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Abstract

We study the instability of solutions to the relativistic Vlasov-Maxwell systems in two limiting regimes:
the classical limit when the speed of light tends to infinity and the quasineutral limit when the Debye
length tends to zero. First, in the classical limit ε→ 0, with ε being the inverse of the speed of light, we
construct a family of solutions that converge initially polynomially fast to an homogeneous solution µ
of Vlasov-Poisson in arbitrarily high Sobolev norms, but become of order one away from µ in arbitrary
negative Sobolev norms within time of order | log ε|. Second, we deduce the invalidity of the quasineutral
limit in L2 in arbitrarily short time.

1 Introduction

We study the relativistic Vlasov-Maxwell system
∂tf + v̂ · ∇xf + (E +

1

c
v̂ ×B) · ∇vf = 0,

1

c
∂tB +∇x × E = 0, ∇x · E = ρ− 1,

−1

c
∂tE +∇x ×B =

1

c
j, ∇x ·B = 0,

(1.1)

describing the evolution of an electron distribution function f(t, x, v) at time t ≥ 0, position x ∈ T3 := R3/Z3,
momentum v ∈ R3 and relativistic velocity

v̂ =
v√

1 + |v|2
c2

.

In these equations, the parameter c is the speed of light. Here, T3 is equipped with the normalized Lebesgue
measure so that Leb(T3) = 1. The electric and magnetic fields E(x, t), B(x, t) are three-dimensional vector
fields, satisfying the classical Maxwell equations, with sources given by

ρ(t, x) =

∫
R3

f dv, j(t, x) =

∫
R3

v̂f dv,

which denote the usual charge density and current of electrons. The background ions are assumed to be
homogeneous with a constant charge density equal to one.
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We focus in the regime where c → +∞, that is known as the classical (or non-relativistic) limit of the
Vlasov-Maxwell system. The formal limit is the classical Vlasov-Poisson system:{

∂tf + v · ∇xf + E · ∇vf = 0,

∇x × E = 0, ∇x · E = ρ− 1,
(1.2)

where ρ(t, x) =
∫
R3 f dv. This limit was justified on finite intervals of time in the independent and simul-

taneous works of Asano-Ukai [2], Degond [6], and Schaeffer [36]. We shall prove in this paper that in the
classical limit, the Vlasov-Maxwell system can develop instabilities in time log c, due to instabilities of the
limiting Vlasov-Poisson system.

We are also interested in the following non-dimensional Vlasov-Maxwell system:
∂tf + v̂ · ∇xf + (E + αv̂ ×B) · ∇vf = 0,

α∂tB +∇x × E = 0, ε2∇x · E = ρ− 1,

−αε2∂tE +∇x ×B = αj, ∇x ·B = 0,

(1.3)

with

v̂ =
v√

1 + αε2|v|2
, ρ(t, x) =

∫
R3

f dv, j(t, x) =

∫
R3

v√
1 + αε2|v|2

f dv.

In physical units, the parameters α, ε are given by

α =

√
r0
ε0
, ε =

√
ε0
r0c2

,

where r0 denotes the classical electron radius, ε0 is the vacuum dielectric constant, and c is still the speed
of light. The parameter ε corresponds to the classical Debye length of the electrons; see [35] for further
discussions. In this work, we are interested in the regime where α ∼ 1 and ε→ 0, a limit in which the charge
density of ions and electrons are formally equal. We shall thus refer to this problem as the quasineutral limit
of the Vlasov-Maxwell system. Note that α is equal to the ratio between 1

ε and c, so that this means that
we consider that the inverse of the Debye length is of the same order as the speed of light. For simplicity,
throughout the paper, we set α = 1.

The quasineutral limit of the Vlasov-Maxwell system has been studied previously by Brenier, Mauser
and Puel [5] and Puel and Saint-Raymond [35] in the case where the initial density distribution converges in
some weak sense to a monokinetic distribution (that is, a Dirac delta function in velocity). The convergence
to monokinetic distributions can be interpreted from the physical point of view as vanishing temperature:
therefore, this is sometimes referred to as the cold electrons limit. The work [35] furthermore describes the
propagation of time oscillating waves, which turn out to be absent in the well-prepared framework considered
in [5].

For each fixed ε > 0, the global-in-time Cauchy theory for smooth solutions of (1.3) remains an out-
standing open problem. However, there are local strong solutions and continuation conditions ([37, 38, 1,
11, 9, 10, 3, 26, 30], among others) or global weak solutions ([8]). In this paper, we shall construct particular
solutions of (1.3) that are sufficiently smooth. This also pertains to system (1.1), for each fixed c > 0.

Formally, in the limit ε→ 0, it is straightforward to obtain the expected formal limit of (1.3), a system
we shall call the kinetic eMHD system:

∂tf
0 + v · ∇xf0 + (E0 + v ×B0) · ∇vf0 = 0,

∂tB
0 +∇x × E0 = 0, ρ0 = 1,

∇x ×B0 = j0, ∇x ·B0 = 0,

(1.4)
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in which

ρ0(t, x) =

∫
R3

f0 dv, j0(t, x) =

∫
R3

vf0 dv.

By imposing that the distribution function is monokinetic, that is considering the ansatz

f0(t, x, v) = ρ0(t, x)δv=u0(t,x),

where δ stands for the Dirac measure, it follows that f0 is a solution in the sense of distribution to (1.4) if
and only if (ρ0, u0) satisfies the following hydrodynamic equations:

∂tu
0 +∇ · (u0 ⊗ u0) = E0 + u0 ×B0,

∂tB
0 +∇× E0 = 0, ρ0 = 1,

∇×B0 = u0, ∇ ·B0 = 0.

(1.5)

This system is known in the literature as the electron Magneto-Hydro-Dynamics equations (eMHD); see, for
instance, [25, 5]. This motivates the choice of the name kinetic eMHD for (1.4). The work [5], and then [35],
justify the eMHD system from (1.3) in the above monokinetic situation via the so-called modulated energy
(or relative entropy) method devised by Brenier in [4]. In this paper, we rather focus on the question of
validity of (1.4) in the quasineutral limit.

The kinetic eMHD system (1.4) can be studied as follows. It is common to express E0 and B0 in terms
of electromagnetic potentials (φ,A). Precisely, write

E0 = −∇φ0 − ∂tA0, B0 = ∇×A0, (1.6)

in which φ0 is a scalar function and A0 is a divergence-free vector potential. The equations satisfied by the
electromagnetic field are then simply reduced to the elliptic equation

−∆A0 = j0, (1.7)

together with the constraint ρ0 = 1. On the other hand, the potential φ0 is determined from the Vlasov
equation. Indeed, there holds the conservation of charge density and current

∂tρ
0 +∇ · j0 = 0,

∂tj
0 +∇ ·

∫
f0v ⊗ v dv = E0 + j0 ×B0.

From the neutrality condition ρ0 = 1, we conclude that the first moment j0 is divergence-free. Hence, taking
the divergence of the conservation of current, we end up with the following elliptic problem for φ0:

−∆φ0 = ∇ ·
(
∇ ·
∫
f0v ⊗ v dv

)
−∇ · (j0 ×B0). (1.8)

The equations (1.6)-(1.8), together with the Vlasov equation in (1.4), form a complete set of equations for
solutions of the kinetic eMHD system. However, the elliptic problem (1.8) reveals a loss of one x-derivative
in E0, or precisely in the curl part of E0, as compared to f0. One can expect this loss to be the source of
some ill-posedness for (1.4). This feature is a first strong indication of the singularity of the quasineutral
limit. Note finally that this loss can only occur for (1.4), while the eMHD equations are well-posed in the
classical sense as shown in [5].

Lately, there have been many works [12, 13, 14, 4, 31, 24, 21, 22, 23] that were devoted to the study of
the quasineutral limit for Vlasov-Poisson systems, that is, the framework where there is no magnetic field,
B ≡ 0. In that case, the formal limit is also straightforward to identify and corresponds to a kinetic version
of the incompressible Euler equations. The limiting kinetic system also displays a loss of derivatives, through
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the electric field E0 = −∇φ0, exactly as in (1.8). In the paper [24], using ideas originating from [14], it is
shown in particular that instabilities such as two-stream instabilities (see [34, 18]) for the Vlasov-Poisson
system give rise to instabilities in the quasineutral limit. These instabilities have a destabilizing effect and
the formal limit is not true in general, even on very short intervals of time [0, Tε], with Tε → 0 as ε→ 0.

One purpose of this work is to extend these ideas to the Vlasov-Maxwell system (1.3). As in the Vlasov-
Poisson case [24], the effect of instabilities of the Vlasov-Maxwell system in the quasineutral limit can
be observed in the high spatial frequency regime. More precisely, we introduce the hyperbolic change of
variables:

(t, x, v) 7→ (s, y, v) :=

(
t

ε
,
x

ε
, v

)
(1.9)

and set Eε = εE, Bε = B, and fε = f . The Vlasov-Maxwell system (1.3) then becomes
∂sf

ε + v̂ · ∇yfε + (Eε + εv̂ ×Bε) · ∇vfε = 0,

ε∂sB
ε +∇y × Eε = 0, ∇y · Eε = ρε − 1,

−ε∂sEε +∇y ×Bε = εjε, ∇y ·Bε = 0,

(1.10)

where

v̂ =
v√

1 + ε2|v|2
, ρε(t, x) =

∫
R3

fε dv,

jε(t, x) =

∫
R3

v√
1 + ε2|v|2

fε dv.

(1.11)

We therefore observe that in this long time and spatially high frequency regime, the quasineutral limit
comes down to the study of the classical limit of Vlasov-Maxwell to Vlasov-Poisson system, that is (1.1)
with the speed of light c = 1

ε . We shall thus mainly focus on the study of the classical limit.

Consequently, it appears natural to study the effect of instability of equilibria of the Vlasov-Maxwell
system (1.10) to deduce instability for (1.3). There have many works devoted to the stability problem over
the past few years; see, for instance, [16, 17, 19, 20, 28, 27, 29] and the references therein. It turns out that
in the limit ε → 0, instability for the Vlasov-Poisson system (1.2) is sufficient to get an instability in the
classical limit, thanks to a careful use of the iterative scheme developed by Grenier in his study of instability
of boundary layers [15]. In other words, we show that having an approximate growing mode of the linearized
Vlasov-Maxwell equations is enough. Loosely speaking, we shall prove that if we deal with sequences of
initial data converging polynomially (in ε) fast to an unstable equilibrium, then an instability is developed
for the full Vlasov-Maxwell dynamics, in times of order | log ε|. We shall finally deduce the invalidity of the
derivation of (1.4) in the quasineutral limit of (1.3).

2 Main results

Our results rely on the existence of a growing mode for the linearized Vlasov-Maxwell system (1.3), around
unstable homogeneous equilibria (f,E,B) ≡ (µ(v), 0, 0). To ensure the non-negativity of the distribution
functions we shall construct, we introduce the following condition:

Definition 2.1 (δ-condition). We say that a profile µ(v) satisfies the δ-condition if µ is positive and satisfies

sup
v∈R3

|∇µ(v)|
(1 + |v|)µ(v)

< +∞. (2.1)

The terminology is borrowed from [24]; in that reference, a further relaxed δ′-condition is also introduced,
allowing non-negative equilibria. Our results here should apply to this δ′-condition as well. For the sake of
simplicity, we restrict ourselves to the above δ-condition on µ throughout the paper.
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In what follows, the statement that µ(v) is spectrally unstable means that there is a growing mode of
the form eλtg(y, v), g ∈ L2, with <λ > 0, of the linearized Vlasov-Poisson problem around the homogeneous
equilibrium µ(v), namely: (λ, g) is a solution of

λg + v · ∇yg +∇vµ(v) · ∇y∆−1y

(∫
R3

g dv

)
= 0,

∫∫
g(y, v) dydv = 0. (2.2)

Looking for a solution of the form g = eik·y ĝ(v) and writing λ = −ik ·ω, for some complex vector ω, with
=ω · k > 0, we are led to study

ik · (v − ω)ĝ(v)− 1

|k|2
ik · ∇vµ ρ̂ = 0,

in which ρ̂ =
∫
ĝ(v) dv. The above identity has a nonzero solution if and only if (k, ω) is such that the

so-called Penrose instability criterion

1

|k|2

∫
k · ∇vµ
k · (v − ω)

dv = 1, =ω · k > 0, (2.3)

is satisfied. We have the following classical lemma (see [34, 7]).

Lemma 2.2. Let µ satisfy the Penrose instability criterion (2.3) at some point (k0, ω0). Then, µ is spectrally
unstable and there exists a growing mode of the form

f(s, y, v) = eλ0seik0·y f̂(v), (2.4)

with λ0 = −ik0 · ω0 and

f̂(v) =
1

|k0|2
∇vµ · k0

k0 · (v − ω0)
. (2.5)

Reciprocally, if λ is an eigenvalue for the linearized operator around µ then all eigenfunctions are linear
combinations of functions of the form (2.4) - (2.5).

In particular, it is known, see for instance [18], that if there is a vector e ∈ S2 such that the function

µe(r) =

∫
re+e⊥

µ(w) dw

admits a local strict minimum at a point r̄ ∈ R and is symmetric around r̄, and that the following inequality
holds: ∫

R

µe(r)− µe(r̄)
|r − r̄|2

dr > 4π2, (2.6)

then the Penrose instability criterion is satisfied.

In this paper, we shall only consider equilibria that are

• radial, that is to say µ ≡ µ(|v|2);

• smooth (i.e. Ck, with k � 1) and decaying sufficiently fast at infinity ;

• normalized in the sense that
∫
R3 µ(v) dv = 1. Note also, since µ being radial, we have

∫
R3 µ(v)v̂ dv = 0,

for all c > 0.

As a result, any such equilibrium gives a stationary solution for all the systems we study in this paper,
namely the relativistic Vlasov-Maxwell system (1.3), the Vlasov-Poisson system (1.2) and the kinetic eMHD
system (1.4).

We are now in position to state our first result.
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Theorem 2.3 (Instability in the classical limit). Let µ(v) be a radial, smooth, normalized equilibrium that
satisfies the δ-condition and the Penrose instability criterion. Then, for any m,S, S′, p > 0, there exist a
family of smooth solutions (fε, Eε, Bε)ε>0 of (1.10), with fε ≥ 0, and a sequence of times sε = O(| log ε|)
such that

‖(1 + |v|2)
m
2 (fε|s=0

− µ)‖HS(T3×R3) ≤ εp, (2.7)

but
lim inf
ε→0

‖fε(sε)− µ‖H−S′ (T3×R3) > 0, (2.8)

lim inf
ε→0

‖ρε(sε)− 1‖H−S′ (T3) > 0, lim inf
ε→0

‖jε(sε)‖H−S′ (T3) > 0, (2.9)

lim inf
ε→0

‖Eε(sε)‖L2(T3) > 0 (2.10)

in which ρε, jε are defined as in (1.11).

Remark 2.4. Note that a smooth double-bump equilibrium (see [18]) satisfies all the required assumptions
of the theorem.

Remark 2.5. This nonlinear instability result for the full 3D Vlasov-Maxwell dynamics is concerned with
the classical limit c = 1/ε → +∞; it is stronger in terms of admissible norms than those previously known
for fixed values of the speed of light c, see e.g. [20].

Remark 2.6. From a view of our analysis, one can also extract a nonlinear instability result for the limiting
Vlasov-Poisson equation. This result yields a stronger instability in much weaker Sobolev norms than the
one obtained by Guo and Strauss in [18], however with the additional assumption that the equilibrium µ is
sufficiently smooth. It is the exact analogue in higher dimension of the 1D result proved by the first author
and Hauray [24, Theorem 3.1].

Recalling the hyperbolic change of variables (1.9), Theorem 2.3 will allow us to prove short time instability
of the Vlasov-Maxwell system (1.3). In this context, we can first introduce the following sharp Penrose
instability condition, ensuring instability of equilibria in the quasineutral limit.

Definition 2.7 (Sharp Penrose instability condition). We say that a profile µ(v) satisfies the sharp Penrose
instability condition if there is a vector e ∈ S2 such that the function µe(r) =

∫
re+e⊥

µ(w) dw admits a local
minimum at the point r̄ and the following inequality holds∫

R

µe(r)− µe(r̄)
|r − r̄|2

dr > 0. (2.11)

If the local minimum is flat, i.e. is reached on an interval [r̄1, r̄2], then (2.11) has to be satisfied for all
r̄ ∈ [r̄1, r̄2].

The sharp Penrose instability condition does not directly yield a growing mode for the Vlasov-Poisson
equations set on T3 × R3; however the instability appears in the regime of small ε.

Our second main result reads as follows.

Theorem 2.8 (Invalidity of the quasineutral limit). Let µ(v) be a radial, smooth, normalized equilibrium
satisfying the δ-condition, decaying sufficiently fast at infinity, and satisfying the sharp Penrose instability
condition. Then, for any m,S, p > 0, there exist a family of smooth solutions (fε, Eε, Bε)ε>0 of (1.3), with
fε ≥ 0 and a sequence of times tε = O(ε| log ε|)→ 0, such that

‖(1 + |v|2)
m
2 (fε|t=0

− µ)‖HS(T3×R3) ≤ εp, (2.12)

but
lim inf
ε→0

‖fε(tε)− µ‖L2(T3×R3) > 0, (2.13)

lim inf
ε→0

‖ρε(tε)− 1‖L2(T3) > 0, lim inf
ε→0

‖jε(tε)‖L2(T3) > 0, (2.14)

lim inf
ε→0

ε ‖Eε(tε)‖L2(T3) > 0, (2.15)

in which ρε, jε are defined as in (1.11).

The following of this paper is dedicated to the proofs of Theorem 2.3 and 2.8.
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3 Instability in the classical limit

We study the instability of Vlasov-Maxwell systems in the classical limit ε→ 0:
∂sf

ε + v̂ · ∇yfε + (Eε + εv̂ ×Bε) · ∇vfε = 0,

ε∂sB
ε +∇y × Eε = 0, ∇y · Eε = ρε − 1,

−ε∂sEε +∇y ×Bε = εj, ∇y ·Bε = 0,

(3.1)

where

v̂ =
v√

1 + ε2|v|2
, ρε(t, x) =

∫
R3

fε dv,

jε(t, x) =

∫
R3

v√
1 + ε2|v|2

fε dv.

Let µ(v) be a radial, smooth, normalized equilibrium of (3.1). We set fε = µ + f , Eε = E and Bε = B.
The perturbation (f,E,B) solves

∂sf + v̂ · ∇yf + (E + εv̂ ×B) · ∇v(µ+ f) = 0. (3.2)

The fields E and B are constructed through the electromagnetic potentials:

E = −∇φ− ε∂sA, B = ∇×A, (3.3)

with A satisfying the Coulomb gauge
∇ ·A = 0.

The scalar and vector potentials φ,A solve

−∆φ = ρ(f), ε2∂2sA−∆A = εj(f)− ε∂s∇φ, (3.4)

where we set

ρ(f) :=

∫
f(s, y, v) dv, j(f) :=

∫
v̂f(s, y, v) dv.

As discussed in the introduction, the instability comes from that of the underlying Vlasov-Poisson system.
In other words, we rely on a growing mode of the linearization of Vlasov-Poisson around µ in order to build
an approximate growing solution to the nonlinear perturbation systems (3.2)-(3.4).

Let us start by introducing the linearized Vlasov-Poisson operator, acting on functions f with zero mean:

Pf := ∂sf − L0f, L0f := −v · ∇yf −∇vµ · ∇y∆−1y ρ(f). (3.5)

Note that ρ(f) =
∫
f(s, y, v) dv is a function of (s, y) with zero mean in y.

We denote by Hk the usual Sobolev space of functions in y over T3 (or in v over R3) with all partial
derivatives up to order k having finite L2 norms, and denote by Hn

m the function space consisting of functions
in y and v so that the norm

‖f‖Hnm :=
∑

|α|+|β|≤n

‖〈v〉m∂αy ∂βv f‖L2

is finite, with 〈v〉 :=
√

1 + |v|2 and m,n ≥ 0.
Defining the domain of L0 as

D(L0) =

{
f ∈ Hn

m, L0f ∈ Hn
m,

∫∫
f dvdy = 0

}
,

where n,m are large enough, we recall (see for instance [7]) that the unstable spectrum is made only of point
spectrum. Moreover, there is at least one unstable eigenvalue associated to the largest positive real part <λ
among all elements of the spectrum; we pick one, denote it by λ0, and refer to it as the maximal unstable
eigenvalue.
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3.1 Grenier’s iterative scheme

We shall construct an approximate solution fapp to the nonlinear problem (3.2), following the methodology
introduced by Grenier [15] for the study of instability of boundary layers in the inviscid limit of the Navier-
Stokes equations. In view of the nonlinear equation (3.2) and of the linearized Vlasov-Poisson operator (3.5),
we introduce

S(f) := −[∂sA(f)− v̂ × (∇×A(f))] · ∇vµ,

T (f) := − |v|2√
1 + ε2|v|2(1 +

√
1 + ε2|v|2)

v · ∇yf,

Q(f, g) := −∇φ(f) · ∇vg − ε[∂sA(f)− v̂ × (∇×A(f))] · ∇vg,

in which the potentials (φ(f), A(f)) solve the elliptic and wave problem (3.4) with the source associated to
f . In what follows, the wave equation is solved with zero initial data:

A|s=0
= ∂sA|s=0

= 0.

Finding a solution to the nonlinear problem (3.2) is equivalent to solving the following symbolic equation:

R(f) := Pf + εS(f) + ε2T (f) +Q(f, f) = 0. (3.6)

We first point out that, as it will become clear from estimate (3.25), the term ε∂sA appearing in εS(f) is
not small as compared to f , and will not be treated as a perturbation. It turns out that we can extract
the leading part of ε∂sA into the Vlasov-Poisson operator (see [32, Section 2], for a similar use of this idea).
Indeed, using the definition of P (f), we write

S(f) = −[∂sA− v̂ × (∇×A)] · ∇vµ
= −P (A · ∇vµ) + v̂ · ∇(A · ∇vµ) +∇vµ · ∇∆−1(ρ(A · ∇vµ)) + [v̂ × (∇×A)] · ∇vµ
= −P (A · ∇vµ) + S̃(f),

in which we have set
S̃(f) := (v̂ · ∇)A · ∇vµ+ [v̂ × (∇×A)] · ∇vµ. (3.7)

Thus, the problem (3.6) is equivalent to

R(f) = P [f − εA · ∇vµ] + εS̃(f) + ε2T (f) +Q(f, f) = 0. (3.8)

It is now straightforward to (formally) construct an approximate solution fapp so that the error R(fapp)
is arbitrarily small. We start the construction with

(g1, φ1) = eλ0s(ĝ1, φ̂1)(y, v) (3.9)

to be a growing mode associated to the maximal unstable eigenvalue λ0, constructed as in Lemma 2.2; we
choose (ĝ1, φ̂1) so that

ĝ1(y, v) = r1e
ik0·y 1

|k0|2
∇vµ · k0

k0 · (v − ω0)
(3.10)

with r1 > 0 large enough in order to ensure

‖ĝ1‖H−S′ ≥ 2θ0, (3.11)

for S′ > 0 as in Theorem 2.3, and some θ0 > 2. By construction, (g1, φ1) solves the linearized Vlasov-Poisson
system:

P (g1) = 0, φ1 := −∆−1ρ(g1).

We assume for the moment that (g1, φ1) is real and shall explain later how to deal with the general case.
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We then solve for (f1, A1) satisfying

f1 − εA1 · ∇vµ = g1, ε2∂2sA1 −∆A1 = ε(j(f1)− ∂s∇φ1), A1|s=0
= ∂sA1|s=0

= 0. (3.12)

We shall justify later (see Lemma 3.2) why this system indeed has a solution.

Let p ∈ N \ {0, 1}. Observe that εpf1 approximately solves the nonlinear equation (3.8), leaving an error

R(εpf1) := εp+1S̃(f1) + ε2pQ(f1, f1) + εp+2T (f1),

which formally is of order O(εp+1). To obtain an error with higher order, we introduce (f2, φ2, A2) so that
(g2, φ2), with g2 = f2 − εA2 · ∇vµ, solve

P (g2) = −S̃(f1), φ2 = −∆−1ρ(g2), g2|s=0
= 0,

ε2∂2sA2 −∆A2 = ε(j(f2)− ∂s∇φ2), A2|s=0
= ∂sA2|s=0

= 0.
(3.13)

It follows directly that εpf1 + εp+1f2 approximately solves the nonlinear equation (3.8), with a better error:

R(εpf1 + εp+1f2) := εp+2
[
[S(f̃2) + T (f1)

]
+ εp+3T (f2)

+ ε2pQ(f1, f1) + ε2p+1
[
Q(f1, f2) +Q(f2, f1)]

]
+ ε2p+2Q(f2, f2).

Inductively, we construct

fapp =

N∑
k=1

εp+k−1fk, (3.14)

in which (fk, φk, Ak), k ≥ 3, are defined as the unique solution to the linear problems:
P (gk) = −S̃(fk−1)− T (fk−2)−

k−1∑
`=1

Q(f`, fk+1−p−`), φk = −∆−1ρ(gk), gk|s=0
= 0

fk − εAk · ∇vµ = gk, ε2∂2sAk −∆Ak = ε(j(fk)− ∂s∇φk), Ak|s=0
= ∂sAk|s=0

= 0,

(3.15)

with the convention that f−j = 0 for j ∈ N. The error of this approximation can be computed as

R(fapp) = −εN+p(S̃(fN ) + T (fN−1))− εN+p+1T (fN )−
∑

k+`>N+1−p; 1≤k,`≤N−1

ε2p+k+`−2Q(fk, f`),

which is of order O(εN+p) or higher.
In the following subsections, we shall derive relevant estimates on each fk in the approximate solution

fapp and deduce appropriate bounds on the approximation. In the proof, C (with various subscripts) shall
always refer to a positive constant which can change from line to line but does not depend on ε.

3.2 Linear estimates

In this section, we obtain bounds on the profile solutions fk, solving (3.12) and (3.15). We start by studying
the linear semigroup eL0s. We have the following sharp semigroup bounds with losses of derivatives and
integrability in v. Here, sharp refers to the growth in time, in the sense that the optimal growth one could
hope for would be in e<λ0t and we reach e(<λ0+β)t for all β > 0.

Proposition 3.1 (Sharp bounds on the solution operator). Let µ(v) be a smooth unstable equilibrium
of Vlasov-Poisson system which decays sufficiently fast as v → ∞, and let λ0 be the maximal unstable
eigenvalue. Let n, r ≥ 0,m ≥ 2, and h in Hn+2

m+2. Then, f = eL0sh is well-defined as the solution of the
linearized Vlasov-Poisson problem P (f) = (∂s − L0)f = 0 with the initial data h. Furthermore, there holds

‖eL0sh‖Hnm ≤ Cβe
(<λ0+β)s‖h‖Hn+2

m+2
, ∀s ≥ 0, ∀β > 0, (3.16)

for some constant Cβ depending on µ and β.
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Proof. Let n ≥ 0,m ≥ 2. For each f in Hn
2 with

∫∫
f dydv = 0, we denote φ = −∆−1ρ(f). The standard

elliptic theory yields
‖∇φ‖Hn+1 ≤ C0‖ρ(f)‖Hn ≤ C0‖〈v〉2f‖Hny L2

v
, (3.17)

in which C0 is some universal constant. We consider the resolvent equation:

(λ− L0)f = h, <λ ≥ 0.

Standard L2 energy estimates yield at once

<λ‖〈v〉mf‖L2 ≤ ‖〈v〉m∇vµ‖L2(R3)‖∇φ‖L2 + ‖〈v〉mh‖L2 .

Therefore we deduce the following weighted L2 resolvent bound, for <λ > γ0,m := C0‖〈v〉m∇vµ‖L2(R3),

‖〈v〉m(λ− L0)−1h‖L2 ≤ 1

<λ− γ0,m
‖〈v〉mh‖L2

Similarly, higher derivatives estimates are obtained in the similar fashion, since we observe that we have for
α, β ∈ N3,

λ∂βv ∂
α
y f + v · ∇y∂βv ∂αy f −∇v∂βv µ · ∇∂αy φ(f) + [∂βv , v · ∇y]∂αy f = ∂βv ∂

α
y h

in which [∂βv , v · ∇y] = ∂βv (v · ∇y) − v · ∇y∂βv . This identity, together with the elliptic estimate (3.17), first
yields

<λ‖〈v〉m∂αy f‖L2 ≤ ‖〈v〉m∇vµ · ∇∂αy φ(f)‖L2 + ‖〈v〉m∂αy h‖L2

≤ C0‖〈v〉m∇vµ‖L2(R3)‖〈v〉2f‖H|α|−1
y L2

v
+ ‖〈v〉m∂αy h‖L2 .

By a straightforward induction, we find

<λ‖〈v〉mf‖
H
|α|
y L2

v
≤ C ′0‖〈v〉2f‖L2 + C ′0‖〈v〉mh‖H|α|y L2

v
. (3.18)

Similarly, we have

<λ‖〈v〉m∂βv ∂αy f‖L2 ≤ ‖〈v〉m∇v∂βv µ · ∇∂αy φ(f)‖L2 + ‖〈v〉m[∂βv , v · ∇y]∂αy f‖L2 + ‖〈v〉m∂βv ∂αy h‖L2

≤ C0‖〈v〉m∇v∂βv µ‖L2(R3)‖〈v〉2f‖H|α|−1
y L2

v

+ C0‖〈v〉mf‖H|α|+1
y H

|β|−1
v

+ ‖〈v〉m∂βv ∂αy h‖L2 .

Again, by induction, this proves

<λ‖〈v〉m∂βv ∂αy f‖L2 ≤ C ′0‖〈v〉2f‖H|α|+|β|−1
y L2

v
+ C ′0‖〈v〉mf‖H|α|+|β|y L2

v
+ C ′0‖h‖Hnm ,

which together with the above bound (3.18) on ∂
|α|+|β|
y f gives, considering all multi-indices α, β such that

|α|+ |β| ≤ n, that there exists γn,m, Cn,m > 0 such that

<λ‖f‖Hnm ≤ γn,m‖〈v〉
2f‖L2 + Cn,m‖h‖Hnm , (3.19)

for m ≥ 2. In particular, this proves that

‖(λ− L0)−1h‖Hnm ≤
Cn,m

<λ− γn,m
‖h‖Hnm ,

for some positive constant Cγn,m , and for all λ ∈ C so that <λ > γn,m. The classical Hille-Yosida theorem
then asserts that L0 generates a continuous semigroup eL0s on the Banach space L2

m (and hence, on Hn
m);

see, for instance, [33] or [39, Appendix A]. In addition, there holds the following representation for the
semigroup:

eL0sh = P.V.
1

2πi

∫ γ+i∞

γ−i∞
eλs(λ− L0)−1h dλ (3.20)
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for any γ > γn,m, where P.V. denotes the Cauchy principal value.
Next, by assumption, λ0 is an unstable eigenvalue with maximal real part, and the resolvent operator

(λ−L0)−1 is in fact a well-defined and bounded operator on Hn
m for all λ so that <λ > <λ0. Let β > 0 and

take γ = <λ0 + β. Using the boundedness of the resolvent operator, we obtain at once∥∥∥ 1

2πi

∫ γ+iM

γ−iM
eλs(λ− L0)−1h dλ

∥∥∥
Hnm

≤ Cβ,Me(<λ0+β)s‖h‖Hnm , (3.21)

for any large but fixed constant M . To treat the integral for large =λ, we observe that directly from the
equation λf = L0f + h, one has

|λ|‖f‖Hnm ≤ ‖L0f + h‖Hnm ≤ C(‖∇yf‖Hnm+1
+ ‖∇φ‖Hn) + ‖h‖Hnm .

Using (3.19), there holds, for some C ′n+1,m+1 > 0,

|λ|‖(λ− L0)−1h‖Hnm ≤ C
′
n+1,m+1‖〈v〉2f‖L2 + C ′n+1,m+1‖h‖Hn+1

m+1
.

We take <λ = γ, and consider

|=λ| > 2

3
C ′n+1,m+1.

We deduce

‖(λ− L0)−1h‖Hnm ≤
Cβ
|=λ|
‖h‖Hn+1

m+1
. (3.22)

Now, to estimate the integral for large |=λ|, we may write

(λ− L0)−1h =
1

λ
(λ− L0)−1L0h+

h

λ
.

Thus, with γ = <λ0 + β, we get

P.V.
1

2πi

∫
{|=λ|≥M}

eλs(λ− L0)−1h dλ

= P.V.
1

2πi

∫
{|=λ|≥M}

eλs(λ− L0)−1
L0h

λ
dλ+ P.V.

1

2πi

[ ∫ γ+i∞

γ−i∞
−
∫
{|=λ|<M}

]
eλs

h

λ
dλ

in which the second integral on the right-hand side is equal to h, whereas the last integral is bounded by
C0e

γsh. We take M ≥ 2
3C
′
n+1,m+1 so that the bound (3.22) holds. This yields∥∥∥∫

{|=λ|≥M}
eλs(λ− L0)−1

L0h

λ
dλ
∥∥∥
Hnm

≤ Cβ,Meγs‖L0h‖Hn+1
m+1

∫
{|=λ|≥M}

|=λ|−2 d=λ

≤ Cβ,Meγs‖h‖Hn+2
m+2

.

Putting these together and combining with (3.21), we get

‖eL0sh‖Hnm ≤ Cβe
(<λ0+β)s‖h‖Hn+2

m+2
, (3.23)

for any β > 0. The lemma is proved.

Next, we derive a few estimates on the electromagnetic field. Recall that the standard elliptic theory
yields the elliptic estimate (3.17) for φ = −∆−1ρ(f). In addition, together with a use of the Vlasov equation
(∂s − L)f = 0, the function ∂sφ satisfies −∆∂sφ = ∂sρ(f) = −∇ · j(f), which then yields

‖∂s∇φ‖Hn ≤ C0‖j(f)‖Hn ≤ C0‖f‖Hn3 .
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Similarly, the standard Hn theory for the wave equation (3.4) for A = A(f) yields

1

2

d

ds

(
‖ε∂sA‖2Hn + ‖∇A‖2Hn

)
≤ C0‖ε∂sA‖Hn

(
‖j(f)‖Hn + ‖∂s∇φ‖Hn

)
≤ C0‖ε∂sA‖Hn‖f‖Hn3 .

(3.24)

Applying the Gronwall inequality to the above, we obtain

‖ε∂sA‖Hn + ‖∇A‖Hn ≤ C0

∫ s

0

‖f(τ)‖Hn3 dτ. (3.25)

In particular, by a view of the definition of the fields E,B in term of the electromagnetic potentials, we get

‖(E,B)‖Hn ≤ C0

∫ s

0

‖f(τ)‖Hn3 dτ. (3.26)

The following gives a link between the Vlasov-Poisson solution gk and the Vlasov-Maxwell solution fk as
defined in (3.15).

Lemma 3.2. Let g be in Hn
m, for n ≥ 0 and m ≥ 3, with

∫
g dvdx = 0 and let T be a positive number so

that εT � 1. There exists a solution f in L∞(0, T ;Hn
m) solving the linear problem:

f − εA · ∇vµ = g, ε2∂2sA−∆A = ε(j(f) + ∂s∇∆−1ρ(g)), A|s=0
= ∂sA|s=0

= 0. (3.27)

In addition, there holds

sup
τ∈[0,s]

‖f(τ)‖Hnm ≤ C0 sup
τ∈[0,s]

‖g(τ)‖Hnm + C0

∫ s

0

‖〈v〉3g(τ)‖L2 dτ, ∀ s ∈ [0, T ],

for some constant C0 that is independent of ε.
Furthermore, in the case where

∫
v̂g dvdx = 0 , we have

∫
T3 Adx = 0 and the following upper and lower

bound on f :

c0 sup
τ∈[0,s]

‖g(τ)‖Hnm ≤ sup
τ∈[0,s]

‖f(τ)‖Hnm ≤ C0 sup
τ∈[0,s]

‖g(τ)‖Hnm , ∀ s ∈ [0, T ], (3.28)

for some constants c0 > 0, C0 > 0 that are independent of ε.

Proof. We start by establishing a priori estimates. We first note that there holds the Poincaré inequality:∥∥∥A− 〈A〉∥∥∥
Hn

. ‖∇A‖Hn ≤ C0

∫ s

0

‖f(τ)‖Hn3 dτ,

in which 〈A〉 denotes the average of A over T3. This yields at once

‖f − ε〈A〉 · ∇vµ‖Hnm ≤ ‖f − εA · ∇vµ‖Hnm + ‖εA · ∇vµ− ε〈A〉 · ∇vµ‖Hnm

≤ ‖g‖Hnm + C0ε

∫ s

0

‖f(τ)‖Hn3 dτ.
(3.29)

Let us bound the average of A. Directly from the wave equation for A and the equation for f in terms of g,
we get

ε
d2

ds2
〈A〉 = 〈j〉 =

〈∫
v̂g dv

〉
+ ε
〈∫

v̂(A · ∇vµ) dv
〉

=
〈∫

v̂g dv
〉
− r0ε〈A〉,
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in which we have used integration by parts in v, the fact that µ is radial, and set

r0 :=

∫
R3

1 + 2
3ε

2|v|2

(1 + ε2|v|2)3/2
µ dv > 0.

First, we consider the case when the average of
∫
v̂g(s) dv is equal to zero. In this case, we clearly

have〈A(s)〉 = 0 and thus the bound (3.29) reads

‖f(s)‖Hnm ≤ ‖g‖Hnm + C0ε

∫ s

0

‖f(τ)‖Hn3 dτ.

By a standard fixed point argument, we obtain the existence of f in L∞(0, T ;Hn
m) and satisfying (3.27) , as

long as εT � 1 and m ≥ 3. We straightaway deduce the upper bound of (3.28), while the lower bound is
obtained as follows:

sup
τ∈[0,s]

‖g(τ)‖Hnm ≤ sup
τ∈[0,s]

‖f(τ)‖Hnm + C0ε sup
τ∈[0,s]

‖A(τ)‖Hn

≤ sup
τ∈[0,s]

‖f(τ)‖Hnm + C0ε

∫ s

0

‖f(τ)‖Hn3 dτ

≤ 1

c0
sup
τ∈[0,s]

‖f(τ)‖Hnm .

In the general case when the average of
∫
v̂g(s) dv is not equal to zero, we define 〈εA(s)〉 as the solution

of the ordinary differential equation

d2

ds2
〈εA(s)〉+ r0〈εA(s)〉 =

〈∫
v̂g(s) dv

〉
.

Since the fundamental solutions to the homogeneous equation y′′ + r0y = 0 are bounded, the above yields
at once

ε|〈A(s)〉| ≤
∫ s

0

∣∣∣〈 ∫ v̂g(τ) dv
〉∣∣∣ dτ ≤ C0

∫ s

0

‖〈v〉3g(τ)‖L2 dτ.

We now establish a bound for f satisfying

f − ε(A− 〈A〉) · ∇vµ = g + ε〈A〉 · ∇vµ.

The second term on the left-hand side is again a small perturbation in terms of f , yielding

‖f(s)‖Hnm ≤ ‖g‖Hnm + C0

∫ s

0

‖〈v〉3g(τ)‖L2 dτ + C0ε

∫ s

0

‖f(τ)‖Hn3 dτ.

Thus, as long as εT � 1, we can use as well a fixed point argument, yielding the existence of f as well as
the claimed bound.

3.3 Error estimates

Let us now give estimates on the approximate solution fapp and the error of the approximation R(fapp). Let
N be a fixed number of the iteration in fapp and let

m ≥ 5N + 3 and n > 3N + 5/2.

By a view of the wave estimate (3.25) and the fact that µ decays rapidly at infinity, we have for all n,m ≥ 0,

‖S̃(f)(s)‖Hnm ≤ C0‖∇A‖Hn ≤ C0

∫ s

0

‖f(τ)‖Hn3 dτ

‖T (f)(s)‖Hn−1
m−3
≤ C0‖f‖Hnm ,

‖Q(f, g)(s)‖Hn−1
m−2
≤ C0‖(E,B)(s)‖Hn‖g(s)‖Hnm ≤ C0‖g(s)‖Hnm

∫ s

0

‖f(τ)‖Hn3 dτ.

(3.30)
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We apply Lemma 3.2 to the linear problem (3.12) for f1, which yields

‖f1‖Hnm ≤ C0e
<λ0s. (3.31)

By induction, we shall prove

‖fk(s)‖Hn−3k+3
m−5k+5

+ ‖gk(s)‖Hn−3k+3
m−5k+5

≤ Cke(1+
k−1
p )<λ0s, 1 ≤ k ≤ N, (3.32)

for all s ∈ [0, T ], with εT � 1. The case k = 1 is clear. Assuming the bound holds for all j ∈ {1, · · · , k},
with k ≥ 1, we now prove the bound for j = k+ 1 ≥ 2. Writing a Duhamel formula for the nonhomogeneous
equation (3.15) on gk+1, we find

gk+1 = −
∫ s

0

eL0(s−τ)
[
S̃(fk) + T (fk−1) +

k∑
`=1

Q(f`, fk+2−p−`)
]
(τ) dτ.

Using Proposition 3.1, the bounds in (3.30) and the induction assumption, we can estimate

‖gk+1‖Hn−3k
m−5k

≤ Cβ
∫ s

0

e(<λ0+β)(s−τ)
[
‖S̃(fk)‖Hn−3k+2

m−5k+2
+ ‖T (fk−1)‖Hn−3k+2

m−5k+2
+

k∑
`=1

‖Q(f`, fk+2−p−`)‖Hn−3k+2
m−5k+2

]
(τ) dτ

≤ Cβ
∫ s

0

e(<λ0+β)(s−τ)
[
Cke

(1+ k−1
p )<λ0τ +

k∑
`=1

Ck,`e
(1+ `−1

p )<λ0τe(1+
k+1−p−`

p )<λ0τ
]
dτ

≤ Cβ
∫ s

0

e(<λ0+β)(s−τ)e(1+
k
p )<λ0τ dτ

≤ Cke(1+
k
p )<λ0s,

in which we have chosen β = <λ0/p. Next, we apply Lemma 3.2, yielding

sup
τ∈[0,s]

‖fk+1(τ)‖Hn−3k
m−5k

≤ C0 sup
τ∈[0,s]

‖gk+1(τ)‖Hn−3k
m−5k

+ C0

∫ s

0

‖〈v〉3gk+1(τ)‖L2 dτ ≤ Cke(1+
k
p )<λ0s,

which finishes the proof of the inductive bound (3.32), for all k ≥ 1.
Using these bounds on fk as well as (3.30), we can estimate the error of the approximation:

‖R(fapp)(s)‖Hn−3N
m−5N

≤ εN+p(‖S̃(fN )‖Hn−3N
m−5N

+ ‖T (fN−1)‖Hn−3N
m−5N

) + εN+p+1‖T (fN )‖Hn−3N
m−5N

+
∑

k+`>N+1−p; 1≤k,`≤N−1

ε2p+k+`−2‖Q(fk, f`)‖Hn−3N
m−5N

≤ C0ε
N+pe(1+

N−1
p )<λ0s +

∑
k+`>N+1−p; 1≤k,`≤N−1

ε2p+k+`−2e(2+
k+`−2
p )<λ0s

≤ C0ε
N+pe(1+

N−1
p )<λ0s + C0ε

N+pe(1+
N
p )<λ0s

≤ C0

(
εpe<λ0s

)(1+N
p )
,

(3.33)

for all s ≥ 0, as long as εpe<λ0s remains bounded.

3.4 Nonlinear instability

We are ready to conclude the proof of Theorem 2.3. The instability result now follows from a standard
energy estimate. Indeed, let (f, φ,A) be the exact perturbative solution to the Vlasov-Maxwell system:

∂sf + v̂ · ∇yf + (E + εv̂ ×B) · ∇v(µ+ f) = 0.
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with the electromagnetic field solving the Maxwell equations. Consider (fapp, φapp, Aapp) the approximate
solution constructed and studied in the previous sections. Let the difference be

(h, φh, Ah) := (f − fapp, φ− φapp, A−Aapp),

which solves

∂sh+ v̂ · ∇yh+ (Eh + εv̂ ×Bh) · ∇v(µ+ fapp) + (Eapp + Eh + εv̂ × (Bapp +Bh)) · ∇vh = R(fapp),

with h|t=0 = 0. Standard weighted energy estimates yield, for k > 7/2,

1

2

d

ds
‖h‖2Hk3 ≤ C0‖h‖Hk3

[
‖(Eh, Bh)‖Hk + ‖R(fapp)‖Hk3

]
+ ‖h‖2Hk3

[
1 + ‖(Eh, Bh)‖Hk

]
.

Combining with the estimates (3.26) on Eh, Bh and with (3.33) yields at once

1

2

d

ds

(
‖h(s)‖2Hk3 + ‖(Eh, Bh)(s)‖2Hk

)
≤
[
C + ‖h(s)‖Hk3

](
‖h(s)‖2Hk3 + ‖(Eh, Bh)(s)‖2Hk

)
+ C0

(
εpe<λ0s

)2(1+N
p )
.

We now introduce

T ε := sup
{
s ≥ 0 : sup

τ∈[0,s]
‖h(τ)‖Hk3 ≤

θ0
2
εpe<λ0τ

}
,

where θ0 > 2 was fixed in (3.11). By the standard local existence theory, we know that T ε > 0.
Now define

T̃ ε :=
1

<λ0
| log(εp

θ0
2

)|.

It follows that for all s ∈ [0, T̃ε],
θ0
2
εpe<λ0s ≤ 1, (3.34)

If T̃ ε > T ε, then for any s ∈ [0, T ε], the above differential inequality yields

1

2

d

ds

(
‖h(s)‖2Hk3 + ‖(Eh, Bh)(s)‖2Hk

)
≤ (1 + C)

(
‖h(s)‖2Hk3 + ‖(Eh, Bh)(s)‖2Hk

)
+ C0

(
εpe<λ0s

)2(1+N
p )
.

Using the Gronwall inequality and imposing N large enough so that

N ≥ C0, 1 + C ≤
(

1 +
N

p

)
<λ0,

32C0

θ20
≤ (θ0/2)

2N
p ,

there holds

‖h(s)‖2Hk3 + ‖(Eh, Bh)(s)‖2Hk ≤ 2C0

∫ s

0

e2(1+C)(s−τ)
(
εpe<λ0τ

)2(1+N
p )

dτ

≤ 2C0

(
εpe<λ0s

)2(1+N
p )

≤ 2C0

(θ0/2)
2N
p

(
εpe<λ0s

)2
≤ 1

16
θ20

(
εpe<λ0s

)2
=

(
θ0
4
εpe<λ0s

)2

<
θ0
4
εpe<λ0s.

15



This contradicts the definition of T ε and proves that we necessarily have T ε ≥ T̃ ε.

Finally, recall that f = fapp + h. Thus, by the triangle inequality, as long as s ∈ [0, T̃ ε], we get

‖f‖L2 ≥ ‖fapp‖L2 − ‖h‖L2

≥ ‖fapp‖L2 − θ0
2
εpe<λ0s.

(3.35)

We therefore need to get a lower bound on the L2 norm fapp. First, we have

‖f1‖L2 ≥ ‖g1‖L2 − ε‖A1 · ∇vµ‖L2 .

It follows from the construction that the average of
∫
vg1 dv is equal to zero. Indeed, by definition, we have∫

vĝ1 dvdy =

∫
eik0·y dy

∫
1

|k0|2
∇vµ · k0

k0 · (v − ω0)
v dv = 0.

From Lemma 3.2, we know that 〈A1〉 = 0, so that

ε‖A1 · ∇vµ‖L2 ≤ εC0

∫ s

0

‖f(τ)‖Hn3 dτ.

Recalling (3.31), we end up with
ε‖A1 · ∇vµ‖L2 ≤ εC0e

<λ0s.

By (3.11), we deduce (at least for ε > 0 small enough),

‖f1‖L2 ≥ θ0e<λ0s.

Finally using (3.32) to bound the contribution of the terms fk, k ≥ 2, we obtain

‖fapp‖L2 ≥ θ0εpe<λ0s − CN
(
εpe<λ0s

)1+ 1
p

and thus for s ∈ [0, T̃ ε],

‖f(s)‖L2 ≥ θ0εpe<λ0s − CN
(
εpe<λ0s

)1+ 1
p − θ0

2
εpe<λ0s

≥ θ0
2
εpe<λ0s

(
1− 2CN

θ0

(
εpe<λ0s

) 1
p
)
.

(3.36)

Define finally T
ε

:= 1
<λ0

∣∣∣log(εp 4CN
θ0

)
∣∣∣. For sε := min(T̃ ε, T

ε
) we end up with the lower bound

‖f(sε)‖L2(T3×R3) ≥ δ0, (3.37)

with δ0 = min
(

1
2 ,

θ20
16CN

)
.

Similarly, for what concerns H−S
′

instability, we can get as well

‖f(sε)‖H−S′ ≥ ε
p‖f1‖H−S′ − ‖fapp − ε

pf1‖H−S′ − ‖h‖H−S′
≥ εp‖f1‖H−S′ − ‖fapp − ε

pf1‖L2 − ‖h‖L2

≥ θ0εpe<λ0sε − CN
(
εpe<λ0sε

)1+ 1
p − θ0

2
εpe<λ0sε

≥ δ0,

(3.38)
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with δ0 as defined in (3.37). Recalling that fε − µ = f , this proves the first instability result of (2.8).
The instability on ρε and jε is proved with similar estimates, using the weighted L2 error estimates. The

only thing to notice is that, recalling g1 = eλ0sĝ1, and by a view of (3.10) and of the Penrose condition (2.3),
we have ρ(ĝ1) 6= 0 and j(ĝ1) 6= 0. With the same arguments, we end up with

‖ρε(s)− 1‖H−S′ ≥ δ
′
0, ‖jε(s)‖H−S′ ≥ δ

′
0, (3.39)

for some δ′0 > 0.
The instability on Eε then follows by a view of (3.3). We write

‖Eε‖2L2 = ‖∇φε‖2L2 + ‖ε∂sAε‖2L2 + ε

∫
∇φε · ∂sAε dx,

and note that since Aε satisfies the Coulomb gauge ∇ ·Aε = 0,∫
∇φε · ∂sAε dx =

∫
φε ∂s∇ ·Aε dx = 0.

We thus use (3.39) to get ‖ρε − 1‖H−1 ≥ δ′0 and obtain, using finally the Poisson equation (3.4),

‖Eε(s)‖L2 ≥ ‖∇φε(s)‖L2 ≥ C0δ
′
0.

Let us finally complete the proof of Theorem 2.3 by briefly explaining how to deal with complex eigen-
values and eigenfunctions, as well as getting non-negative distribution functions.

We assume here that =λ0 6= 0. Writing ĝ1 = <g1 + i=g1, and assuming without loss of generality that
<g1 6= 0, we set g1 = <(eλ0sĝ1) instead of the definition (3.9). Then one can perform exactly the same
construction and analysis, except that the lower bound for fapp in (3.36) is achieved for all s of the form
s = 2πk

=λ0
. This is sufficient to get the instability as in (3.37).

For what concerns non-negativity, we just need to notice that the δ-condition and the form of the
eigenfunctions (recall (3.10)) ensure that εp|g1||t=0 ≤ µ, so that the initial condition satisfies fε|t=0 ≥ 0.

4 Invalidity of the quasineutral limit

Let µ(v) be a radial, smooth, normalized profile satisfying the δ-condition and the sharp Penrose instability
condition.

For any M > 0, we shall denote

T3
M := R3/(MZ×MZ×MZ).

We recall that for a given length M , the sharp Penrose instability condition does not necessarily ensure the
existence of a growing mode for the linearized equations. However, the latter is true for large enough values
of M . This is the content of the following Proposition, taken from [24, Proposition 3.2].

Proposition 4.1. Assume that µ is a smooth homogeneous profile satisfying the sharp Penrose instability
condition. There exists M0 > 0 such that if M ≥M0, then the Penrose instability condition (2.3) is satisfied
for the equations posed on T3

M × R3.

As a matter of fact, the framework of [24] is one-dimensional but this particular result straightforwardly
extends to higher dimensions. Using this Proposition, we fix some large enough parameter M > 0 such that
the linearized Vlasov-Poisson operator L0 on T3

M ×R3 has an eigenvalue with positive real part. From now
on, we consider the sequence εk = 1

kM , for k ∈ N∗, but we forget about the k subscript for readability.
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As already explained in the introduction, in the high spatial frequency regime, the study of the quasineu-
tral limit comes down to that of the classical limit. More precisely, we shall first consider εM -periodic (in
all spatial directions) solutions to (1.3), that is we look for solutions to the system

∂tf̃ε + v̂ · ∇xf̃ε + (Ẽε + v̂ × B̃ε) · ∇v f̃ε = 0,

∂tB̃ε +∇x × Ẽε = 0, ε2∇x · Ẽε = ρ̃ε − 1,

−ε2∂tẼε +∇x × B̃ε = j̃ε, ∇x · B̃ε = 0,

(4.1)

for t ≥ 0, x ∈ T3
εM , v ∈ R3 and where

v̂ =
v√

1 + ε2|v|2
,

ρ̃ε(t, x) =

∫
R3

f̃ε dv, j̃ε(t, x) =

∫
R3

v̂f̃ε dv.

We can then obtain a solution (fε, Eε, Bε) to (1.3) by patching (εM)−3 copies of (f̃ε, Ẽε, B̃ε). This means,
identifying T3

M to [0,M)3, writing

fε(t, x, v) = f̃ε(t, x1 − j1εM, x2 − j2εM, x3 − j3εM, v),

for all x = (x1, x2, x3) in

3∏
i=1

[jiεM, (ji + 1)εM), j1, j2, j3 = 0, · · · , k − 1.

Similar formulas are given for (Eε, Bε).
We can now perform the hyperbolic change of variables (t, x, v)→

(
t
ε ,

x
ε , v
)
, i.e. we consider (gε,Eε,Bε)

such that:

f̃ε(t, x, v) = gε

(
t

ε
,
x

ε
, v

)
, Ẽε(t, x, v) =

1

ε
Eε
(
t

ε
,
x

ε

)
, B̃ε(t, x, v) = Bε

(
t

ε
,
x

ε

)
. (4.2)

This leads to the study of the classical limit, for s ≥ 0, y ∈ TM , v ∈ R
∂sgε + v̂ · ∇ygε + (Eε + εv̂ × Bε) · ∇vgε = 0,

ε∂sBε +∇y × Eε = 0, ∇y · Eε =

∫
gε dv − 1

−ε∂sEε +∇y × Bε = ε

∫
v̂gε dv, ∇y · Bε = 0.

(4.3)

We apply Theorem 2.3 (M being considered as a fixed transparent parameter). Let S,N ∈ N∗ and
p ∈ N∗, such that p > S+N . We take k = 0. By Theorem 2.3, we find for all ε ∈ (0, 1] a solution (gε,Eε,Bε)
to (4.3) with gε ≥ 0, such that

‖(1 + |v|2)
m
2 (gε|s=0

− µ)‖HS(T3
M×R3) ≤ εp, (4.4)

but there is a sequence of times sε = O(| log ε|) such that

lim inf
ε→0

‖gε(sε)− µ‖L2(T3
M×R3) > 0, lim inf

ε→0
‖Eε(sε)‖L2(T3

M ) > 0, (4.5)

lim inf
ε→0

‖ρgε(sε)− 1‖L2(T3
M ) > 0, lim inf

ε→0
‖jgε(sε)‖L2(T3

M ) > 0, (4.6)

with the notation ρgε(t) =
∫
R3 gε(t, x, v) dv and jgε(t) =

∫
R3 v̂gε(t, x, v) dv.
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Next, a consequence of of the change of variable (4.2) and of the εM -periodicity of fε is that:

‖(1 + |v|2)
m
2 (fε|t=0 − µ)‖HS(T3×R3) ≤ C

ε−S

M3
‖gε|s=0

− µ‖HS(T3
M×R3)

‖fε(t)− 1‖L2(T3×R3) =
1

M3
‖gε (t/ε)− 1‖L2(T3

M×R3), ε‖Eε(t)‖L2(T3) =
1

M3
‖Eε (t/ε) ‖L2(T3

M ),

‖ρε(t)− 1‖L2(T3) =
1

M3
‖ρgε (t/ε)− 1‖L2(T3

M ), ‖jε(t)− 1‖L2(T3) =
1

M3
‖jgε (t/ε)− 1‖L2(T3

M ).

(4.7)

We set tε := εsε = O(ε| log ε|) and deduce, at least for ε small enough,

‖(1 + |v|2)
m
2 (fε|t=0 − µ)‖HS(T3×R3) ≤

1

M3
εp−S ≤ εN ,

lim inf
ε→0

‖fε(tε)− µ‖L2(T3×R3) > 0, lim inf
ε→0

ε ‖Eε(tε)‖L2(T3) > 0,

lim inf
ε→0

‖ρε(tε)− 1‖L2(T3) > 0, lim inf
ε→0

‖jε(tε)‖L2(T3) > 0,

which proves Theorem 2.8.

Acknowledgements. We are grateful to Pennsylvania State University and École polytechnique for hospi-
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