Iε(s)ds,

we have proved that:

Hε(t) ≤ Hε(0) +
∫ t

0

∫
A(u, ρ).

(
−deVε + ρ
ρεu− Jε

)
dx+Gε(t)

+C
(∫ t

0

∫
fε|u− v|2‖∇xu‖L∞dvdxds+ ε

∫ t

0

∫
1
2
|∇xVε|2‖∇xu‖L∞dxds

)
.(3.20)

Now we can choose ρ and u to be solutions of A(ρ, u) = 0, with initial
conditions (ρ, u)|(t=0) = (ρ0, u0). In other words ρ and u are solutions to the
Isothermal Euler system (3.1).

Then we have:

Hε(t) ≤ Hε(0) +Gε(t) + C

∫ t

0
‖∇xu‖L∞Hε(s)ds(3.21)

and thus, since Hε(0)→ 0 and Gε(t)→ 0, we deduce by Gronwall inequality
that

(3.22) Hε(t)→ 0,

when ε→ 0 (uniformly with respect to time).
By inequality (3.9), this means in particular that

√
deVε → √ρ.

strongly in L∞t L2
x.

Because of the uniform estimates in L∞t (Lpx) for some p > 1, ρε (resp.
Jε) weakly converges (up to a subsequence) to some ρ̃ (resp. J). In the
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other hand, in the sense of distributions, thanks to the quasineutral Poisson
equation:

deVε − ρε ⇀ 0
and thus,

deVε ⇀ ρ̃.

Therefore, by uniqueness of the limit we deduce that ρ̃ = ρ.
The last step of the proof relies on a by now classical convexity argument.

We first get the following Cauchy-Schwarz inequality:

(3.23)
|Jε − ρεu|2

ρε
=

(∫
fε(v − u)dv

)2∫
fεdv

≤
∫
fε|v − u|2dv.

The functional (ρ, J) →
∫ |J−ρu|2

ρ dx is convex and lower semi-continuous
with respect to the weak convergence of measures (see [5]). Consequently
the weak convergence in the sense of measures ρε ⇀ ρ and Jε ⇀ J leads to:

(3.24)
∫
|J − ρu|2

ρ
dx ≤ lim inf

ε→0

∫
|Jε − ρεu|2

ρε
dx.

So J = ρu.
To conclude, the uniqueness of the limit allows us to say that the weak

convergences actually hold without any extraction.
�

Remark 3.2 (Rate of convergence). Assume that Hε(0) ≤ C
√
ε. Then the

previous estimates show that locally uniformly in time:

(3.25) Hε(t) ≤ C
√
ε.

4. Generalization to other quasineutral limits

4.1. From (S’) to Isothermal Euler. Similarly, we can prove an analogous
theorem for system (S’):

Theorem 4.1 (The case of (S’)). Let ρ0 > 0, u0 verifying the assumptions of
Proposition 3.1 and ρ, u the corresponding strong solutions of system (1.21).
We assume that the sequence of initial data (fε,0) satisfies the assumptions
(2.4-2.6) and:

(4.1)
∫
f0,ε|v − u0|2dvdx→ 0,

(4.2)
√
ε∇xV0,ε → 0,

strongly in L2 and

(4.3)
∫ (

deV0,ε∫
deV0,εdx

log
(

deV0,ε∫
deV0,εdx

/ρ0

)
− deV0,ε∫

deV0,εdx
+ ρ0

)
dx→ 0,

where V0,ε is solution of the nonlinear Poisson equation:

−ε∆xV0,ε =
∫
f0,εdv −

deV0,ε∫
deV0,εdx

.
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Then ρε weakly converges to ρ and Jε weakly converges to ρu in L1.
Furthermore, we have the following local strong convergences: uε = Jε/ρε
strongly converges to ρu in the following sense:∫

|uε − u|2ρεdx→ 0

in L∞t and

deVε∫
deVεdx

→ ρ

in L∞t (L1
x).

Remark 4.1. The convergence result for deVεR
deVεdx

is better than in the limit
for (S).

Sketch of proof. According to Theorem 2.2, the functional Gε(t) is non-increasing:

Gε(t) =
1
2

∫
fε|v|2dvdx+

∫
d(x)

(
Vε − log

(∫
deVεdx

))
eVε∫
deVεdx

dx

+
ε

2

∫
|∇xVε|2dx.

As in the previous proof, we consider mε = deVεR
deVεdx

, and we notice that:

(4.4)
∫
d

(
Vε − log

(∫
deVεdx

))
eVε∫
deVεdx

dx =
∫

(mε log(mε/d))dx.

Since
∫
mεdx = 1 (and thus, ∂t

∫
mεdx = 0) we can actually add this

quantity to the energy so that:
(4.5)∫

d

(
Vε − log

(∫
deVεdx

)
− 1
)

eVε∫
deVεdx

dx =
∫

(mε log(mε/d)−mε)dx,

and we are in the same case as before. Therefore we can consider the same
modulated energy Hε(t). We skip the computations, which are very similar.

The only difference is that since
∫
ρdx =

∫
deVεR
deVεdx

dx = 1, we can use
the classical Csiszar-Kullback-Pinner inequality, so that the relative entropy
controls the L1 norm of the difference:
(4.6)
1
4

∥∥∥∥ deVε∫
deVεdx

− ρε
∥∥∥∥2

L1
x

≤
∫ (

deVε∫
deVεdx

log
(

deVε∫
deVεdx

/ρε

)
− deVε∫

deVεdx
+ ρε

)
dx.

�

4.2. From (L) to Shallow-Water. We now treat the case of system (L),
following the same methodology as before.
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4.2.1. Formal derivation of the Shallow-Water equations. For monokinetic
data, i.e. fε(t, x, v) = ρε(t, x)δv=uε(t,x), the conservation laws state:

(4.7) ∂tρε +∇x.(ρεuε) = 0,

(4.8) ∂t(ρεuε) +∇x : (ρεuε ⊗ uε) = −ρε∇xVε.
We recall that the Poisson equation is:

(4.9) Vε − ε∆xVε =
∫
fεdv − 1.

Since ρε and Jε are uniformly bounded in L∞t (L1
x), the following conver-

gences (up to a subsequence) hold in the sense of distributions: ρε ⇀ ρ and
Jε ⇀ J .

If we formally pass to the limit ε→ 0 we get:

(4.10) V = ρ− 1.

Consequently the limit system is the following:

(4.11)
{
∂tρ+∇x.(ρu) = 0,
∂t(ρu) +∇x : (ρu⊗ u) = −ρ∇xρ.

or equivalently for smooth data and ρ > 0:

(4.12)
{
∂tρ+∇x.(ρu) = 0,
∂tu+ u.∇xu = −∇xρ.

As it has been said before, this system can be interpreted in 1D or 2D as
the Shallow Water equations.

Remark 4.2 (On the kinetic version of the shallow-water limit). In a for-
mal sense, one can also easily perform the kinetic limit ε → 0 and get the
equation:

(4.13)
{
∂tf + v.∇xf −∇xρ.∇vf = 0,
ρ =

∫
fdv.

To our knowledge, this equation is very badly mathematically understood.
The only existence result we are able to prove is the local existence of ana-
lytic solutions. Actually the proof given by Mouhot and Villani [26] (section
9, local in time interaction) in the Vlasov-Poisson case identically holds. In-
deed, we notice that in that proof, they do not need the smoothing effect on
the force field provided by the Poisson equation. Although it is not explicitly
said, the case of the singular force field F = ±∇xρ is automatically included
in their analysis. Of course this is not the case for the other results of their
paper.

Remark 4.3. Let us also mention that the quasineutral together with the
gyrokinetic limit of a similar system was performed by the author in [18].
With quite general initial data, we get a limit equation of kinetic nature. In
other words we do not need to restrict to particular initial data (or to strong
regularity); this rather remarkable fact is due to the anisotropy of the system
with the so-called finite Larmor radius scaling ([13]). The Poisson equation
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then only degenerates in the magnetic field direction but this is overcome
thanks to an averaging lemma.

4.2.2. Rigorous derivation for (partially) well-prepared data. As the Shal-
low Water equations (4.12) are hyperbolic symmetrizable we get the local
existence of smooth solutions [24].

Proposition 4.1. For any initial data ρ0, u0 in Hs(Tn) for s > n
2 +1, there

is existence and uniqueness of a local smooth solution to (4.12):

ρ, u ∈ C0
t ([0, T ∗[, Hs(Tn)) ∩ C1

t ([0, T ∗[, Hs−1(Tn))

for some T ∗ > 0.

As before, we restrict to finite time intervals.

Theorem 4.2 (The case of (L)). Let ρ0 ≥ 0, u0 ∈ Hs(Tn) (s > n/2 + 1
large enough) and ρ, u the corresponding strong solutions to System 4.12.
We assume that the sequence of initial data (f0,ε) satisfies the hypotheses
(2.4-2.6) and:

(4.14)
∫
f0,ε|v − u0|2dvdx→ 0,

(4.15)
∫
|
√
ε∇xV0,ε|2dx→ 0,

and

(4.16) (Id− ε∆x)−1(ρ0,ε − 1)→ (ρ0 − 1),

strongly in L2.
Then ρε weakly-* converges to ρ and Jε weakly converges to ρu in L1.

Furthermore, we have the local strong convergences:

Vε → ρ− 1
in L∞t L2

x, uε strongly converges to u in the following sense:∫
|uε − u|2ρεdx→ 0.

Moreover, ∫
|
√
ε∇xVε|2dx→ 0.

Remark 4.4. • Assumptions (4.15) and (4.16) are satisfied for some
smooth ρ0 as soon as ρ0,ε strongly converges to ρ0 in L2 (For instance,
when ρ0,ε is uniformly bounded in some Hα with α > 0). Indeed, in
this case, we notice that:

(4.17)
1√
ε

(
(Id− ε∆x)−1ρ0,ε − ρ0,ε

)
lies in a compact of H−1 endowed with its strong topology.

This implies, thanks to the Poisson equation that
√
ε∆xV0,ε lies

in a compact for the H−1 norm. This means that
√
ε∇xV0,ε strongly

converges to some ∇xΨ0 in the L2 norm (up to a sequence). But Vε,0
also strongly converges in L2 to ρ0 − 1, so by uniqueness of the limit
in the sense of distributions, ∇xΨ0 = 0.
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• For this reason, an "ill-prepared" case would correspond to some os-
cillating in space initial data:

V0,ε = ρ0 − 1 + rε,

where rε only weakly converges to 0 and
√
ε∇xrε is bounded in L2

(one can think of rε(x) = eix/
√
ε). Then we would have to filter these

oscillations in space to prove strong convergences.
This indicates that the massless electrons have a stabilizing effect

on the system, insofar as no time oscillations occur unless some space
oscillations are imposed at the initial time.

Remark 4.5. We need some additional regularity on ρ and u in order to
handle some non-linear quantities : so we take s large enough (the lower
bound n/2+1 is not sufficient). But we will not dwell on the optimal constant.

Sketch of proof. The functional Eε(t) recalled below is the energy of system
(L):

Eε(t) =
1
2

∫
fε|v|2dvdx+

1
2

∫
V 2
ε dx+

ε

2

∫
|∇xVε|2dx.

The principle of the proof is to consider the following modulation of Eε(t):
(4.18)

H̃ε(t) =
1
2

∫
fε|v − u|2dvdx+

1
2

∫
|Vε − (ρ− 1)|2dx+

1
2

∫
|
√
ε∇xVε|2dx.

Then we can show with similar considerations as previous proofs that
H̃ε(t) satisfies an inequality of the form:

H̃ε(t) ≤ H̃ε(0) + G̃ε(t) +
∫ t

0
C‖∂xu‖L∞H̃ε(s)ds

with G̃ε(t)→ 0 when ε→ 0, uniformly in time.
�

4.3. Quasineutral limit for the isothermal Euler-Poisson system of
Cordier and Grenier. As it was mentioned in the introduction, in [9],
Cordier and Grenier study an isothermal Euler-Poisson version of (S) and
prove the quasineutral limit to the same kind of Euler equation (1.21). So our
result can be seen somehow as a generalization of theirs, since our startpoint
is the kinetic equation. Actually the relative entropy method can also apply
to their system.

In [9], Cordier and Grenier consider the isothermal Euler-Poisson system
(in 1D):

(4.19)


∂tρε + ∂x(ρεuε) = 0
∂tuε + uε∂xuε + T

ρε
∂xρε = −∂xVε

−ε∂2
xxVε = ρε − eVε ,

where T is the (scaled) temperature of ions, of order 1.
The authors perform the quasineutral limit ε→ 0 to the so-called quasineu-

tral Euler system:

(4.20)
{
∂tρ+ ∂x(ρu) = 0
∂tu+ u∂xu+ T+1

ρ ∂xρ = 0.
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Their proof relies on rather tricky energy estimates obtained by pseudodif-
ferential calculus (using the framework introduced by Grenier [16]).

Relative entropy methods provide an alternative and more direct proof.
Indeed, the following functional is an energy for system (4.19):
(4.21)

Eε(t) =
1
2

∫
ρεu

2
εdx+T

∫
ρε(log ρε−1)dx+

∫
(Vε−1)eVεdx+

ε

2

∫
|∂xVε|2dx.

We can consequently consider the modulated energy:

Hε(t) =
1
2

∫
ρε|uε − u|2dx+ T

∫
ρε(log (ρε/ρ)− 1 + ρ/ρε)dx

+
∫

(mε log (mε/ρ)−mε + ρ)dx+
ε

2

∫
|∂xVε|2dx,

(4.22)

with mε = eVε . We can show, as in the previous proofs, that Hε satisfies
some stability inequality. In addition to the results obtained for system (S),
we get the following strong convergence in L∞t (L2

x):

(4.23)
√
ρε →

√
ρ.

5. Combined quasineutral and large magnetic field limit

We now study the limit ε → 0 of the following system, which is nothing
but system (S’) with a strong magnetic field.

(5.1)


∂tfε + v.∇xfε +

(
Eε + v∧e‖

ε

)
.∇vfε = 0

Eε = −∇xVε
−ε2α∆xVε =

∫
fεdv − deVεR

deVεdx

fε,|t=0 = f0,ε,
∫
f0,εdvdx = 1.

We shall not dwell on the existence of global weak solutions, since it is
very similar to the theory for system (S’) that was studied in section 2.

We start with a formal analysis in order to show how we can get the
expected limit system.

5.1. Formal analysis. For monokinetic data, i.e. fε(t, x, v) = ρε(t, x)δ(v =
uε(t, x)), the two first conservation laws read:

∂ρε +∇x.(ρεuε) = 0,

∂tuε + uε.∇xuε = Eε +
u⊥ε
ε
.

The Poisson equation reads:

−ε2α∆xVε = ρε −
deVε∫
deVεdx

.

In the limit ε→ 0, assuming that in some sense ρε ⇀ ρ, Vε ⇀ V (as well
as ∇xVε ⇀ ∇xV ), we get:

(5.2) ρ =
deV∫
deV dx

,
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and this implies that:

∇xV =
∇xρ
ρ
− ∇xd

d
.

If we multiply the second conservation law by ε we get:

u⊥ε = ε (∂tuε + uε.∇xuε − Eε) .

This implies that u⊥ε ⇀ 0. This convergence can not occur in a strong sense
because of the oscillations in time of frequency O(1/ε), created by the mag-
netic field, but we can precisely describe the oscillations and consequently
the strong convergence.

We denote by R(s) the rotation of axis e‖ and angle s. Explicityly, we
have:

R(s) =

cos t − sin t 0
sin t cos t 0

0 0 1

 .

Following standard methods for singular perturbation problems ([17], [31]),
we introduce the filtered momentum wε defined by:

(5.3) wε = R(t/ε)uε.

Then it is readily seen that wε satisfies the equation:

(5.4) ∂twε +R(−t/ε)wε.∇xwε = R(t/ε)Eε.

We assume then that wε → w strongly. We take the limit ε→ 0 by time
averaging:

(5.5) R(−t/ε)wε.∇xwε →
1

2π

∫ 2π

0
R(−τ)w.∇xwdτ = w‖∂x‖w

and argue similarly for the other terms. We get in the end the following
isothermal Euler system (with no dynamics in the x⊥ variable):

(5.6)

{
∂tρ+ ∂x‖(ρw‖) = 0,

∂tw + w‖∂x‖w = −
∂x‖ρ

ρ − ∂x‖H.

Of course, this system is very similar to the "usual" isothermal Euler
system (1.21), so we get the same existence result.

Proposition 5.1. For any initial data ρ0 > 0, w0 such that ρ0 ∈ L1(R3),
log(ρ0

d ) ∈ Hs(R3) and w0 ∈ Hs(R3) for s > 3
2 + 1, there is existence and

uniqueness of a local smooth solution ρ > 0 and u to (3.1) such that :

(5.7) log
ρ

d
,w ∈ C0

t ([0, T ∗[, Hs(R3)) ∩ C1
t ([0, T ∗[, Hs−1(R3))

(5.8) ρ ∈ C1([0, T ∗[×R3)

for some T ∗ > 0.
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From what we have seen, we can thus expect the strong convergence

(5.9) R(t/ε)uε → w,

that is to say:

(5.10) uε −R(−t/ε)w → 0.

5.2. Convergence proof. We first give the stability inequality we obtain
for system (5.1).

Proposition 5.2. Let (f0,ε) be a sequence of initial data satisfying assump-
tions (2.4-2.6) and (fε) the corresponding global weak solutions to (5.1).

Let s > 3/2 + 1. For any sequence log ρ̄ε
d , ūε in C0

t ([0, T ∗[, Hs(R3)) ∩
C1
t ([0, T ∗[, Hs−1(R3)) we define the modulated energy:

(5.11)

Hε(t) =
1
2

∫
fε|v−ūε|2dvdx+

∫
(mε log (mε/ρ̄ε)−mε+ρ̄ε)dx+

ε2α

2

∫
|∇xVε|2dx,

with mε = deVεR
deVεdx

. Then the following inequality holds:

Hε(t) ≤ Hε(0) +Gε(t) + C

∫ t

0
‖∇xūε‖L∞Hε(s)ds

+
∫ t

0

∫
Aε(ρ̄ε, ūε).

(
−mε + ρ̄ε
Jε − ρεūε

)
dxds,(5.12)

with Aε(t, x) the so-called acceleration operator defined by:

(5.13) Aε(ρ̄ε, ūε) =

(
∂t log

( ρ̄ε
d

)
+∇x.ūε + ūε.∇x log

( ρ̄ε
d

)
−∇xH.ūε

∂tūε + ūε.∇xūε +∇x log
( ρ̄ε
d

)
− ū⊥ε

ε

)
,

and Gε(t) satisfying:

Gε(t) ≤ Cεα‖εα∇xVε‖L∞t (L2
x) ×(

‖∇x(ūε.∇x log ρ̄ε/d)‖L∞t (L2
x) + ‖ log(ρ̄ε/d)‖

W 1,∞
t (H1

x)

)
.(5.14)

Proof. The proof is similar to the one given to obtain (3.20) in the proof of
Theorem 3.1 and therefore we omit it. �

As we wish to show the strong convergence (after filtering) of (ρε :=∫
fεdv, uε := 1

ρε

∫
vfεdv) to solutions to system (5.6), a natural idea would

consist in taking (ρ̄ε := ρ, ūε = R(−t/ε)w) where ρ and w are the smooth
solution to system (5.6) with initial data ρ0 and w0. Unfortunately, we can
not prove directly

Aε(ρ,R(−t/ε)w)→ 0
in a strong sense. Thus, as in [31] or [14], we add a small correction denoted
by εzε in order to build a higher order approximation of the equation and
make the acceleration operator vanish. The shape of zε is precisely chosen
in order to “kill” the non-vanishing terms which only weakly converge to 0.

In the following, we will consider the derivative of R:

(5.15) S(t) :=
dR(t)
dt

,
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which satisfies:

dS(t)
dt

= R(−t)⊥ :=

 cos t sin t 0
− sin t cos t 0

0 0 0

 .

Theorem 5.1. Let ρ0, w0 initial data verifying the hypotheses of Proposition
5.1 with s > 5/2. We assume that the sequence of initial data (f0,ε) satisfies
the assumptions (2.4-2.6) and:

(5.16) Hε(0)→ 0.

Let (log ρ
d , w) the unique strong solution to (5.6) with

(
log ρ0

d , w0

)
as initial

conditions. We define ρ̄ε and ūε by the relation:

(5.17)
(

log ρ̄ε
d

ūε

)
=
(

log ρ
d

R(−t/ε)w

)
+ εyε,

with yε =
(

zρε
R(−t/ε)zwε

)
and zρε (resp. zρε ) defined by its Fourier transform

Fzρε (resp. Fzwε ):

Fzρε (ξ) =− 1|ξ|≤ 1
ε
F (∇x⊥ .(S(t/ε)w)−∇xH.S(t/ε)w⊥)

−
∫

R3

1|ξ−η|+|η|≤ 1
ε
F(S(t/ε)w⊥)(η).F

(
∇x⊥ log

(ρ
d

))
(ξ − η)dη,

(5.18)

Fzwε (ξ) =− 1|ξ|≤ 1
ε
F
(
S(t/ε)∇x⊥ log

(ρ
d

))
−
∫

R3

1|ξ−η|+|η|≤ 1
ε
F(S(t/ε)w⊥)(η).F(∇x⊥w)(ξ − η)dη,

(5.19)

where the operator S(t) is defined in (5.15).
Then, there exists C > 0 depending only on w and log ρ

d ,

‖zε‖L∞t ([0,T ],Hs−1) ≤ C,
and locally uniformly in time we have:

(5.20) Hε(t)→ 0.

In particular, this means that ρε weakly converges to ρ and Jε weakly
converges to ρw‖. Furthermore, we have the following strong convergences:∫

ρε|uε −R(−t/ε)w|2dx→ 0

and
deVε∫
deVεdx

→ ρ

in L∞t (L1
x).

Remark 5.1. (1) Instead of a cut-off of order 1
ε , we could have chosen

any function ξ(ε) such that for some q ∈]3/2, s− 1[:
1
ξ(ε)

→ε→00,

ξ(ε)s−q−2ε→ε→00.
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The choice ξ(ε) = 1
ε yields a sharp convergence rate.

(2) Concerning the rate of convergence, the proof below actually shows
that for any q ∈]3/2, s− 1[, if:

Hε(0) ≤ Cεmin(s−q−1,1),

then there exists Cq depending on q such that locally uniformly in
time:

Hε(t) ≤ Cqεmin(s−q−1,1).

(3) When s > 7/2, we can observe in the proof that we actually do not
need any cut-off in frequency. In this case the convergence is of order
ε.

Proof. We assume that s ∈]5/2, 7/2]. When s > 7/2, the proof is actually
much simpler, as we do not need any cut-off in frequency and all the estimates
are straightforward.
Step 1 We first show that ‖zε‖L∞t ([0,T ],Hs−1) ≤ C. Let us observe that we

do not use the cut-off in frequency here. We have:∫
R3

(
1 + |ξ|2

)s−1 |Fzρε (ξ)|2dξ = ‖zρε‖2Hs−1 .

We then estimate:∫
|ξ|≤ 1

ε

(
1 + |ξ|2

)s−1 |F (∇x⊥ .(S(t/ε)w))|2 dξ

≤ C

∫
|ξ|≤ 1

ε

(
1 + |ξ|2

)s−1+1 |FS(t/ε)w|2 dξ

≤ C

∫
|ξ|≤ 1

ε

(
1 + |ξ|2

)s |FS(t/ε)w|2 dξ

≤ C‖S(t/ε)w‖2Hs ≤ C‖w‖2Hs .

Similarly we have:∫
|ξ|≤ 1

ε

(
1 + |ξ|2

)s−1 |F (∇xH.S(t/ε)w⊥) |2dξ ≤ C‖w⊥‖2Hs−1 .(5.21)

Finally we compute:

∫
R3

∫
R3

(
1 + |ξ|2

)s−1
1|ξ−η|+|η|≤ 1

ε
|F(S(t/ε)w⊥)(η).F

(
∇x⊥ log

(ρ
d

))
(ξ − η)|2dη

≤C‖S(t/ε)w∇x log
ρ

d
‖2Hs−1 ≤ C‖w‖2Hs−1‖ log

ρ

d
‖2Hs ,

(5.22)

since Hs−1(R3) is an algebra. This proves that there exists a constant de-
pending on w and log ρ

d :

‖zρε‖L∞t ([0,T ],Hs−1) ≤ C.
Likewise, we prove that:

‖zwε ‖L∞t ([0,T ],Hs−1) ≤ C.

This yields that εzε → 0 in L∞t ([0, T ], Hs−1).
Now, let q ∈]3/2, s − 1[ be a fixed parameter. We are interested in the

Hq+1 norm of zε. Since q + 2 > 7/2 ≥ s, the Hq+2 norm of log ρ
d and w is
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not necessarily well-defined3 and we use this time the cut-off in frequency to
lower down the regularity to Hs:∫

|ξ|≤ 1
ε

(
1 + |ξ|2

)q+1 |F (∇x⊥ .(S(t/ε)w))|2 dξ

≤ C

∫
|ξ|≤ 1

ε

(
1 + |ξ|2

)s (1 + |ξ|2
)q+2−s |FS(t/ε)w|2 dξ

≤ C/εq+2−s
∫
|ξ|≤ 1

ε

(
1 + |ξ|2

)s |FS(t/ε)w|2 dξ

≤ C/εq+2−s‖w‖2Hs .

Treating the other terms similarly, we obtain:

(5.23) ‖zε‖L∞t ([0,T ],Hq+1) ≤ C/εq+2−s.

Step 2 We denote Xε =
(

ρeεz
ρ
ε

w + εzwε

)
. We introduce the filtered accelera-

tion operator defined by:

(5.24)

Bε(ρ̄, ū) =
(
∂t log

( ρ̄
d

)
+∇x.R(−t/ε)ū+R(−t/ε)ū.∇x log

( ρ̄
d

)
−∇xH.R(−t/ε)ū

∂tū+R(−t/ε)ū.∇xū+R(−t/ε)∇x log
( ρ̄
d

) )
.

We show that Xε is an approximate zero of the filtered acceleration oper-
ator Bε in the sense that (we recall that q ∈]3/2, s− 1[):

‖Bε(Xε)‖L∞t ([0,T ],Hq) → 0,

when ε→ 0.
By definition of S, we have:

dS(t/ε)
dt

=
1
ε
R(−t/ε)⊥.

Hence we have:

∂tF (log(ρ/d) + εzρε )

= −F
(
∂x‖w‖ + w‖∂x‖ log(ρ/d)− ∂x‖Hw‖

)
− 1|ξ|≤ 1

ε
F (∇x⊥ .(R(−t/ε)w)−∇xH.R(−t/ε)w⊥)

−
∫

R3

1|ξ−η|+|η|≤ 1
ε
F(R(−t/ε)w⊥(η))F(∇x⊥ log

(ρ
d

)
)(ξ − η)dη

+ Dε(t, ξ),

where Dε is defined by:

Dε(t, ξ) := − ε1|ξ|≤ 1
ε
F (∇x⊥ .(S(t/ε)∂tw)−∇xH.S(t/ε)∂tw⊥)

− ε

∫
R3

1|ξ−η|+|η|≤ 1
ε
FS(t/ε)∂tw⊥(η)F

(
∇x⊥ log

(ρ
d

))
(ξ − η)dη

− ε

∫
R3

1|ξ−η|+|η|≤ 1
ε
FS(t/ε)w⊥(η)F

(
∇x⊥∂t log

(ρ
d

))
(ξ − η)dη.

3When s > 7/2, q can be chosen such that q+2 ≤ s and thus we have ‖zε‖L∞t ([0,T ],Hq+1) ≤
C.
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Consequently, denoting by B1,ε the operator in the first line of Bε (resp.
B2,ε the second operator) we have:

FB1,ε(Xε) = T1,ε(t, ξ) + T2,ε(t, ξ) +Dε(t, ξ),

with:

T1,ε(t, ξ) = 1|ξ|> 1
ε
F (∇x⊥ .(R(−t/ε)w⊥)−∇xH.R(−t/ε)w⊥)

+
∫

R3

1|ξ−η|+|η|> 1
ε
F(R(−t/ε)w⊥)(η)F

(
∇x⊥ log

(ρ
d

))
(ξ − η)dη,

(5.25)

T2,ε(t, ξ) = εF
(
∇x.R(−t/ε)zwε +R(−t/ε)w.∇xzρε +R(−t/ε)zwε .∇x log

ρ

d
−∇xH.R(−t/ε)zwε

)
+ε2F(R(−t/ε)zwε .∇xzρε ).

(5.26)

Remark 5.2. Without corrector (zε = 0) we have:

T1,ε(t, ξ) = F (∇x⊥ .(R(−t/ε)w⊥) +∇xH.R(−t/ε)w⊥)

+
∫

R3

F(R(−t/ε)w⊥)(η)F
(
∇x⊥ log

(ρ
d

))
(ξ − η)dη

These terms only weakly but not strongly converge to 0 as ε goes to 0 : this
is why we have to add the corrector.

When zε is defined without without cut-off in frequency, we notice that we
exactly have T1,ε(t, ξ) = 0.

Estimating T1,ε

We need the Hs regularity of w and log ρ/d in order to get some decay in
ε for T1,ε, by using, for any β > 0:

1|ξ|> 1
ε
≤ (1 + |ξ|2)βε2β,

1|ξ−η|+|η|> 1
ε
≤ 2(|ξ − η|2 + |η|2)βε2β.

Therefore we have:∫
R3

(1 + |ξ|2)q1|ξ|> 1
ε
|F (∇x⊥ .(R(−t/ε)w⊥)) |2dξ

≤Cε2s−2(q+1)

∫
R3

(1 + |ξ|2)q+1+s−(q+1)|F (R(−t/ε)w⊥) |2dξ

≤Cε2s−2(q+1)‖w‖2Hs .

We handle the other terms by the same method.There exists a constant
C depending only on q and the Hs norm of log ρ

d and w such that:

(5.27)
(∫

R3

(1 + |ξ|2)q|T1,ε|2dξ
)1/2

≤ Cεs−q−1.

Estimating T2,ε
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We can use estimate (5.23). As a result, there exists a constant C de-
pending only on q and the Hs norm of log ρ

d and w such that:
(5.28)(∫

R3

(1 + |ξ|2)q|T2,ε|2dξ
)1/2

≤ C(ε× εs−q−2 + ε2 × εs−q−2) ≤ Cεs−q−1.

Estimating Dε

We only have ∂tw ∈ Hs−1 and consequently we do not necessarily have
∂tw ∈ Hq+1. Nevertheless, we can use the cut-off in frequency to lower the
regularity down to only Hs−1:∫

R3

(1 + |ξ|2)q1|ξ|≤ 1
ε
|F (∇x⊥ .(S(t/ε)∂tw)) |2dξ

≤C
∫

R3

(1 + |ξ|2)q+1
1|ξ|≤ 1

ε
|F ((S(t/ε)∂tw)) |2dξ

≤C 1
ε2(q+1)−2(s−1)

∫
R3

1|ξ|≤ 1
ε
(1 + |ξ|2)s−1|F ((S(t/ε)∂tw)) |2dξ

≤C 1
ε2(q+2−s) ‖∂tw‖

2
Hs−1 .

Following the same method for the other terms, we finally obtain:

(5.29)
(∫

R3

(1 + |ξ|2)q|Dε|2dξ
)1/2

≤ Cε× εs−2−q = Cεs−1−q.

Gathering the pieces together, there exists a constant C > 0 depending
on q, the Hs norm of log ρ

d , w and the Hs−1 norm of ∂t log ρ
d , ∂tw such that

‖B1,ε(Xε)‖Hq ≤ Cεs−q−1.

As a consequence, we have proved:

(5.30) ‖B1,ε(Xε)‖L∞t ([0,T ],Hq) → 0.

Arguing similarly for B2,ε, we finally deduce that

‖Bε(Xε)‖L∞t ([0,T ],Hq) → 0.

Step 3 Finally we check that uniformly in time :∫ t

0

∫
Aε(ρ̄ε, ūε).

(
−mε + ρ̄ε
Jε − ρεūε

)
dxds→ 0,

as ε goes to 0. We recall that ρ̄ε and ūε were defined in (5.17).
First we have to check that

‖Aε(ρ̄ε, ūε)‖L∞t ([0,T ],Hq) → 0.

This is clear in view of Step 2, since we have:

Aε(ρ̄ε, ūε) =
(

B1,ε(Xε)
R(t/ε)B2,ε(Xε)

)
.

and R(t/ε) is an isometry on any Hs(R3).
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We denote Aε =
(
A1,ε

A2,ε

)
and evaluate:

∣∣∣∣∫ t

0

∫
A1,ε(ρ̄ε, ūε).

(
−mε + ρ̄ε

)
dxds

∣∣∣∣
≤
∫ t

0

∫
|A1,ε(ρ̄ε, ūε)mε| dxds+ ≤

∫ t

0

∫
|A1,ε(ρ̄ε, ūε)ρ̄ε| dxds

≤ C‖Aε(ρ̄ε, ūε)‖L∞t ([0,T ],L∞)

(
‖mε‖L∞t (L1

x) + ‖ρ‖L∞t (L1
x)‖eεz

ρ
ε ‖L∞t,x

)
≤ C‖Aε(ρ̄ε, ūε)‖L∞t ([0,T ],Hq)

(
1 + ‖eεz

ρ
ε ‖L∞t,x

)
,

by Sobolev embedding, Hq(R3) → L∞(R3) (q > 3/2). By the estimates of
Step 1, there exists C > 0 independent of ε such that:

‖eεzwε ‖L∞t,x ≤ C.

In the other hand,∣∣∣∣∫ t

0

∫
A2,ε(ρ̄ε, ūε).

(
Jε − ρεūε

)
dxds

∣∣∣∣
≤ C‖Aε(ρ̄ε, ūε)‖L∞t ([0,T ],L∞)

(
‖Jε‖L∞t (L1

x) + ‖ρε‖L∞t (L1
x)‖R(−t/ε)(w + εzwε )‖L∞t,x

)
≤ ‖Aε(ρ̄ε, ūε)‖L∞t ([0,T ],Hq)

(
1 + ‖w‖L∞t (Hs) + ‖εzwε ‖L∞t,x

)
and the conclusions follows.

One can also readily check, using (5.14), that Gε(t) → 0 uniformly in
time.

Finally this proves that Hε(t)→ 0 uniformly in time, as soon as Hε(0)→
0.

Using the estimates of Step 1, we check that(
ρeεz

ρ
ε , w + εzwε

)
→ (ρ, w)

in L∞([0, T ], L∞).
In order to apply Gronwall’s inequality to the inequality (5.12), there

remains to check that ‖∇xūε‖L∞ is uniformly bounded in ε. It is sufficient
to check that ‖ε∇xzwε ‖L∞ is uniformly bounded. According to (5.23) and by
Sobolev embedding Hq → L∞, we have:

(5.31) ‖ε∇xzwε ‖L∞t,x ≤ ‖ε∇xz
w
ε ‖L∞t Hq

x
≤ Cεs−q−1 ≤ C.

Then, the other conclusions easily follow as in the end of the proof of
Theorem 3.1. �

Appendix

Scaling of the Vlasov-Poisson systems (S), (S’) and (L). Let us in-
troduce the dimensionless variables and unknowns:

t̃ =
t

τ
x̃ =

x

L
ṽ =

v

vth
,

f(t, x, v) = f̄ f̃(t̃, x̃, ṽ) V (t, x) = V̄ Ṽ (t̃, x̃) E(t, x) = ĒẼ(t̃, x̃).
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Then the Vlasov equation with Poisson equation (1.5) equation states:

(5.32)


∂t̃f̃ε + vthτ

L ṽ.∇x̃f̃ε + eĒτ
mvth

Ẽε.∇ṽf̃ε = 0
ĒL
V̄
Ẽε = −∇x̃Ṽε

− ε0V̄
L2 ∆x̃Ṽε = ef̄v3

th

∫
f̃εdṽ − ed̄d̃e

eV̄
kBTe

Ṽε

f̃ε,|t̃=0 = f̃0,ε, f̄L3v3
th

∫
f̃0,εdṽdx̃ = 1.

In order to ensure that
∫
f̃dx̃dṽ = 1, it is natural to set:

f̄L3v3
th = 1.

Moreover we consider the normalizations:

vthτ

L
= 1,

ĒL

V̄
= 1,

eV̄

kBTe
= 1,

f̄v3
th = d̄.

This implies that:
eĒτ

mvth
=
vthτ

L
= 1.

Now we observe that:

ε0V̄

ef̄v3
th

=
ε0kBTe
e2 × 1/L3

= λ2
D,

where λD is the Debye length.
The quasineutral scaling consists in considering the ordering:

λ2
D

L2
= ε,

with ε a small parameter.
With this scaling we get the following dimensionless system of equations

(we forget the˜for the sake of readability):

(5.33)


∂tfε + v.∇xfε + Eε.∇vfε = 0
Eε = −∇xVε
−ε∆xVε =

∫
fεdv − deVε

fε,|t=0 = f0,ε ≥ 0,
∫
f0,εdvdx = 1.

This system is nothing but System (S). We get Systems (S’) and (L) with
the same nondimensionalization.

Remark 5.3. To be rigorous we should also consider the confinement force
−∇xH on the ions, but we will not do so for the sake of simplicity and
readability. Nevertheless we could handle such an external force with only
minor changes in the following.
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Scaling of the Vlasov-Poisson equation (1.30). We once again consider
the nondimensionalization analysis of system (S’), this time including the
magnetic field:

B = B̄e‖.

This yields:

(5.34)



∂t̃f̃ε + vthτ
L ṽ.∇x̃f̃ε +

(
eĒτ
mvth

Ẽε + eB̄
m τ ṽ ∧ e‖

)
.∇ṽf̃ε = 0

ĒL
V̄
Ẽε = −∇x̃Ṽε

− ε0V̄
L2 ∆x̃Ṽε = ef̄v3

th

∫
f̃εdṽ − e d̃e

eV̄
kBTe

ṼεR
d̃e

eV̄
kBTe

Ṽε
dx

f̃ε,|t̃=0 = f̃0,ε, f̄L3v3
th

∫
f̃0,εdṽdx̃ = 1.

We set Ω = eB̄
m : this is the cyclotron frequency (also referred to as the

gyrofrequency). We also consider the so-called electron Larmor radius (or
electron gyroradius) rL defined by:

(5.35) rL =
vth
Ω

=
mvth
eB̄

.

This quantity can be physically understood as the typical radius of the helix
around axis e‖ that the particles follow, due to the intense magnetic field.

The Vlasov equation now reads:

∂t̃f̃ε +
rL
L

Ωτ ṽ.∇x̃f̃ε +
(

Ē

B̄vth
ΩτẼε + Ωτ ṽ ∧ e‖

)
.∇ṽf̃ε = 0.

The "strong magnetic field" ordering consists in setting:

Ωτ =
1
ε
,

Ē

B̄vth
= ε,

rL
L

= ε.

The quasineutral scaling we consider is:

λ2
D

L2
= ε2α,

with α > 0. From the physical point of view, it means that we consider that
both the Larmor radius and the Debye length vanish. We observe that:

λD
rL

= εα−1

In most practical situations, λD � rL, so that the range of parameters
α > 1 is particularly physically relevant. Finally, by having the same nor-
malizations as before, we get in the end:

∂tfε + v.∇xfε +
(
Eε + v∧b

ε

)
.∇vfε = 0

Eε = −∇xVε
−ε2α∆xVε =

∫
fεdv − deVεR

deVεdx

fε,|t=0 = f0,ε,
∫
f0,εdvdx = 1.



QUASINEUTRAL LIMIT FOR VLASOV-POISSON 37

References

[1] A.A. Arsenev. Existence in the large of a weak solution of Vlasov’s system of equa-
tions. Z. Vychisl. Mat. Mat. Fiz, 15:136–147, 1975.

[2] M. Bostan. The Vlasov-Maxwell system with strong initial magnetic field: guiding-
center approximation. Multiscale Model. Simul., 6(3):1026–1058, 2007.

[3] F. Bouchut. Global weak solution of the Vlasov-Poisson system for small electrons
mass. Comm. Partial Differential Equations, 16:1337–1365, 1991.

[4] F. Bouchut, F. Golse, and M. Pulvirenti. Kinetic Equations and Asymptotic Theory.
Series in Applied Mathematics. Gauthier-Villars, 2000.

[5] Y. Brenier. Convergence of the Vlasov-Poisson system to the incompressible Euler
equations. Comm. Partial Differential Equations, 25:737–754, 2000.

[6] Y. Brenier and G. Loeper. A geometric approximation to the Euler equations: the
Vlasov-Monge-Ampère system. Geom. Funct. Anal., 14(6):1182–1218, 2004.

[7] Y. Brenier, N. Mauser, and M. Puel. Incompressible Euler and e-MHD as scaling
limits of the Vlasov-Maxwell system. Commun. Math. Sci., 1(3):437–447, 2003.

[8] C. Cheverry, I. Gallagher, T. Paul, and L. Saint-Raymond. Trapping Rossby waves.
C. R. Math. Acad. Sci. Paris, 347(15-16):879–884, 2009.

[9] Y. Cordier and E. Grenier. Quasineutral limit of an Euler-Poisson system arising from
plasma physics. Comm. Partial Differential Equations, 25(5):1099–1113, 2000.

[10] R.L. Dewar and R.F. Abdullatif. Zonal flow generation by modulational instability.
Proceedings of the CSIRO/COSNet Workshop on Turbulence and Coherent Struc-
tures, Canberra, Australia, World Scientific, eds. J.P. Denier and J.S. Frederiksen,
2006.

[11] R.J. Diperna and P.L. Lions. Solutions globales d’equations du type Vlasov-Poisson.
C. R. Acad. Sci. Paris Ser. I Math., 307(12):655–658, 1988.

[12] R. Fitzpatrick. The Physics of Plasmas. available at
http://farside.ph.utexas.edu/teaching/plasma/380.pdf.

[13] E. Frénod and E. Sonnendrücker. The Finite Larmor Radius Approximation. SIAM
J. Math. Anal., 32(6):1227–1247, 2001.

[14] F. Golse and L. Saint-Raymond. The Vlasov-Poisson system with strong magnetic
field in quasineutral regime. Mathematical Models and Methods in Applied Sciences,
13(5):661–714, 2003.

[15] T. Goudon, P.E. Jabin, and A. Vasseur. Hydrodynamic limit for the Vlasov-Navier-
Stokes equations. II. Fine particles regime. Indiana Univ. Math. J., 53(6):1517–1536,
2004.

[16] E. Grenier. Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures
Appl., 76(9):477–498, 1997.

[17] E. Grenier. Pseudo-Differential Energy Estimates of Singular Perturbations. Comm.
Pure App. Math., 50:0821–0865, 1997.

[18] D. Han-Kwan. The three-dimensional finite Larmor radius approximation. Asymptot.
Anal., 66(1):9–33, 2010.

[19] A. Hasegawa and K. Mima. Pseudo-three-dimensional turbulence in magnetized
nonuniform plasma. Phys. Fluids, 21(1):87–92, 1978.

[20] E. Horst and E. Hunze. Weak solutions of the initial value problem for the unmodified
nonlinear Vlasov equation. Math. Methods Appl. Sci., 6:262–279, 1982.

[21] M.A. Lieberman and A.J. Lichtenberg. Principles of plasma discharge and materials
processing. New-York, Wiley, 1994.

[22] P.L. Lions and B. Perthame. Propagation of moments and regularity for the three-
dimensional Vlasov-Poisson system. Invent. Math., 105:415–430, 1991.

[23] G. Loeper. Uniqueness of the solution to the Vlasov-Poisson system with bounded
density. J. Math. Pures Appl., 86:68–79, 2006.

[24] A. Majda. Compressible fluid flow and systems of conservation laws in several space
variables. Springer-Verlag, 1984.

[25] N. Masmoudi. From Vlasov-Poisson system to the incompressible Euler system.
Comm. Partial Differential Equations, 26(9):1913–1928, 2001.

[26] C. Mouhot and C. Villani. On Landau damping. Preprint, 2009.



38 DANIEL HAN-KWAN

[27] K. Pfaffelmoser. Global classical solutions of the Vlasov-Poisson system in three di-
mensions for general initial data. J. Diff. Equations. , 95:281–303, 1992.

[28] M. Puel and L. Saint-Raymond. Quasineutral limit for the relativistic Vlasov-Maxwell
system. Asymptot. Anal., 40(3-4):303–352, 2004.

[29] L. Saint-Raymond. Hydrodynamic limits: some improvements of the relative entropy
method. Ann. Inst. H. Poincare Anal. Non Lineaire, 26(3):705–744, 2009.

[30] J. Schaeffer. Global existence of smooth solutions to the Vlasov-Poisson system in
three dimensions. Comm. Partial Differential Equations, 16(8-9):1313–1335, 1991.

[31] S. Schochet. Fast singular limits of hyperbolic PDEs. J. Differential Equations,
114:476–512, 1994.

École Normale Supérieure, Département de Mathématiques et Applica-
tions, 45 rue d’Ulm 75230 Paris Cedex 05 France

E-mail address: daniel.han-kwan@ens.fr


