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Abstract

We study the instability of solutions to the relativistic Vlasov-Maxwell systems in two limiting regimes:
the classical limit when the speed of light tends to infinity and the quasineutral limit when the Debye
length tends to zero. First, in the classical limit € — 0, with € being the inverse of the speed of light, we
construct a family of solutions that converge initially polynomially fast to an homogeneous solution p
of Vlasov-Poisson in arbitrarily high Sobolev norms, but become of order one away from g in arbitrary
negative Sobolev norms within time of order |loge|. Second, we deduce the invalidity of the quasineutral
limit in L? in arbitrarily short time.

1 Introduction

We study the relativistic Vlasov-Maxwell system
1
1
EatB—&-waE:O, Ve E=p—1, (1.1)

1 1
—EﬁtE—l—VxxB:Ej, V. -B=0,
describing the evolution of an electron distribution function f(¢,z,v) at time ¢ > 0, position x € T? := R3/Z3,
momentum v € R? and relativistic velocity

In these equations, the parameter c is the speed of light. Here, T? is equipped with the normalized Lebesgue
measure so that Leb(T?) = 1. The electric and magnetic fields F(x,t), B(x,t) are three-dimensional vector
fields, satisfying the classical Maxwell equations, with sources given by

plta) = [ fav, jtta)= [ of do,
R3 R3

which denote the usual charge density and current of electrons. The background ions are assumed to be
homogeneous with a constant charge density equal to one.
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We focus in the regime where ¢ — 400, that is known as the classical (or non-relativistic) limit of the
Vlasov-Mazwell system. The formal limit is the classical Vlasov-Poisson system:

{atf+v~vwf+E-va=0’ (1.2)

VoxE=0, V., -E=p—1,

where p(t,z) = f]RS fdv. This limit was justified on finite intervals of time in the independent and simul-
taneous works of Asano-Ukai [2], Degond [6], and Schaeffer [36]. We shall prove in this paper that in the
classical limit, the Vlasov-Mazwell system can develop instabilities in time logc, due to instabilities of the
limiting Vlasov-Poisson system.

We are also interested in the following non-dimensional Vlasov-Maxwell system:
Of+0-Vof +(E+adx B)-V,f =0,
adB+V,x E=0, eV, - E=p—1, (1.3)
—ae?0,F +V, x B = aj, V. -B=0,

with
v v
0= —, t,x) = dv, j(t,x)= ——fdv
I p(t, x) Rgf j(t, x) . ﬁ+as2|m2f

In physical units, the parameters a, e are given by

To €0
— —, £ = —5
€0 ToC

where 7y denotes the classical electron radius, ¢ is the vacuum dielectric constant, and c is still the speed
of light. The parameter ¢ corresponds to the classical Debye length of the electrons; see [35] for further
discussions. In this work, we are interested in the regime where o« ~ 1 and € — 0, a limit in which the charge
density of ions and electrons are formally equal. We shall thus refer to this problem as the quasineutral limit
of the Vlasov-Mazwell system. Note that a is equal to the ratio between % and ¢, so that this means that
we consider that the inverse of the Debye length is of the same order as the speed of light. For simplicity,
throughout the paper, we set o = 1.

The quasineutral limit of the Vlasov-Maxwell system has been studied previously by Brenier, Mauser
and Puel [5] and Puel and Saint-Raymond [35] in the case where the initial density distribution converges in
some weak sense to a monokinetic distribution (that is, a Dirac delta function in velocity). The convergence
to monokinetic distributions can be interpreted from the physical point of view as vanishing temperature:
therefore, this is sometimes referred to as the cold electrons limit. The work [35] furthermore describes the
propagation of time oscillating waves, which turn out to be absent in the well-prepared framework considered
in [5].

For each fixed ¢ > 0, the global-in-time Cauchy theory for smooth solutions of remains an out-
standing open problem. However, there are local strong solutions and continuation conditions (|37, B8] [T}
111 @, 10} [3l 28] [30], among others) or global weak solutions ([8]). In this paper, we shall construct particular
solutions of that are sufficiently smooth. This also pertains to system , for each fixed ¢ > 0.

Formally, in the limit € — 0, it is straightforward to obtain the expected formal limit of (L.3)), a system
we shall call the kinetic eMHD system:
OufO +v-Vuf' +(E°4+vx B -V, =0,
B +V,xE =0, p’=1, (1.4)
V. x B = j°, V. B’ =0,



in which

Pla)= [ Odv, Pt) = / of? dv.
R3

R3
By imposing that the distribution function is monokinetic, that is considering the ansatz

Otz v) = pO(t, T)0y—u0 (t,2),

where § stands for the Dirac measure, it follows that f° is a solution in the sense of distribution to (1.4)) if
and only if (p", u") satisfies the following hydrodynamic equations:

o’ + V- (u’ @u’) = E° +u° x B,
xB°+VxE =0, p0=1, (1.5)
V x B =Y, V-BY=0.
This system is known in the literature as the electron Magneto-Hydro-Dynamics equations (eMHD); see, for
instance, [25, B]. This motivates the choice of the name kinetic eMHD for (1.4)). The work [5], and then [35],
justify the eMHD system from (1.3]) in the above monokinetic situation via the so-called modulated energy

(or relative entropy) method devised by Brenier in [4]. In this paper, we rather focus on the question of
validity of (1.4)) in the quasineutral limit.

The kinetic eMHD system (1.4]) can be studied as follows. It is common to express E° and B in terms
of electromagnetic potentials (¢, A). Precisely, write

EY= V¢’ -9, A, B =V x A° (1.6)

in which ¢° is a scalar function and A° is a divergence-free vector potential. The equations satisfied by the
electromagnetic field are then simply reduced to the elliptic equation

—AA =40, (1.7)

together with the constraint p° = 1. On the other hand, the potential ¢° is determined from the Vlasov
equation. Indeed, there holds the conservation of charge density and current

8tpO+V'jO:O7

6tj°+V~/f0v®vdv:EO+j0xBO.

From the neutrality condition p° = 1, we conclude that the first moment j° is divergence-free. Hence, taking
the divergence of the conservation of current, we end up with the following elliptic problem for ¢°:

—Afbozv-(V~/fov®vdv)—V~(j0><BO). (1.8)

The equations —, together with the Vlasov equation in , form a complete set of equations for
solutions of the kinetic eMHD system. However, the elliptic problem reveals a loss of one z-derivative
in E°, or precisely in the curl part of E°, as compared to f°. One can expect this loss to be the source of
some ill-posedness for . This feature is a first strong indication of the singularity of the quasineutral
limit. Note finally that this loss can only occur for , while the eMHD equations are well-posed in the
classical sense as shown in [5].

Lately, there have been many works [12], 13| 14, [4] BT, 24, 211 221 23] that were devoted to the study of
the quasineutral limit for Vlasov-Poisson systems, that is, the framework where there is no magnetic field,
B = 0. In that case, the formal limit is also straightforward to identify and corresponds to a kinetic version
of the incompressible Euler equations. The limiting kinetic system also displays a loss of derivatives, through



the electric field E® = —V¢°, exactly as in (L.8). In the paper [24], using ideas originating from [14], it is
shown in particular that instabilities such as two-stream instabilities (see [34] [I8]) for the Vlasov-Poisson
system give rise to instabilities in the quasineutral limit. These instabilities have a destabilizing effect and
the formal limit is not true in general, even on very short intervals of time [0, 7¢], with 7. — 0 as € — 0.

One purpose of this work is to extend these ideas to the Vlasov-Maxwell system (|1.3). As in the Vlasov-
Poisson case [24], the effect of instabilities of the Vlasov-Maxwell system in the quasineutral limit can
be observed in the high spatial frequency regime. More precisely, we introduce the hyperbolic change of
variables:

(ta,w) = (s,0,0) = (t,x,v) (1.9)

ee
and set ¢ = ¢F, B° = B, and f° = f. The Vlasov-Maxwell system (1.3)) then becomes

Os S+ 10 -V f*+ (E° +e0 x B%) -V, f* =0,
€0;B* 4+ V, x B =0, Vy - E°=p" -1, (1.10)
—e0,E° + V, x B = ¢j°, VvV, - B =0,

where
Y t,x) = f& dv,

/l/): ) © )
T P -
v
i“(t,x) = —f% du.
J°(t,x) . ﬁ%%lﬂ“

We therefore observe that in this long time and spatially high frequency regime, the quasineutral limit
comes down to the study of the classical limit of Vlasov-Maxwell to Vlasov-Poisson system, that is ((1.1)
with the speed of light ¢ = 1. We shall thus mainly focus on the study of the classical limit.

g

(1.11)

Consequently, it appears natural to study the effect of instability of equilibria of the Vlasov-Maxwell
system to deduce instability for . There have many works devoted to the stability problem over
the past few years; see, for instance, [T6] 17, [T9] 20 28| 27, 29] and the references therein. It turns out that
in the limit ¢ — 0, instability for the Vlasov-Poisson system is sufficient to get an instability in the
classical limit, thanks to a careful use of the iterative scheme developed by Grenier in his study of instability
of boundary layers [15]. In other words, we show that having an approzimate growing mode of the linearized
Vlasov-Maxwell equations is enough. Loosely speaking, we shall prove that if we deal with sequences of
initial data converging polynomially (in €) fast to an unstable equilibrium, then an instability is developed
for the full Vlasov-Maxwell dynamics, in times of order |loge|. We shall finally deduce the invalidity of the
derivation of in the quasineutral limit of .

2 Main results

Our results rely on the existence of a growing mode for the linearized Vlasov-Maxwell system (|1.3), around
unstable homogeneous equilibria (f, E, B) = (u(v),0,0). To ensure the non-negativity of the distribution
functions we shall construct, we introduce the following condition:

Definition 2.1 (§-condition). We say that a profile u(v) satisfies the §-condition if p is positive and satisfies

sup _Vul)l < +o0. (2.1)

vers (1+ [v])p(v)

The terminology is borrowed from [24]; in that reference, a further relaxed ¢’-condition is also introduced,
allowing non-negative equilibria. Our results here should apply to this §’-condition as well. For the sake of
simplicity, we restrict ourselves to the above J-condition on u throughout the paper.



In what follows, the statement that p(v) is spectrally unstable means that there is a growing mode of
the form e*g(y,v), g € L?, with R\ > 0, of the linearized Vlasov-Poisson problem around the homogeneous
equilibrium p(v), namely: (A, g) is a solution of

Ag+v-Vyg+ Vyu(v) - VyA?;1 (/R3 gdv) =0, //g(y,v) dydv = 0. (2.2)

Looking for a solution of the form g = ¢?*¥§(v) and writing A = —ik -w, for some complex vector w, with
Sw - k> 0, we are led to study

. ; I N
ik - (v—w)g(v) — W@k -Vopp=0,

in which p = [ g(v) dv. The above identity has a nonzero solution if and only if (k,w) is such that the

so-called Penrose instability criterion

1 k- Vi
_ _— =1 Sw - 2.
|k\2/k~(v7w) dv=1, Sw-k>0, (2.3)

is satisfied. We have the following classical lemma (see [34} [7]).

Lemma 2.2. Let p satisfy the Penrose instability criterion (2.3)) at some point (ko,wp). Then, p is spectrally
unstable and there exists a growing mode of the form

f(sv Y, U) = erseikO.yf(’U)v (24)

with \g = —ikg - wy and
A 1 v o ko
f) = —5— -
|Kol? ko - (v —wo)
Reciprocally, if X is an eigenvalue for the linearized operator around p then all eigenfunctions are linear

combinations of functions of the form (2.4) - (2.5)).

In particular, it is known, see for instance [I8], that if there is a vector e € S? such that the function

(2.5)

polr) = [ ) du
re4et
admits a local strict minimum at a point 7 € R and is symmetric around 7, and that the following inequality

holds: ~
/ pelr) = 1e®) 4 o g2 (2.6)
SR

then the Penrose instability criterion is satisfied.
In this paper, we shall only consider equilibria that are
e radial, that is to say pu = p(|v|?);
e smooth (i.e. CF, with k> 1) and decaying sufficiently fast at infinity;

e normalized in the sense that [, y(v) dv = 1. Note also, since y being radial, we have [ p(v)odv =0,
for all ¢ > 0.

As a result, any such equilibrium gives a stationary solution for all the systems we study in this paper,
namely the relativistic Vlasov-Maxwell system (1.3]), the Vlasov-Poisson system (|1.2)) and the kinetic eMHD
system ((1.4)).

We are now in position to state our first result.



Theorem 2.3 (Instability in the classical limit). Let pu(v) be a radial, smooth, normalized equilibrium that
satisfies the d-condition and the Penrose instability criterion. Then, for any m,S,S’,p > 0, there exist a
family of smooth solutions (f¢, E%, B¢)eso of (1.10]), with f¢ > 0, and a sequence of times s. = O(|logel)
such that

1L+ [0 % (F5),_y — W)l s (rsxms) < €7, (2.7)
but
lmminf [ £(52) = il -2 oy > 0. (28)
lign_%lf 10%(se) = Ul s (7s) > 0, lirsll_}(r)lf [17°(8) 1 gr—s7 (psy > O, (2.9)
lim inf | 22 (s2) 2 gs) > 0 (2.10)

in which p®,j¢ are defined as in (L.11]).
Remark 2.4. Note that a smooth double-bump equilibrium (see [18]) satisfies all the required assumptions
of the theorem.

Remark 2.5. This nonlinear instability result for the full 3D Viasov-Mazwell dynamics is concerned with
the classical limit ¢ = 1/e — 4o00; it is stronger in terms of admissible norms than those previously known
for fized values of the speed of light ¢, see e.g. [20)].

Remark 2.6. From a view of our analysis, one can also extract a nonlinear instability result for the limiting
Vlasov-Poisson equation. This result yields a stronger instability in much weaker Sobolev norms than the
one obtained by Guo and Strauss in [18], however with the additional assumption that the equilibrium u is
sufficiently smooth. It is the exact analogue in higher dimension of the 1D result proved by the first author
and Hauray [24], Theorem 3.1].

Recalling the hyperbolic change of variables (|1.9]), T heoremwill allow us to prove short time instability
of the Vlasov-Maxwell system ([1.3). In this context, we can first introduce the following sharp Penrose
instability condition, ensuring instability of equilibria in the quasineutral limit.

Definition 2.7 (Sharp Penrose instability condition). We say that a profile p(v) satisfies the sharp Penrose
instability condition if there is a vector e € S? such that the function p.(r) = freJreL w(w) dw admits a local
minimum at the point 7 and the following inequality holds

/ L_“Q(T) dr > 0. (2.11)
R
If the local minimum is flat, i.e. is reached on an interval [F1,T2), then (2.11) has to be satisfied for all
T € [F1,T2].

The sharp Penrose instability condition does not directly yield a growing mode for the Vlasov-Poisson
equations set on T? x R?; however the instability appears in the regime of small .

Our second main result reads as follows.
Theorem 2.8 (Invalidity of the quasineutral limit). Let p(v) be a radial, smooth, normalized equilibrium
satisfying the d-condition, decaying sufficiently fast at infinity, and satisfying the sharp Penrose instability

condition. Then, for any m,S,p > 0, there exist a family of smooth solutions (fe, Ec, Be)eso of (1.3]), with
fe >0 and a sequence of times t- = O(e|loge|) — 0, such that

1L+ o) % (fe),_y — )l (s xrs) < &P (2.12)
but
lim inf [1fe(te) = pill 2 (ps xmay > O, (213)
lim inf lpe(te) = 1 2(7s) > 0, lim inf [l ()l L2 sy > 0, (2.14)
lim inf e | - (t)| g2 gs) > 0, (2.15)

in which pe, je are defined as in (1.11)).
The following of this paper is dedicated to the proofs of Theorem [2.3] and



3 Instability in the classical limit

We study the instability of Vlasov-Maxwell systems in the classical limit ¢ — 0:
Osf*+0-Vyf*+ (B +ebdx B%)-V,f* =0,
€0,B° +Vy, x E° =0, Vy-Ef=p°—1, (3.1)
—e0:E° +V, x B® =¢j, Vy-B* =0,

where

b= —— ()= [ [y,

VIt -
v
S — L)
zs /1 + 202

Let p(v) be a radial, smooth, normalized equilibrium of (3.1). We set f¢ = p+ f, E = F and B° = B.
The perturbation (f, E, B) solves

js(tax) -

Osf+1-Vyf+ (E+edx B)-Vy(u+ f)=0. (3.2)

The fields ' and B are constructed through the electromagnetic potentials:

E=-V¢—e0sA, B=VxA, (3.3)
with A satisfying the Coulomb gauge
V-A=0.
The scalar and vector potentials ¢, A solve
—Ap=p(f),  07A-AA=¢ej(f) - DV, (3.4)

where we set
o) i= [ Fopoydo, 30 = [of(s.p.0) do

As discussed in the introduction, the instability comes from that of the underlying Vlasov-Poisson system.
In other words, we rely on a growing mode of the linearization of Vlasov-Poisson around y in order to build
an approximate growing solution to the nonlinear perturbation systems —.

Let us start by introducing the linearized Vlasov-Poisson operator, acting on functions f with zero mean:

Pf:=0.f ~Lof. Lof :=—~v-Vyf = Vo V,A, p(f). (3.5)

Note that p(f) = [ f(s,y,v) dv is a function of (s,y) with zero mean in y.

We denote by H* the usual Sobolev space of functions in y over T2 (or in v over R?®) with all partial
derivatives up to order k having finite L? norms, and denote by H the function space consisting of functions
in y and v so that the norm

IFllzg, == > o)™ 0505 e

|l +[B]<n

is finite, with (v) := /14 |v|? and m,n > 0.
Defining the domain of Ly as

D(Ly) = {f € HY,, Lof € H, / f dvdy = o},

where n, m are large enough, we recall (see for instance [7]) that the unstable spectrum is made only of point
spectrum. Moreover, there is at least one unstable eigenvalue associated to the largest positive real part A
among all elements of the spectrum; we pick one, denote it by Ao, and refer to it as the maximal unstable
eigenvalue.



3.1 Grenier’s iterative scheme

We shall construct an approximate solution f,p, to the nonlinear problem (3.2)), following the methodology
introduced by Grenier [I5] for the study of instability of boundary layers in the inviscid limit of the Navier-
Stokes equations. In view of the nonlinear equation (3.2)) and of the linearized Vlasov-Poisson operator (3.5,

we introduce
S(f) = —[0:A(f) — o x (V x A(f))] - Vop,
o [of? ,
)= V1+e2u2(1+ /1 +e2u]?) Vol
Q(f,9) == =Vo(f) - Vug — €l0sA(f) — 0 x (V x A(f))] - Vg,

in which the potentials (¢(f), A(f)) solve the elliptic and wave problem (3.4)) with the source associated to
f- In what follows, the wave equation is solved with zero initial data:

A _, =04, _, =0.
Finding a solution to the nonlinear problem (3.2)) is equivalent to solving the following symbolic equation:

R(f) == Pf +£S(f) + T(f) + Q(f. ) = 0. (3.6)

We first point out that, as it will become clear from estimate (3.25)), the term £0;A appearing in €S(f) is
not small as compared to f, and will not be treated as a perturbation. It turns out that we can extract
the leading part of €05 A into the Vlasov-Poisson operator (see [32, Section 2], for a similar use of this idea).
Indeed, using the definition of P(f), we write
S(f)=—[0sA—0x (VxA)] Vyu
= —P(A-Vyp) +0-V(A-Vyp) + Vop - VAT p(A- Vo)) + [0 x (V X A)] - Vyp
= —P(A-V,u)+5(f),

in which we have set

S(f):=(0-V)A-Vou+[0x (VxA)]-Vyu (3.7)
Thus, the problem is equivalent to
R(f) = P[f —eA-Vou] +5(f) + E2T(f) + Q(f, f) = 0. (3.8)

It is now straightforward to (formally) construct an approximate solution fap, so that the error R(fapp)
is arbitrarily small. We start the construction with

(g1, 61) = (g1, b1)(y,v) (3.9)

to be a growing mode associated to the maximal unstable eigenvalue \g, constructed as in Lemma we
choose (g1, ¢1) so that

. oy 1 V- ko
— o pikoy v 3.10
gl(y7v) Tle |k0‘2 ko . ('U*WO) ( )
with 1 > 0 large enough in order to ensure
1911l -+ > 260, (3.11)

for 8’ > 0 asin Theorem and some 6y > 2. By construction, (g1, ¢1) solves the linearized Vlasov-Poisson
system:

P(g1) =0, o1 :=—A""p(qn).

We assume for the moment that (g1, ¢1) is real and shall explain later how to deal with the general case.



We then solve for (f1, A1) satisfying
f1 — €A1 . Vv,u = 4g1, 5285A1 — AAl = 6(](f1) — 83V¢1), Al\szo = 85A1|s:0 =0. (312)
We shall justify later (see Lemma why this system indeed has a solution.

Let p € N\ {0,1}. Observe that P f; approximately solves the nonlinear equation (3.8, leaving an error
R(eP f1) = e" T S(f1) + € Q(f1, 1) + P T2T(f1),

which formally is of order O(gP*!). To obtain an error with higher order, we introduce (f2, ¢2, A2) so that
(92, ¢2), with go = fo —eAs - V,pu, solve

P(g2) = —=S(f1), b2 = —A""p(g2), 92),_, =0,

- , (3.13)
1) 8SA2 — AAQ = €(j(f2) — 8SV¢2), A2\s=0 = 83142‘5:0 =0.

It follows directly that P f; + P! f, approximately solves the nonlinear equation (3.8]), with a better error:
R(P fy +e7% fo) o= 742 [[S(fo) + T(f1)| + 7T (f2)

+ Q1 f1) + 7 QUL f2) + QU2 ]| + €7 H2QU s f2):

Inductively, we construct
N
fapp = >_ " fi, (3.14)
k=1

in which (fx, ¢r, Ax), k > 3, are defined as the unique solution to the linear problems:

k-1
P(ge) = —=S(fe—1) = T(fr—2) — ZQ(fﬁfkﬁLlfpr)u o =—A""p(gr), Gk|,_, =0
=1 (3.15)

fr—eAx - Vop=gr,  E02A— DAL =e(i(fi) —0:Vdr),  Ar,_, = 054k, =0,

with the convention that f_; = 0 for j € N. The error of this approximation can be computed as

R(fapp) = =" *P(S(fn) + T(fn-1)) — NPT () — > EPHHE2Q( i, fo),
k4+0>N+1—p; 1<k <N—1
which is of order O(¢V*P) or higher.
In the following subsections, we shall derive relevant estimates on each fj in the approximate solution
fapp and deduce appropriate bounds on the approximation. In the proof, C' (with various subscripts) shall
always refer to a positive constant which can change from line to line but does not depend on ¢.

3.2 Linear estimates

In this section, we obtain bounds on the profile solutions fy, solving and . We start by studying
the linear semigroup e’°*. We have the following sharp semigroup bounds with losses of derivatives and
integrability in v. Here, sharp refers to the growth in time, in the sense that the optimal growth one could
hope for would be in e®*? and we reach e(®* 5t for all g > 0.

Proposition 3.1 (Sharp bounds on the solution operator). Let p(v) be a smooth unstable equilibrium
of Vlasov-Poisson system which decays sufficiently fast as v — oo, and let Ay be the mazximal unstable
eigenvalue. Let n,r > 0,m > 2, and h in Hr’rﬁzg Then, f = efo%h is well-defined as the solution of the
linearized Vlasov-Poisson problem P(f) = (0s — Lo)f = 0 with the initial data h. Furthermore, there holds

Los ) (RXo+8)s R
lePhllmy, < Coe™ Db ynia, Vs >0, VB >0, (3.16)

for some constant Cg depending on p and 3.



Proof. Let n > 0,m > 2. For each f in HY with [[ fdydv = 0, we denote ¢ = —A~!p(f). The standard
elliptic theory yields

IVl nir < Collp(f)llmn < Coll(v)* fllap 22, (3.17)
in which Cj is some universal constant. We consider the resolvent equation:
(AN=Lo)f =h, R > 0.

Standard L? energy estimates yield at once

RA0)" fllez < [(0)"VopllLz@s) IVEllLz + [[{v)™ | 2.
Therefore we deduce the following weighted L? resolvent bound, for R\ > v m 1= Co||(v)™V,pul| L2(R3)s

1

M\ — -1 2 <
o)™\ = L)l < g —

[{0)™ Al 2

Similarly, higher derivatives estimates are obtained in the similar fashion, since we observe that we have for
a,f € N?,
NSO f +v -V, 0000 f —V,00u-VOSb(f) + 00,0 -V, 05 f =000h

in which [02,v-V,] = 9%(v-V,) —v-V,05. This identity, together with the elliptic estimate (3.17), first
yields
R ()™ 0 fll L2 < ()™ Vo - VOFS(f)ll L2 + [[{v) ™ Oy Al 2

< Coll(w)" Vopll L2 @) [0 F | rei=1 15 + [0) "0 bl e
By a straightforward induction, we find
RAN@Y™ F o115 < Colltw)2 122 + Coll @)™ Bl o .- (3.18)
Similarly, we have
RA(0)™ 0705 fllze < (o)™ V0] - VOFS(f)llzz + [(0)™ 8], v - V185 fllr2 + [[(v) ™07 0y Al 2
< Coll (o)™ V08 a2 sy | )% o1 .
+ Coll ()™ £l yratss 11 + (0} OO b 2.
Again, by induction, this proves
RA ()" 0505 llza < Coll{w)2fll ggorsioi-s 2 + Coll o)™ Fll gporsio1 gz + Collly

which together with the above bound (3.18) on 8@‘,a|+‘ﬁ | f gives, considering all multi-indices «, 8 such that
|a| + 18] < n, that there exists vy m, Cn,m > 0 such that

RISz, < Y| €0) fllz2 + Cro 1]

for m > 2. In particular, this proves that

H™ (319)

m

C
A= Lo) "hllgn < | h|lux
II( )" hllag, g%)\_%’mll 1753
for some positive constant C,, . , and for all A € C so that R\ > v, . The classical Hille-Yosida theorem
then asserts that Lo generates a continuous semigroup e°* on the Banach space L2, (and hence, on H?);
see, for instance, [33] or [39, Appendix A]. In addition, there holds the following representation for the

semigroup: p
1 Y+100
efosh =PV, — e\ — Lo) th dA (3.20)

27 Jy oo
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for any v > v.m, where P.V. denotes the Cauchy principal value.

Next, by assumption, Ay is an unstable eigenvalue with maximal real part, and the resolvent operator
(A —Lp)~! is in fact a well-defined and bounded operator on H for all A so that R\ > R\g. Let 8 > 0 and
take v = %Ay + 8. Using the boundedness of the resolvent operator, we obtain at once

1 y+iM
H%/ L) h dAHHn < Cp e ™ot h |y (3.21)
Y=t m

for any large but fixed constant M. To treat the integral for large I\, we observe that directly from the
equation A\f = Lof + h, one has
ANy, < Lof + bllay, < CUNVyfllag,, + [Vollan) + 1Al -

m+1

Using (3.19), there holds, for some C;,,; ,,, 11 >0,
NI = Lo) " hllrg, < Chprmga 10D fllzz + Chya g [l g -

We take R\ = v, and consider

2
ISA| > EC;L+1,m+1-

We deduce
IO\ = Lo) il < <2y (3.22)
=S
Now, to estimate the integral for large |S\|, we may write
h

1

(A—Lo)"'h 3

(A= Lo) ' Loh + T

Thus, with v = R)\g + 3, we get
1
270 Jjanz )
1

©2mi Sz an

P.V e (X — Lo) " 'h d\

L 1o e h
M= Lo T ax Py, 7[/ —/ ]e*t A
A 2mil )y Cie Jysa<ny A

in which the second integral on the right-hand side is equal to h, whereas the last integral is bounded by
Coe"*h. We take M > 2C}, . ., so that the bound (3.22) holds. This yields

H /{|%)\2M} 6/\3()\ B LO)_lLTOh d)\‘

< Cyn1€ | Lohl| ;s / A2 d
A, T J{IsAIz My

< Cp.pr [l s
Putting these together and combining with (3.21)), we get

et

RXo+B)s
my, < Cpe 1All etz (3.23)

for any 8 > 0. The lemma is proved. O

Next, we derive a few estimates on the electromagnetic field. Recall that the standard elliptic theory
yields the elliptic estimate (3.17) for ¢ = —A~!p(f). In addition, together with a use of the Vlasov equation
(0s — L) f = 0, the function 0s¢ satisfies —Ads¢p = dsp(f) = —V - j(f), which then yields

10Vl g < Colli()llan < Collfllag-

11



Similarly, the standard H™ theory for the wave equation (3.4) for A = A(f) yields

ld 2 2 .
D n n < S n n S n
5= (10 A + IV A ) < Colled Allan (1li(H)llan + 9.6 ) (320
< Colleds All g || f1] 1z -
Applying the Gronwall inequality to the above, we obtain
10, Al + |V All g < co/ £ ()l g dr. (3.25)
0

In particular, by a view of the definition of the fields F/, B in term of the electromagnetic potentials, we get

(8.8}l < Ca | g dr (3.26)

The following gives a link between the Vlasov-Poisson solution g, and the Vlasov-Maxwell solution fi as

defined in (3.15]).

Lemma 3.2. Let g be in H, forn >0 and m > 3, with [ gdvdx = 0 and let T be a positive number so
that eT < 1. There exists a solution f in L>°(0,T; H) solving the linear problem:

foeA V=g, SPA-AA=c(i(f) +OVAplg)), A, =0A_,=0.  (3.27)

In addition, there holds

sup |[|f(7)llmy, < Co sup g(7)llmy, +CO/ [()?g(r) 2 dr, ¥ s €0,T],
T7€[0,s] T€[0,s] 0

for some constant Cy that is independent of €.

Furthermore, in the case where [tg dvdx =0 , we have fTB Adz =0 and the following upper and lower
bound on f:

co sup |lg(T)llmp, < sup [|f(T)|lmy < Co sup [|g(T)|luy, ¥V s€[0,T], (3.28)
7€[0,s] T€[0,s] T€[0,s]

for some constants co > 0,Cqy > 0 that are independent of €.

Proof. We start by establishing a priori estimates. We first note that there holds the Poincaré inequality:
Ja= ], s 1941 < Co [ 150Ny ar
0

in which (A) denotes the average of A over T3. This yields at once
If = e(A) - Vopllay, < If —eA-Voulluy +lleA - Vop —e(A) - Voul|uy,

s (3.29)
< gl + Coc / 1£()llag dr.
0

Let us bound the average of A. Directly from the wave equation for A and the equation for f in terms of g,
we get
d2
cast)y =y = [ogav)+o( [oa- T av)

= </f}g dv> —roe(A),

12



in which we have used integration by parts in v, the fact that p is radial, and set
1+ 2e2|of?
ro 1= — i dv > 0.
o= . L +2P)2"

First, we consider the case when the average of [0g(s) dv is equal to zero. In this case, we clearly

have(A(s)) = 0 and thus the bound (3.29) reads

[1£(s)]

By a standard fixed point argument, we obtain the existence of f in L*>(0,T; H) and satisfying (3.27) , as
long as €T < 1 and m > 3. We straightaway deduce the upper bound of ([3.28)), while the lower bound is
obtained as follows:

< lg]

m m

Hy +Cof/ £ () g dr.

sup [lg(r) s, < sup A0 + Cos sup AT
T€(0,s] T€(0,s] T€[0,s]
< sup [0l + Coz [ 14y dr
T7€[0,s] 0

1
< — sup [[f(7)llmp-
€0 r€l0,s]

In the general case when the average of [0g(s) dv is not equal to zero, we define (¢A(s)) as the solution
of the ordinary differential equation

dd22 (eA(8)) +ro(cA(s)) = </@g(s) dv>.

Since the fundamental solutions to the homogeneous equation 3" + roy = 0 are bounded, the above yields

at once s
A < [ |( [ o )] ar < ¢ [ 1Patlze o

We now establish a bound for f satisfying
f—e(A=(A) - Vou=g+e(A)-Vypu.

The second term on the left-hand side is again a small perturbation in terms of f, yielding

V£ < gl + Co / 1(0)3g(r)l| = dr + Coe / 1) g dr

Thus, as long as €T" < 1, we can use as well a fixed point argument, yielding the existence of f as well as
the claimed bound. O
3.3 Error estimates

Let us now give estimates on the approximate solution f,p, and the error of the approximation R(fapp). Let
N be a fixed number of the iteration in f,p, and let

m >5N+3and n > 3N +5/2.
By a view of the wave estimate ([3.25)) and the fact that u decays rapidly at infinity, we have for all n,m > 0,

15CF)() e < Coll VAlzre < Co / G

1T () g < Coll flla,

m

(3.30)

QU 9O, < Coll BBl < Collao)l, [ g dr

13



We apply Lemma to the linear problem for f;, which yields
| fll ey < Coe™s. (3.31)
By induction, we shall prove
1M s + 98(3)lp-giss < Ceel T 1<k <, (332)

for all s € [0,T], with eT' < 1. The case k = 1 is clear. Assuming the bound holds for all j € {1,--- ,k},
with & > 1, we now prove the bound for j = k+1 > 2. Writing a Duhamel formula for the nonhomogeneous

equation (3.15)) on gxy1, we find

P k
Jrt1 = 7/0 ebols=) [S(fk) + T (fr—1) + ZQ(vafk-‘r?—p—é)} (1) dr.
=1

Using Proposition the bounds in (3.30)) and the induction assumption, we can estimate

||gk+l HH:;iBsIZ

k

<Gy [ e I8l s + TG0 g s + 2 1QUe fesamplly 2] ()

5k+2
(=1

<cﬁ/ B+ (67 [Ce+5 1>WOT+ZCk el (B RAor] g
0 =1

<CB/ (RA0+8)(s—7) o (145 ) RAoT
0
< Cke(1+§)mos7

in which we have chosen 8 = R)\g/p. Next, we apply Lemma yielding

s k
sup Stz < Co swp lgura(Dlgza +Co [ 10 gura(lla dr < Cuell )%,
T€[0,s] T7€[0,s] m=—5k 0
which finishes the proof of the inductive bound (3.32)), for all £ > 1.
Using these bounds on fi as well as (3.30)), we can estimate the error of the approximation:

IR app) (9l gzn-ax. < N PUSEN sy + T2l gn-an ) + V4P () gn-an

+ > P2 Qfrey fo)ll sy
k+£>N+1-p; 1<k (<N-—1
< COgN+pe(1+%)mos + Z £2pHh+H=2 (24 B2 )R s (3.33)

k+£>N+1-p; 1<k <N-1
N
)§R}\08 + 005N+p6(1+?)m)\05

N-—1

< 005N+pe(1+ >
N
< Cy (El’eémos) (+3 )7

for all s > 0, as long as ePe®™ 0% remains bounded.

3.4 Nonlinear instability

We are ready to conclude the proof of Theorem The instability result now follows from a standard
energy estimate. Indeed, let (f, ¢, A) be the exact perturbative solution to the Vlasov-Maxwell system:

Osf+0-Vyf+ (E+edx B)-Vy(u+f)=0.

14



with the electromagnetic field solving the Maxwell equations. Consider (fapp, Papp: Aapp) the approximate
solution constructed and studied in the previous sections. Let the difference be

(ha ¢h7 Ah) = (f - fappa ¢ - d)appa A— Aapp)v

which solves

Osh+0-Vyh+ (Ep + €0 x By) - Vy(p+ fapp) + (Bapp + Ep + €0 X (Bapp + Br)) - Voh = R( fapp)s
with hl;—o = 0. Standard weighted energy estimates yield, for k > 7/2,

1d
5 2=l < Collbll g [IEns Bu)lze + IR Fapp)llis | + 1355 [+ 11(Ens Bl |-
Combining with the estimates (3.26) on Ej, B, and with (3.33)) yields at once
1d
5 2= (1) g + 1(Bn, BR)(9)I3) < [€ + 1) zs | (1813 + N(Ens Br)(s)30e)
2(14+ X
+Co(spem°5) ( p)

We now introduce

0
T :=sup {s =20 sup [[A(7)|[gr < Eoepe%AOT},
T7€[0,s]

where 6y > 2 was fixed in (3.11]). By the standard local existence theory, we know that 7° > 0.
Now define

~ 1
T° = —0\ log(epi)\.

It follows that for all s € [0, 7%],

0 g

E%Peﬁ*os <1, (3.34)
If T¢ > T¢, then for any s € [0,T¢], the above differential inequality yields

5 (I + 1B, Bs) ) < 1+ ) (IRG5) g + 11 (B B () e )

N
+ Cy (zspe%kos) 2145 )
Using the Gronwall inequality and imposing N large enough so that

2N
p

< (60/2) 7,

N 2
N > Gy, 1+C§(1+E>§R>\o, 52C0
0

there holds ~
”h(s)Hijcﬂf + H(EmBh)(S)”?{k < 200/ 62(1+C)(87‘r) (51)69‘%)\07)2(14-?) dr
0

< 2CO (€p6%A08)2(1+%)

: (002/2;25 (erem)

1 2 0 2
< = 2(p mos> _ (90 _p_sros
_1690 ePe 1

< 0—05”6%’\05.

4
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This contradicts the definition of T° and proves that we necessarily have T° > Te.

Finally, recall that f = fapp + h. Thus, by the triangle inequality, as long as s € [0,T¢], we get

1z = [ fappllz2 = [IAll 2

0

3.35
> || fuppllze — Sereos, o

We therefore need to get a lower bound on the L? norm fapp. First, we have

1f1llzz = llgallzz = ellAv - Voull 2.

It follows from the construction that the average of [wvg; dv is equal to zero. Indeed, by definition, we have

; 1 Vop - k
vty = f etevay [l e an <o

From Lemma we know that (4;) = 0, so that

s Voslzs < <Co [ 1)y
0

Recalling ([3.31)), we end up with
ellAL - Vo2 < eCoe™os.

By (3.11)), we deduce (at least for £ > 0 small enough),
1fillze = Goe™ .

Finally using (3.32)) to bound the contribution of the terms fi, k > 2, we obtain

1+4
| fappllz2 > BoePe™ 0 — Cy (Epem,\os) v

and thus for s € [0,7¢],

1+ 9
lf(s)e2 > GpePe™ros — Oy (Epeém‘“s) P 0 poRAos
L2 (3.36)
> 9—05”6%)‘03 (1 _ %N (spew‘“) p).
-2 0o
Define finally T~ := ﬁ ‘log(ep%)‘. For s, := min(Ts,TE) we end up with the lower bound
1 f(se)ll 2 (T3 xrs) > do, (3.37)
with g = min (%, %).
Similarly, for what concerns H % / instability, we can get as well
1f(se)llzr-s0 = Pl fill g5 = [ fapp — " fill g = [l -
2 P\ fillg-s' = I fapp — €”fullL2 — (IRl 22
1
> 006;06?}?/\055 . CN ({_:pe%)\osa)l—’_P N @spe%)\osa (338)
- 2
Z 507
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with 0y as defined in . Recalling that f¢ — p = f, this proves the first instability result of .

The instability on p° and j€ is proved with similar estimates, using the weighted L? error estimates. The
only thing to notice is that, recalling g; = e*°*g;, and by a view of and of the Penrose condition ,
we have p(g1) # 0 and j(g1) # 0. With the same arguments, we end up with

1p°(8) = Ul gr—s = 865 13" ()l| s = S0, (3.39)

for some §j > 0.
The instability on E° then follows by a view of (3.3]). We write

|ES|32 = V6|32 + |e0s A%||32 + & | Vo© - 9,A% da,
L L L
and note that since A° satisfies the Coulomb gauge V - A° = 0,

/V¢E <0 A% dx = /qu@SV-AEdJ; =0.

We thus use (3.39) to get ||p° — 1||g-1 > d{ and obtain, using finally the Poisson equation (3.4)),

1E=(s)llz2 = IV“(s)llL2 = Codp.

Let us finally complete the proof of Theorem by briefly explaining how to deal with complex eigen-
values and eigenfunctions, as well as getting non-negative distribution functions.

We assume here that SA\g # 0. Writing g7 = g1 + iSg1, and assuming without loss of generality that
Ng1 # 0, we set g1 = R(e*gy) instead of the definition (3.9). Then one can perform exactly the same
construction and analysis, except that the lower bound for f.pp in is achieved for all s of the form
s = gi)\ﬁ This is sufficient to get the instability as in .

For what concerns non-negativity, we just need to notice that the J-condition and the form of the
eigenfunctions (recall ([3.10)) ensure that £”|g1 |;—o < p, so that the initial condition satisfies fiizo 2 0.

4 Invalidity of the quasineutral limit

Let p(v) be a radial, smooth, normalized profile satisfying the d-condition and the sharp Penrose instability
condition.
For any M > 0, we shall denote

T3, :=R3/(MZ x MZ x MZ).

We recall that for a given length M, the sharp Penrose instability condition does not necessarily ensure the
existence of a growing mode for the linearized equations. However, the latter is true for large enough values
of M. This is the content of the following Proposition, taken from [24, Proposition 3.2].

Proposition 4.1. Assume that v is a smooth homogeneous profile satisfying the sharp Penrose instability
condition. There exists My > 0 such that if M > My, then the Penrose instability condition (2.3)) is satisfied
for the equations posed on T3, x R3.

As a matter of fact, the framework of [24] is one-dimensional but this particular result straightforwardly
extends to higher dimensions. Using this Proposition, we fix some large enough parameter M > 0 such that
the linearized Vlasov-Poisson operator Lo on T3, x R3 has an eigenvalue with positive real part. From now
on, we consider the sequence e = ﬁ, for k € N*| but we forget about the k subscript for readability.
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As already explained in the introduction, in the high spatial frequency regime, the study of the quasineu-
tral limit comes down to that of the classical limit. More precisely, we shall first consider e M-periodic (in
all spatial directions) solutions to (|1.3)), that is we look for solutions to the system

i

at.fs‘i’@'vz.fs‘{’(Es‘i’ﬁXBs)'vv 3 07
atBE + va: X Ea = 07 52vz * e ﬁs - ]-7 (41)
_EzatEe + V; X BE = 367 Ve -B:=0

T
([

)

for t >0, x € T3),, v € R® and where
v

V=T
ﬁs(tax) = / fNE dv, 35(15,35) = / f)fs dv.
R3 R3

We can then obtain a solution (f-, E., B.) to (1.3) by patching (eM)~3 copies of (f-, E-, f?e). This means,
identifying T3, to [0, M)3, writing

’i}:

fE(tvxav) = fE(tv'rl 7j1€Max2 7j2€Ma‘T3 7j3€M7 U)?
for all x = (21, z2,23) in

3
H[jian (]Z+1)€M)? j17j27.j3207"' 7k_1

i=1

Similar formulas are given for (E., B.).
We can now perform the hyperbolic change of variables (¢,z,v) — (
such that:

iz

5 g,v), i.e. we consider (g.,E.,B.)

~ t x - 1 t x ~ t x
€ t? ) = Ye D] ) EE t7 ) = 7]E6 Ty ) BE ta ) :BE T . 4-2
Rtan =g (L200) Bl =16 (L0), Been-B (L),
This leads to the study of the classical limit, for s > 0, y € Ty, v € R
0s9: +0-Vyge + (Ec + 0 x B.) - Vyge =0,

€6SBE+VyXE5:O, VyEEZ/ggdU—l (43)

—e0:E: +Vy x B, = 5/@95 dv, VvV, -B. =0.

We apply Theorem (M being considered as a fixed transparent parameter). Let S,N € N* and
p € N* such that p > S+ N. We take k = 0. By Theorem we find for all € € (0, 1] a solution (g, E.,B.)
to (4.3) with g. > 0, such that

IO+ 01 % (92, — )l (3, ey < €7, (4.4)

but there is a sequence of times s, = O(|loge|) such that

lirsgigf llge (sec) — u||L2(T?WX]R3) >0, li£n_>i(r)1f HIEE(SE)HLQ(T%) >0, (4.5)
hggf llpg. (se) — 1”L2(T‘L) >0, hrenjélf ||jgs(56)||L2(qr§w) >0, (4.6)

with the notation pg_(t) = [ps g-(t,z,v) dv and jg_(t) = [ps 09 (t, z,v) dv.
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Next, a consequence of of the change of variable (4.2]) and of the e M-periodicity of f. is that:

-5
m €
11+ |v]?)Z (fejemo — Wl s (T3 xr3) < CWHQE\S:O — il s (r3, xms)

1 1
| fe(t) = || L2 (s xr3) = WH!JE (t/e) = Ulrz(rz, xr3y, el Ee(®)|L2crs) = WH]EE (t/e) 2 (rs,)s (4.7)
1 . 1.
[p<(t) — 1[z2(Ts) = WHP% (t/e) = Uzerz,y,  5e(t) = Ulzzcrs) = WH]% (t/e) = Uz,

We set t. :=es. = O(g|loge|) and deduce, at least for € small enough,

m

m 1
(1+ |U|2) 2 (fs|t:0 - H)HHS(TSxRS) < ng s < ENa
liminf || fe (te) = poll g2 pa sy > 0, liminfe | Be(to)l| o ga) > 0,

lim inf [|pe (te) = 1] p2(psy > 0, Hninf |5z (t)|l L2 sy > 0,
which proves Theorem
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