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In this work, we are interested in the controllability of Vlasov–
Poisson systems in the presence of an external force field (namely
a bounded force field or a magnetic field), by means of a local in-
terior control. We are able to extend the results of Glass (2003) [8],
where the only present force was the self-consistent electric field.
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1. Introduction and main results

We consider the controllability of the Vlasov–Poisson system in the periodic domain T
n (where n

is the space dimension), which describes the evolution of a population of electrons in a neutralizing
background of fixed ions, under the influence of a self-generated electric field. The control questions
are addressed by means of an interior control located in an open set ω of the domain, which is
a priori arbitrary. We assume in this paper that the charged particles evolve with the influence of an
additional fixed external force, denoted by F (t, x, v) (at least with Lipschitz regularity and a sublinear
growth at infinity in velocity). The equations read:

∂t f + v.∇x f + F (t, x, v).∇v f + ∇xΦ.∇v f = 1ωG, x ∈ T
n, v ∈R

n, (1.1)

�xΦ =
∫
Rn

f dv −
∫

Tn×Rn

f dv dx, (1.2)

f |t=0 = f0. (1.3)
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In these equations, f (t, x, v) is the so-called distribution function, which describes the density of
particles at time t ∈R

+ , at position x ∈ T
n and velocity v ∈ R

n . The initial density distribution f0(x, v)

is a non-negative integrable function. The right-hand side of the transport equation 1ωG is a source
term describing emission and absorption of particles, supported in ω. Moreover, to preserve global
neutrality, we suppose that F satisfies

divv(F ) = 0, (1.4)

and G has to satisfy the following constraint:

∀t ∈R
+,

∫
Tn×Rn

1ωG dv dx = 0. (1.5)

We normalize here the torus so that its Lebesgue measure is 1.
The controllability problem is the following. Let f1(x, v) be another non-negative integrable func-

tion satisfying f1 � 0 and

∫
f1 dv dx =

∫
f0 dv dx,

and let T > 0 be a fixed time. The question is: is it possible to find a control G such that:

f (T , x, v) = f1(x, v)? (1.6)

When the only acting force is the self-consistent electric field (that is when F = 0), the first author
provided in [8] some positive answers to the question. More specifically, two kinds of results were
obtained: first, local controllability results (which means that f0 and f1 are small in some weighted
L∞ norm) were obtained in two dimensions, for an arbitrary control zone ω. Global controllability
results (without restriction on the size of f0 and f1) in any dimension were also obtained, provided
that the control zone ω contains the image of a hyperplane of Rn by the canonical surjection (which
is called a hyperplane of the torus in [8]). The proofs of these results relied on the nice geometry of
free transport in the torus: we shall recall their principle in a subsequent paragraph.

When one considers a non-trivial external force F , the underlying dynamical system is more
complicated; thus the characteristics can have a complex geometry, making the generalization not
straightforward from the case F = 0.

In this paper, we are able to extend results of [8] for the two following classes of force fields:

• The case of bounded force fields F ∈ L∞
t W 1,∞

x,v .
• In two dimensions, the case of Lorentz forces for magnetic fields with a fixed direction F (x, v) =

b(x)(v2,−v1) with b satisfying a certain geometric condition (which will be precisely described
later).

As we will see later on, the treatment of these two cases are rather different (in particular for
what concerns high velocities) and involve different strategies. As a matter of fact, we were not able
to find a general strategy which would allow to treat all forces F which are Lipschitz with a sublinear
growth at infinity in velocity.

Let us now briefly review the existing results on the Cauchy theory for the Vlasov–Poisson equation
posed in the whole space R

n or in the torus T
n . In this work, we will only focus on strong solutions

(at least with a C1 regularity in all variables), in order to define characteristics; in the case where
F = 0, the first results for such solutions were obtained by Ukai and Okabe [11] who have proved
global in time existence in two dimensions and local in time existence in three dimensions, in the
whole space setting. One can readily check that the proof is the same for the torus case. In three
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dimensions, in the whole space, global in time results were proved independently by Pfaffelmoser
[10] and Lions and Perthame [9]. The results of Pfaffelmoser were adapted to the torus case by Batt
and Rein [3]. Concerning global weak solutions, the main result was established by Arsenev [1]. One
can observe that all these results can be easily adapted to incorporate an additional external force F
(with F satisfying the previous regularity assumptions).

We will only rely on the construction due to Ukai and Okabe in the following. We are now in
position to precisely state the main results proved in this paper.

1.1. Results in the bounded external field case

We first consider the case where F ∈ L∞
t W 1,∞

x,v . In this case, we are able to exactly extend those for
F = 0, that are a local and a global controllability results. The local result concerns only the dimension
n = 2, but is valid for any control zone ω. On the contrary, the global result is valid for any n, but
requires a stronger geometric assumption on the control zone ω.

Theorem 1.1 (Local result). Let n = 2. Let F (t, x, v) ∈ L∞
t W 1,∞

x,v . Let γ > 2 and T > 0. There exist κ,κ ′ > 0
small enough such that the following holds. Let f0 and f1 be two functions in C1(T2 ×R

2)∩ W 1,∞(T2 ×R
2),

satisfying the condition that for any (x, v) ∈ T
2 ×R

2 and i ∈ {0,1},

{ ∣∣ f i(x, v)
∣∣ � κ

(
1 + |v|)−γ −1

,

|∇x f i| + |∇v f i|� κ ′(1 + |v|)−γ
,

(1.7)

and

∫
T2×R2

f0 =
∫

T2×R2

f1. (1.8)

Then there exists a control G ∈ C0([0, T ] × T
2 × R

2), such that the solution of (1.1)–(1.2) and (1.3) exists, is
unique, and satisfies (1.6).

Theorem 1.2 (Global result). Let γ > n and κ,κ ′ > 0. Suppose that the regular open set ω contains the image
of a hyperplane in R

n by the canonical surjection, supposed to be closed. Let f0 and f1 be two functions in
C1(Tn ×R

n), satisfying the conditions

{ ∣∣ f i(x, v)
∣∣ � κ

(
1 + |v|)−γ −2

,

|∇x f i| + |∇v f i|� κ ′(1 + |v|)−γ
,

(1.9)

and (1.8). Then there exists a control G ∈ C0([0, T ] ×T
n ×R

n), such that the solution of (1.1)–(1.2) and (1.3)
exists, is unique, and satisfies (1.6).

1.2. Results in the magnetic field case

Let us now state our result when F represents an external magnetic field. For all results dealing
with this case, we will systematically assume that the space dimension is n = 2. First, let us explain
the physical meaning of the system under consideration. In the physical space R

3, let (e1, e2, e3) be a
fixed orthonormal base. We consider the stationary magnetic field B , with fixed direction e3:

B(x) = b(x)e3,
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where b is a Lipschitz function on T
3. Since B has to satisfy the divergence free condition (coming

from the Maxwell equations), this implies that b only depends on x1 and x2. The associated Lorentz
force writes:

F = v ∧ B(x) = b(x)v⊥,

denoting v⊥ = (v2,−v1,0). We then restrict to distribution functions which do not depend on x3
and v3, so that we can restrict the study of the dynamics to the bidimensional plane (e1, e2). For the
sake of readability, we rewrite the Vlasov–Poisson system that we study:

∂t f + v.∇x f + b(x)v⊥.∇v f + ∇xΦ.∇v f = 1ωG, x ∈ T
2, v ∈ R

2, (1.10)

�xΦ =
∫
R2

f dv −
∫

T2×R2

f dv dx, (1.11)

f |t=0 = f0. (1.12)

We now precisely state the geometric assumption we have to make on b.

• Fixed sign. We assume that b has a fixed (say non-negative) sign.
• Geometric control condition. We assume that there exists a compact set K of T

2 on which b > 0
and which satisfies the geometric control condition:

For any x ∈ T
2 and any direction e ∈ S

1,

there exists y ∈R
+ such that x + ye ∈ K . (1.13)

One can notice that the geometric control condition corresponds to the geometric control condition
of Bardos, Lebeau and Rauch [2] for the controllability of the wave equation. Let us underline however
that here this condition concerns the magnetic field only, and not the control zone ω. As we will see,
this condition assures that the particles are sufficiently influenced by the magnetic field.

Examples. Let us give some examples where this geometric assumption is satisfied.

1. The most simple example that one can have in mind is the case where b is positive on T
2. Then

taking K = T
2, the geometric assumption is satisfied. Obviously, this includes the case where b is

a positive constant.
2. Assume that b is non-negative and has finite number N of zeros x1, . . . , xN ∈ T

2. Then there
is r small enough such that K = T

2\⋃N
i=1 B(xi, r) is appropriate. One could also extend this

consideration to the case where the zeros of b are given by a sequence (xi)i∈N with a finite
number of cluster points.

3. We can consider some b which is identically equal to 0 in a large set of the torus, provided the
existence of some K satisfying the geometric control condition. For instance, if we identify T

2

with [0,1]2 with periodic conditions, a subset K containing ({0} × [0,1]) ∪ ([0,1] × {0}) satisfies
the geometric assumption.

With these particular magnetic fields, we are able to prove a local controllability result, which is
similar to Theorem 1.1 (but we emphasize once again that the proofs will be rather different).

Theorem 1.3. Let b satisfying the geometric assumption (1.13). Let γ > 2 and T > 0. There exist κ,κ ′ > 0
such that the following holds. Let f0 and f1 be two functions in C1(T2 × R

2) ∩ W 1,∞(T2 × R
2), satisfying

the condition that for any (x, v) ∈ T
2 ×R

2 and i ∈ {0,1},
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{ ∣∣ f i(x, v)
∣∣ � κ

(
1 + |v|)−γ −1

,

|∇x f i| + |∇v f i|� κ ′(1 + |v|)−γ
,

(1.14)

and

∫
T2×R2

f0 =
∫

T2×R2

f1. (1.15)

Then there exists a control G ∈ C0([0, T ] ×T
2 ×R

2), such that the solution of (1.10)–(1.11) and (1.12) exists,
is unique, and satisfies f (T , x, v) = f1 .

1.3. Organization of the paper

The paper is organized as follows: first, in Section 2, we recall some considerations on the Vlasov–
Poisson equation and explain the general strategy of the proofs. Then, we prove Theorem 1.1 in
Section 3 and Theorem 1.2 in Section 4, for what concerns the bounded external field case. Finally, in
Section 5, we prove Theorem 1.3 on the local controllability in the external magnetic field case.

2. Strategy of the proofs

2.1. Notations

For T > 0, we denote Q T := [0, T ] × T
n × R

n , and ΩT := [0, T ] × T
n . For a domain Ω , we write

also Cl
b(Ω), for l ∈ N, for the set Cl(Ω) ∩ W l,∞(Ω). All the same, Cl+σ

b (Ω) for σ ∈ (0,1) stands for
the set of Cl functions with bounded σ -Hölder l-th derivatives. These spaces are endowed with the
usual norm ‖ · ‖Cl+σ defined by:

‖ f ‖Cl+σ = ‖ f ‖W l,∞(Ω) + sup
|β|=l

sup
(t,x,v) =(t′,x′,v ′)

|∂β f (t, x, v) − ∂β f (t, x, v)|
|(t, x, v) − (t′, x′, v ′)|σ .

Likewise, Cσ ,l+σ ′
b (ΩT ) (resp. Cσ ,l+σ ′

b (Q T )), for l ∈ N, σ ,σ ′ ∈ [0,1) is the set of continuous functions
in ΩT (resp. Q T ), which are Cl with respect to x (resp. to (x, v)), and whose l-th derivatives are all
Cσ

b with respect to t and Cσ ′
b with respect to x (resp. to (x, v)).

For x in T
n and r > 0, we denote by B(x, r) the open ball with center x and radius r, and by S(x, r)

the corresponding sphere. The radii will always be chosen small enough in order that S(x, r) does not
intersect itself (that is r < 1/2 in the standard torus).

Let us also introduce some notations which will be extremely useful in the following. Let F (t, x, v)

some force field with Lipschitz regularity and sublinear at infinity in v . Let s ∈ R
+ , which corre-

sponds to an “initial” time and (x, v) ∈ T
n × R

n . We call (X(t, s, x, v), V (t, s, x, v)) the characteristics
associated to F , the solutions to the system of ODEs:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dX

dt
= V ,

dV

dt
= F (t, X, V ),

X(s, s, x, v) = x, V (s, s, x, v) = v.

Note that the characteristics are well defined by the classical Cauchy–Lipschitz theorem. Often, when
there is no ambiguity, we will simply write (X, V ) instead of (X(t,0, x, v), V (t,0, x, v)).
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Finally, for any distribution function f (t, x, v) ∈ L∞
t (L1

x,v), we will denote by E f (t, x) the auto-
induced electric field, which satisfies:

E f = ∇ϕ f ,

�xϕ
f =

∫
Rn

f dv −
∫

Rn×Tn

f dv dx.

2.2. The case F = 0, obstructions to controllability

In this paragraph, we focus on the case F = 0, following [8]. Let us consider the linearized equation
around the trivial state ( f ,Φ) = (0,0). It happens to be the free transport equation, which simply
reads:

∂t f + v.∇x f = 1ωG.

By Duhamel’s formula, we obtain the explicit representation for f :

f (t, x, v) = f0(x − tv, v) +
t∫

0

(1ωG)
(
s, x − (t − s)v, v

)
ds, (2.1)

from which one can observe that there are two types of obstruction to controllability:

– (Small velocities.) The first obstruction concerns the small velocities. The velocity of a particle can
have a good direction, but if it is not high enough, then it will not be able to reach zone in the
desired time, see Fig. 1.

– (Large velocities, wrong direction.) The second obstruction is of geometric control type as in [2]
for what concerns the wave equation: if a particle has initially a wrong direction, then it will
never reach the control zone, and thus we cannot influence its trajectory, see again Fig. 1.

Fig. 1. Obstructions for small and large velocities.

It follows that in general, the linearized equation fails to be controllable.

2.3. The return method

In order to overcome these obstructions, the idea is to use the return method, which was in-
troduced by Coron in [5] for the study of the stabilization of finite-dimensional systems, and then
used in the context of the control of PDEs by Coron in [6] for the control of the two-dimensional
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Euler equation for perfect incompressible fluids. It has been used since in many different contexts of
PDE control: we refer to the monograph of Coron [7] for several illustrations and references for this
method. The principle is to build a reference solution ( f ,Φ) starting from (0,0) and reaching (0,0)

in some fixed time, and around which the linearized equation enjoys nice controllability properties.
Such a construction can be delicate, and crucially depends on the structure of the studied equation.

Here, the problem is more or less equivalent to finding solutions ( f ,Φ) (starting from (0,0) and
reaching (0,0)) and such that the characteristics associated to ∇Φ satisfy:

∀x ∈ T
n, ∀v ∈R

n, ∃t ∈ [0, T ], X(t,0, x, v) ∈ ω. (2.2)

(As a matter of fact, the characteristics will not be quite associated to ∇Φ inside the control zone.)
When no exterior force is present, the existence of such a reference solution f was proved by the

first author in [8] in two dimensions, for an arbitrary control set ω. This is achieved using complex
analysis tools by building harmonic potentials outside ω, which allow to sufficiently influence the tra-
jectories, so that the two previous obstructions are circumvented. This strategy distinguishes between
high and low velocities, for which the relevant potentials are different.

2.4. On the scaling properties of Vlasov–Poisson equations

We notice that (1.1)–(1.2) is “invariant” by some change of scales. More precisely, when f is a
solution of (1.1)–(1.2) in [0, T ] ×T

n ×R
n , then for λ = 0, the function

f λ(t, x, v) := |λ|2−n f (λt, x, v/λ) (2.3)

is still a solution of (1.1)–(1.2), in [0, T /λ] ×T
n ×R

n for the following potential

ϕλ(t, x) := λ2ϕ(λt, x) (2.4)

and the external force

F λ(t, x, v) := λ2 F (λt, x, v/λ). (2.5)

The choice of some particular parameters λ will be of great help for the controllability problem.

The choice λ = −1. Using (2.3) with λ = −1, we observe that in order to prove Theorems 1.1 and 1.3,
it is sufficient to prove the result for the case where f1 = 0 in [Tn\ω] ×R

n . Indeed, we observe that
after imposing (2.3) with λ = −1, the corresponding external field remains in the same class, that is,
if F is bounded, then F λ=−1 is still bounded (resp. if F corresponds to a magnetic field satisfying the
geometric condition, then F λ=−1 still corresponds to a magnetic field satisfying the fixed sign and the
geometric conditions).

Then one can follow the procedure that we detail below:

– take f0 as initial value and 0 (in (Tn\ω) ×R
n) as the final one,

– take (x, v) �→ f1(x,−v) as initial value and again 0 as the final one within the force field F (T − t,
x,−v),

each in time T /3. We obtain two functions f̂0 and f̂1. Now we may consider the function f̂ partially
defined in Q T by⎧⎪⎪⎨

⎪⎪⎩
f̂ (t, x, v) = f̂0(t, x, v), in [0, T /3] ×T

n ×R
n,

f̂ (t, x, v) = 0, in [T /3,2T /3] × [
T

n\ω] ×R
n,

f̂ (t, x, v) = f̂1(T − t, x,−v) in [2T /3, T ] ×T
n ×R

n.
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Then we can complete in a regular manner f̂ inside [T /3,2T /3]×ω ×R
n , taking care to preserve for

any t the value of
∫
Tn×Rn f̂ (t, x, v)dx dv . Finally we get a relevant solution f . For this reason, we will

systematically assume that f1 = 0 in [Tn\ω] for all controllability results discussed in this work.

The choice 0 < λ � 1. The choice of the parameters in such a range is useful to prove global control-
lability results. As in [8], it will help us in particular to prove Theorem 1.2 in the bounded external
field case. The principle is that when λ is chosen small enough then ∇Φλ has a small L∞ norm (and
this is also the case for F λ), so that we can expect characteristics for f λ to be close to those of some
well-chosen relevant reference solution. This will allow us to get rid of the smallness assumption
on f0. Nevertheless in order to avoid concentration effects, we will need some assumptions on the
characteristics associated to the reference solution.

In the magnetic field case, we observe that F (x, v) = b(x)v⊥ and thus F λ(x, v) = λb(x)v⊥ . For this
reason, due to our treatment of high velocities for this case, this will not allow us to prove a global
result.

2.5. General strategy for external force fields F

Following [8], the main steps for proving local controllability results will be:

Step 1. Build a reference solution ( f ,Φ) of (1.1)–(1.2) with some control G , starting from (0,0) and
arriving at (0,0), such that the characteristics associated to F − ∇Φ satisfy (2.2).

Step 2. Build a solution ( f ,Φ) close to ( f ,Φ), taking into account the initial condition ( f0,Φ0) and
still arriving at (0,0) (outside ω). This is achieved using a fixed point operator involving an absorption
process in the control zone. This is where we use the smallness assumption on f0.

The treatment of Step 2 will be quite similar to that in [8], although a bit more technical since we
will have to take into account the geometry due to F . The main difference is the treatment of Step 1,
for which we have to propose new ideas. The strategy is the following:

Bounded force field. Our strategy relies on the fact that for short times, the dynamics with the ex-
ternal force F is well approximated by the dynamics with F = 0. We recall that in [8], the reference
solution can be constructed for any time (which can be arbitrarily small) and any control zone in the
torus. Thus, we use the construction in the case F = 0, for very short times and a small subset of the
control zone ω, and using the approximation of the dynamics, this will give us a relevant reference
solution.

Magnetic field. The strategy in this case can be understood in the most simple case, that is when b is
a positive constant. In this case, the characteristics associated to the magnetic field can be explicitly
computed: these are circles, whose radius is proportional to the norm of the velocity (which is a
conserved quantity). We make two crucial observations:

– When the velocity is very large, the curvature of the circles are close to zero, and at least locally
(that is for small times), the trajectory is well approximated by the straight lines of the free
transport case.

– The magnetic field has “mixing features”: in other words it makes the velocities of particles take
every value of S

1, which removes the above obstruction concerning high velocities. Hence, due
to this effect, at high velocity, we do not need to create any additional force field to make the
particles cross the control zone.

This means that at high velocity any subset ω of the torus automatically satisfies the geometric con-
dition (1.13) for the characteristics associated to the magnetic field.
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In the general case, the geometric condition on b allows us to make sure that the particles are
sufficiently influenced by the magnetic field, so that the previous considerations will still hold.

2.6. On the uniqueness of the solution

In this paragraph, we briefly discuss the uniqueness question included in the above results.
The first point is that, if we drop the uniqueness from the conclusions of the above theorems, we

can replace the assumption

|∇x f i| + |∇v f i| � κ ′(1 + |v|)−γ
,

by the weaker one

|∇x f i| + |∇v f i| � κ ′.

This is easily seen when reading the proofs below.
Hence the assumptions that ∇ f i belongs to some weighted space is only useful for the uniqueness

issue. Let us explain how one can show uniqueness under this assumption. The main point is that in
this case the solution described above satisfies

∣∣∇x,v f (t, x, v)
∣∣ � C( f0, f1)

(
1 + |v|)−γ

,

for all t . This follows from the construction described below, and from the estimates on ∇ f in the
proof. Once these estimates are obtained, the proof of uniqueness is exactly the one of Ukai–Okabe. It
consists in making the difference of two potential solutions; this difference satisfies a certain transport
equation with source. Then one performs an L1 ∩ L∞ estimate on the solution of this equation and
uses a Gronwall argument. In our case, the source term disappears when we make this difference, so
one can follow [11] without change.

This gives the uniqueness among the solutions satisfying

f ∈ C1([0, T ] ×T
n ×R

n), | f | + ∣∣∇x,v f (t, x, v)
∣∣ � C

(
1 + |v|)−γ

and

∇ϕ ∈ L∞(
0, T ; W 1,∞(

T
n)).

3. Bounded external field case

In this section, we prove Theorem 1.1. As already explained, the main difficulty is to build the
reference solution. Then one can use the same absorption process, that was proposed in [8], and find
a solution to the non-linear system by a similar fixed-point argument.

3.1. Design of the reference solution for the bounded field case

We begin with the construction of the reference solution. Accordingly to the previous strategy, we
distinguish between high and low velocities.

For the large velocities, we prove the following proposition:

Proposition 3.1. Let τ > 0 and H ∈ L∞((0, τ ) × T
2;R2). Given x0 in T

2 and r0 a small positive number,
there exist ϕ ∈ C∞([0, τ ] ×T

2;R) and m > 0 such that

�ϕ = 0 in [0, τ ] × [
T

2\B(x0, r0/10)
]
, (3.1)

Suppϕ ⊂ (0, τ ) ×T
2 (3.2)
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and such that, if one consider the characteristics (X, V ) associated to the force field H +∇ϕ then for all m � m:

∀x ∈ T
2, ∀v ∈ R

2 such that |v|� m,

∃t ∈ (τ/3,2τ/3) such that X(t,0, x, v) ∈ B(x0, r0/4) and
∣∣V (t,0, x, v)

∣∣ � m

2
. (3.3)

Proof of Proposition 3.1. In the case H = 0, this proposition was already proved in [8, Proposition 1,
p. 340]. We fix x′

0 = x0, r′
0 = r0/2. Applying this result for τ = 1, we thus obtain the existence of

ϕ1 ∈ C∞([0,1] ×T
d;R) and m′ ∈ R

+∗ with compact support in time in (0,1), satisfying:

�ϕ1 = 0 in [0,1] × [
T

2\B(x0, r0/20)
]
, (3.4)

Suppϕ1 ⊂ (0,1) ×T
2, (3.5)

and such that, if one consider the characteristics ( X̃1, Ṽ 1) associated to the force field ∇ϕ1 then:

∀x ∈ T
d, ∀v ∈R

d such that |v|� m′,

∃t ∈ (1/4,3/4), X̃1(t,0, x, v) ∈ B(x0, r0/8). (3.6)

Let τ ′ < τ to be fixed later. For this given τ ′ , we can construct ϕτ ′ by rescaling ϕ1 as follows:

ϕτ ′(t, x) := 1

(τ ′)2
ϕ1

(
t

τ ′ , x

)
, (3.7)

which corresponds to following the characteristics with time t
τ ′ .

Now let us consider the shifted in time potential ϕ defined by:

ϕ(t, x) = ϕτ ′
(

t − τ − τ ′

2
, x

)
. (3.8)

We extend ϕ by 0 in (0, τ ) \ ( τ−τ ′
2 , τ+τ ′

2 ).

We define the characteristics ( X̃, Ṽ ) associated to the force field ∇ϕ , which satisfy by construction:

∀x ∈ T
d, ∀v ∈R

d such that |v|� m′,

∃t ∈
(

τ − τ ′

2
,
τ + τ ′

2

)
, X̃(t,0, x, v) ∈ B(x0, r0/8). (3.9)

Let us now compare ( X̃, Ṽ ) and (X, V ), which is associated to the force field H + ∇ϕ on (0, τ ).
By Taylor’s formula we have:

∣∣∣∣X

(
t,

τ − τ ′

2
, x, v

)
− X̃

(
t,

τ − τ ′

2
, x, v

)∣∣∣∣
�

t∫
τ−τ ′

2

(t − s)

[∣∣∣∣∇ϕ

(
s, X̃

(
s,

τ − τ ′

2
, x, v

))
− ∇ϕ

(
s, X

(
s,

τ − τ ′

2
, x, v

))∣∣∣∣

+
∣∣∣∣H

(
s, X̃

(
s,

τ − τ ′

2
, x, v

)
, Ṽ

(
s,

τ − τ ′

2
, x, v

))∣∣∣∣
]

ds. (3.10)
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By Gronwall’s lemma we deduce for t ∈ ( τ−τ ′
2 , τ+τ ′

2 ):

∣∣∣∣V

(
t,

τ − τ ′

2
, x, v

)
− Ṽ

(
t,

τ − τ ′

2
, x, v

)∣∣∣∣ � τ ′‖H‖L∞
t,x,v

e
τ ′2

2 ‖∇2ϕ‖L∞((0,τ )×Td) ,

∣∣∣∣X

(
t,

τ − τ ′

2
, x, v

)
− X̃

(
t,

τ − τ ′

2
, x, v

)∣∣∣∣ � τ ′2

2
‖H‖L∞

t,x,v
e

τ ′2
2

∥∥∇2ϕ
∥∥

L∞((0,τ )×Td) . (3.11)

The crucial point is now to observe that ϕ described above satisfies:

∥∥∇2ϕ
∥∥

L∞((0,τ )×Td)
= O

(
1

τ ′2

)
as τ ′ → 0,

as it can be seen from (3.7).
Thus for τ ′ small enough we infer that X(t,0, x, v) meets B(x0, r0/4) for some t ∈ ( τ−τ ′

2 , τ+τ ′
2 ) ⊂

(τ/3,2τ/3), for all x and v , provided that |V ( τ−τ ′
2 ,0, x, v)| is large enough. This is ensured if |v| � m

is chosen large enough, thanks to the inequality:

∣∣∣∣V

(
τ − τ ′

2
,0, x, v

)∣∣∣∣ � |v| − τ − τ ′

2
‖H‖L∞

t,x,v
. �

Remark 3.1. In this proof, this is crucial that H ∈ L∞((0, τ ) ×T
2;R2). Thus this approach will fail for

the magnetic field case.

The above proposition shows that with a suitable electric potential, all particles having a suf-
ficiently high velocity will eventually reach ω. The following proposition explains how one can
accelerate all particles in order to make all the remaining ones also reach ω. This will also rely on
the construction in the case F = 0.

Proposition 3.2. Let τ > 0, M > 0 and H ∈ L∞((0, τ ) × T
2;R2). Given x0 in T

2 and r0 a small positive
number, there exist M̃ > 0, E ∈ C∞([0, τ ] ×T

2;R2) and ϕ ∈ C∞([0, τ ] ×T
2;R) satisfying

E = ∇ϕ in [0, τ ] × (
T

2\B(x0, r0)
)
, (3.12)

Supp(E) ⊂ (0, τ ) ×T
2, (3.13)

�ϕ = 0 in [0, τ ] × (
T

2\B(x0, r0)
)
, (3.14)

such that if (X, V ) are the characteristics corresponding to the force

I := E + H, (3.15)

then

∀(x, v) ∈ T
2 × B(0, M), V (τ ,0, x, v) ∈ B(0, M̃) \ B(0, M + 1). (3.16)

Proof of Proposition 3.2. By [8, Lemma 3, p. 356], there exists θ ∈ C∞(T2;R) such that

�θ = 0 in T
2 \ B(x0, r0),∣∣∇θ(x)

∣∣ > 0 in T
2 \ B(x0, r0).
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From the second condition, one sees that IndS(x0,r0)(∇θ) = 0, so that ∇θ|T2\B(x0,r0) can be extended

to T
2 as a smooth non-vanishing vector field, let us say W . Call Λ ∈ C∞

0 ((0,1);R) a non-negative

function with
∫ 1

0 Λ = 1. We claim that for sufficiently small τ ′ < τ , and sufficiently large C > 0,

E(t, x) := C
τ ′ Λ

(
t

τ ′

)
W (x)

is convenient. Then all properties above but (3.16) are clear.
Call (X, V ) the characteristics associated to E only. We see that for all (x, v) ∈ T

2 × B(0, M) and
t ∈ [0, τ ′],

∣∣V (t,0, x, v) − v
∣∣ � C‖E‖∞,

∣∣X(t,0, x, v) − x
∣∣ � τ ′(C‖E‖∞ + M

)
.

Then, since
∫ 1

0 Λ = 1, we can write that

V
(
τ ′,0, x, v

) − v + CW (x) =
τ ′∫

0

C
τ ′ Λ

(
s

τ ′

)[
W

(
X(s,0, x, v)

) − W (x)
]

ds,

so that we obtain:

∣∣V
(
τ ′,0, x, v

) − v + CW (x)
∣∣ � ‖W ‖C1

[
τ ′(C‖E‖∞ + M

)]
.

Noting that, due to the time support of E , V (τ ,0, x, v) = V (τ ′,0, x, v) and using that |W | � c > 0
on T

2, one sees that one can choose C and then τ ′ such that

∀(x, v) ∈ T
2 × B(0, M), V (τ ,0, x, v) ∈R

2 \ B
(
0, M + 2 + τ‖H‖∞

)
.

We now consider the characteristics (X, V ) associated to E + H and evaluate:

∣∣X(t,0, x, v) − X(t,0, x, v)
∣∣ �

t∫
0

∣∣V (s,0, x, v) − V (s,0, x, v)
∣∣ds,

∣∣V (t,0, x, v) − V (t,0, x, v)
∣∣ �

t∫
0

(∣∣E(
s, X(s,0, x, v)

) − E
(
s, X(s,0, x, v)

)∣∣
+ ∣∣H

(
t, X(s,0, x, v), V (s,0, x, v)

)∣∣)ds

� ‖∇xE‖L∞((0,τ ′)×T2)

t∫
0

(t − s)
∣∣V (s,0, x, v) − V (s,0, x, v)

∣∣ds

+ t‖H‖L∞
t,x,v

. (3.17)

By Gronwall’s inequality:

∣∣V (t,0, x, v) − V (t,0, x, v)
∣∣ � t‖H‖L∞ e

t2
2 ‖∇E‖. (3.18)
t,x,v
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We observe that we have:

τ ′2

2
‖∇xE‖L∞((0,τ ′)×T2) = O

(
τ ′) as τ ′ → 0. (3.19)

Taking τ ′ small enough, using t = τ ′ in (3.18), and observing that

∣∣V (τ ,0, x, v) − V
(
τ ′,0, x, v

)∣∣ � ∣∣τ − τ ′∣∣‖H‖∞

allows us to prove our claim. The existence of M̃ is a matter of compactness of T
2 × B(0, M + 2 +

τ‖H‖∞). �
Remark 3.2. We can observe that there is some “margin” in the previous proof, in the sense that if
we only had

τ ′2

2
‖∇E‖L∞((0,τ ′)×T2) = O(1) as τ ′ → 0,

the proof would still follow. However, that (3.19) holds will actually be crucial in the proof of the
equivalent lemma in the magnetic field case, and this time this will be sharp.

The reference solution. Now we are able to define the reference solution. Consider x0 in ω and r0 a
small positive number such that

B(x0,2r0) ⊂ ω.

We first define a reference potential ϕ : [0, T ] × T
2 → R as follows. We apply Proposition 3.1 with

τ = T /3, H = F |[0,T /3] , we obtain ϕ1 and some m1 > 0 such that (3.3) is satisfied. Using Proposi-
tion 3.1 again with τ = T /3, H(t, x) = F (t + 2T

3 , x) for t ∈ [0, T /3], we obtain ϕ3 and some m3 > 0
such that (3.3) is satisfied.

Let

α = max

(
600r0

T
, Cr0

(
1 + ‖F‖∞ + ‖ϕ1‖∞ + ‖ϕ3‖∞

))
, (3.20)

M1 = max(m1,2α) + T

3

(‖∇ϕ1‖∞ + ‖F‖∞
)
, M2 = max(m3,2α), M = max(M1, M2).

(3.21)

Above, Cr0 is a positive geometric constant depending only on r0, and which will be described later.
Then, we apply Proposition 3.2 with τ = T /3, H(t, x) = F (t + T

3 , x) for t ∈ [0, T /3], and M described

above. We obtain E2, ϕ2 and some M̃ .
Finally we set:

ϕ(t, ·) =

⎧⎪⎨
⎪⎩

ϕ1(t, ·) for t ∈ [
0, T

3

]
,

ϕ2
(
t − T

3 , ·) for t ∈ [ T
3 , 2T

3

]
,

ϕ3
(
t − 2T

3 , ·) for t ∈ [ 2T
3 , T

]
,

and
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E(t, ·) =

⎧⎪⎨
⎪⎩

∇ϕ1(t, ·) for t ∈ [
0, T

3

]
,

E2
(
t − T

3 , ·) for t ∈ [ T
3 , 2T

3

]
,

∇ϕ3
(
t − 2T

3 , ·) for t ∈ [ 2T
3 , T

]
.

Let us now introduce f . Consider a function Z ∈ C∞
0 (Rn;R) satisfying the following constraints (here,

n = 2):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z � 0 in R
n,

SuppZ ⊂ BRn (0,1),∫
Rn

Z = 1.
(3.22)

We introduce f = f (t, x, v) as

f (t, x, v) := Z(v)�ϕ(t, x). (3.23)

Of course, f satisfies (1.1) in [0, T ] ×T
2 ×R

2, with source term

G(t, x, v) := ∂t f + v.∇x f + (F + ∇ϕ).∇v f , (3.24)

which is supported in [0, T ] × B(x0, r0) ×R
2. Up to an additive function of t , the function ϕ satisfies

Eq. (1.2) corresponding to f . One crucial point is that f satisfies:

f |t=0 = 0, f |t=T = 0. (3.25)

One can also observe that, as expected in (1.5), we have:

∫
T2×R2

G dx dv =
∫

T2×R2

[
∂t f + divx(v f ) + divv

(
(F + ∇ϕ) f

)]
dx dv = 0. (3.26)

This can be easily seen using (1.4), (3.24) and the definition of f . Finally, we denote

ρ(t, x) :=
∫
R2

f (t, x, v)dv = �ϕ(t, x).

3.2. Fixed point operator

To prove Theorem 1.1, we construct directly the solution f starting at f0 and reaching 0 in T
2 \ ω

at time T , provided that f0 is suitably small. This is done by a fixed-point procedure. In this subsec-
tion, we describe the operator; in the next ones, we will find a solution to our controllability problem
as a fixed point of this operator.
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Let ε ∈ (0,1). We first define the domain Sε of Vε by

Sε :=
{

g ∈ C δ2
b (Q T )/

a.

∥∥∥∥
∫
R2

(g − f )dv

∥∥∥∥
Cδ1 (ΩT )

� ε,

b.
∥∥(

1 + |v|)γ (g − f )
∥∥

L∞(Q T )
� c1

[‖ f0‖C1(T2×R2) + ∥∥(
1 + |v|)γ f0

∥∥
C0(T2×R2)

]
,

c. ‖g − f ‖Cδ2 (Q T ) � c2
[‖ f0‖C1(T2×R2) + ∥∥(

1 + |v|)γ f0
∥∥

C0(T2×R2)

]
,

d. ∀t ∈ [0, T ],
∫

T2×R2

g(t, x, v)dx dv =
∫

T2×R2

f0(x, v)dx dv

}
, (3.27)

with c1, c2 depending only on γ , T , ω (and hence on ( f ,ϕ)) and F , but not on ε. The indices δ1 < δ2
in (0,1) are fixed as follows

δ1 := γ − 2

2(γ + 1)
and δ2 := γ

γ + 1
. (3.28)

For fixed c1 and c2 large enough depending only on ( f ,ϕ), and f0 small enough, one has

∣∣∣∣
∫

f0 dv dx

∣∣∣∣ � ε,

and consequently, in this case f0 + f ∈ Sε , so Sε = ∅. From now on, this is systematically supposed
to be the case.

Now we introduce the following subsets of S(x0, r0) ×R
2:

γ − :=
{
(x, v) ∈ S(x0, r0) ×R

2/|v| > 1

2
and v.ν(x) < − 1

10
|v|

}
, (3.29)

γ 2− :=
{
(x, v) ∈ S(x0, r0) ×R

2/|v|� 1 and v.ν(x) �−1

8
|v|

}
, (3.30)

γ 3− :=
{
(x, v) ∈ S(x0, r0) ×R

2/|v|� 2 and v.ν(x) �−1

5
|v|

}
, (3.31)

γ + := {
(x, v) ∈ S(x0, r0) ×R

2/v.ν(x) � 0
}
, (3.32)

where ν(x) stands for the unit outward normal to the sphere S(x0, r0) at point x. It can be easily seen
that

dist
([

S(x0, r0) ×R
2]\γ 2−;γ 3−)

> 0.

We introduce a C∞ ∩ C1
b regular function U : S(x0, r0) ×R

2 →R, satisfying

⎧⎪⎨
⎪⎩

0 � U � 1,

U ≡ 1 in
[

S(x0, r0) ×R
2]\γ 2−,

U ≡ 0 in γ 3−.

(3.33)
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We also introduce a function Υ :R+ → R
+ , of class C∞ , such that

Υ = 0 in

[
0,

T

48

]
∪

[
47T

48
, T

]
and Υ = 1 in

[
T

24
,

23T

24

]
. (3.34)

Now, given g ∈ Sε , we associate ϕg on [0, T ] ×T
2 by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�ϕg(t, x) =
∫
R2

g(t, x, v)dv −
∫

Tn×R2

g(t, x, v)dv dx in [0, T ] ×T
2,

∫
T2

ϕg(t, x)dx = 0 in [0, T ].
(3.35)

Then, we define Ṽ(g) := f to be the solution of the following system

⎧⎪⎪⎨
⎪⎪⎩

f (0, x, v) = f0 on T
2 ×R

2,

∂t f + v.∇x f + (
F + ∇ϕg + E − ∇ϕ

)
.∇v f = 0 in [0, T ] × [(

T
2 ×R

2)\γ −]
,

f (t, x, v) = [
1 − Υ (t)

]
f
(
t−, x, v

) + Υ (t)U (x, v) f
(
t−, x, v

)
on [0, T ] × γ −.

(3.36)

To explain the last equation, we introduce the characteristics (X, V ) associated to the force field
F + ∇ϕg + E − ∇ϕ . In the previous writing, f (t−, x, v) is the limit value of f on the characteristic
(X, V )(s, t, x, v) as the time s goes to t− . (For times before t , but close to t , the corresponding char-
acteristic is not in γ − .) When the characteristics (X, V ) meet γ − at time t , then the value of f at
time t+ is fixed according to the last equation in (3.36). One can see the function Υ (t)U (x, v) as an
opacity factor which varies according to time and to the incidence of the characteristic on S(x0, r0).
In this process a part of f is absorbed on γ − , which varies from the totality of f to no absorption
according to the angle of incidence, the modulus of the velocity and the time.

The set of times when a characteristic meets γ − is discrete. Indeed, if (X, V )(t,0, x, v) ∈ γ − and
(X, V )(t′,0, x, v) ∈ γ − , then there exists s ∈ (t, t′) for which (X, V )(s,0, x, v) ∈ γ + . The conclusion
follows from dist(γ +, γ −) > 0.

We now consider a continuous linear extension operator π : C0(T2\B(x0,2r0);R) → C0(T2;R),
which has the property that each Cα-regular function is continuously mapped to a Cα-regular func-
tion, for any α ∈ [0,1].

From this operator, we deduce a new one π̃ : C0((T2\B(x0,2r0)) × R
2) → C0(T2 × R

2) according
to the rule:

(π̃ f )(x, v) := [
π f (·, v)

]
(x). (3.37)

Then we modify this operator in order to get a new operator π which has the further property that
for any integrable f ∈ C0((T2\B(x0,2r0)) ×R

2), one has

∫
T2×R2

π( f )dv dx =
∫

T2×R2

f0(x, v)dv dx. (3.38)
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This condition can easily be obtained by considering a regular, compactly supported, non-negative
function u with integral 1 in B(x0, r0) ×R

2, and adding to π̃ ( f ) the function

[ ∫
T2×R2

f0 −
∫

(T2\ω)×R2

f

]
u.

We obtain a continuous affine operator π satisfying that for some constant cπ , one has for any
integrable f ∈ C1(T2\B(x0,2r0)),

∥∥π( f )
∥∥

C1 � cπ‖ f ‖C1 +
∣∣∣∣

∫
(T2\ω)×R2

f −
∫

T2×R2

f0 dv dx

∣∣∣∣,
∥∥π( f )

∥∥
L∞ � cπ‖ f ‖L∞ . +

∣∣∣∣
∫

(T2\ω)×R2

f −
∫

T2×R2

f0 dv dx

∣∣∣∣.

Due to the compact support of u, π continuously sends L∞((T2 \ω)×R
2; (1+|v|)γ dx) into L∞(T2 ×

R
2; (1 + |v|)γ dx), with estimates as above.

It is convenient to introduce another truncation in time function Υ̃ such that:

Υ̃ = 0 in

[
0,

T

100

]
and Υ̃ = 1 in

[
T

48
, T

]
. (3.39)

Finally, we introduce the operator Π : C0(([0, T ]×[T2\B(x0,2r0)]×R
2)∪ ([0, T /48]×T

2 ×R
2)) →

C0([0, T ] ×T
2 ×R

2) given by:

(Π f )(t, x, v) := (
1 − Υ̃ (t)

)
f (t, x, v) + Υ̃ (t)

[
π f (t, ·,·)](x, v). (3.40)

We finally define V[g] by:

V[g] := f + Π( f |([0,T ]×[T2\B(x0,2r0)]×R2)∪([0,T /48]×T2×R2)) in [0, T ] ×T
2 ×R

2. (3.41)

3.3. Existence of a fixed point

The goal of this paragraph is to prove the existence of a fixed point for small values of ε, which
corresponds to the following lemma.

Lemma 3.1. There exists ε0 > 0 such that for any 0 < ε < ε0 , there exists a fixed point of V in Sε .

The proof is almost the same as in [8, Section 3.3]. In order to avoid to repeat it, we only give the
main arguments and refer to it for the details. We only focus on the main differences.

We endow the domain Sε with the norm of C0([0, T ] × T
2 × R

2). The existence of a fixed point
of V on Sε relies on Schauder’s theorem. Accordingly, we have to prove that Sε is a convex com-
pact subset of C0([0, T ] × T

2 × R
2), that V is continuous on Sε for this topology, and finally that

V(Sε) ⊂ Sε .
That Sε is convex is clear; that it is compact follows from Ascoli’s theorem, using both uniform

Hölder estimates and the uniform weighted estimates.
Now let us discuss the continuity of V . Here the proof of [8, Section 3.3] actually holds without

further modification. Let us briefly explain the argument. Due to the compactness of Sε , it is suffi-
cient to prove that if fn → f in Sε , then V[ fn] → V[ f ] pointwise. Let us fix (x, v) ∈ T

2 × R
2. Call
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(Xn, V n) and (X, V ) the characteristics associated to the force F + ∇ϕ fn and F + ∇ϕ f , respectively.
By Gronwall’s lemma, (Xn, V n) converges to (X, V ) uniformly on compacts.

If there was no absorption (that is, if we took U = 0), then the convergence

V[ fn](t, x, v) → V[ f ](t, x, v)

would follow from ∇ϕ fn → ∇ϕ f uniformly on [0, T ]×T
2 and Gronwall’s lemma. The difficulty comes

from the fact that we have to take into account in V[ f ](t, x, v) the various times of absorption on γ − .
But from the convergence of (Xn, V n) to (X, V ) (uniformly on compacts), one can deduce that for n
large enough, (Xn, V n)(·,0, x, v) meets γ − the same number of times as (X, V )(·,0, x, v), and that
the intersection points of (Xn, V n)(·,0, x, v) and γ − converge towards those of (X, V )(·,0, x, v). Then
the continuity of V follows.

The main point in the proof is to establish that V(Sε) ⊂ Sε . The crucial estimate here is the
following.

Lemma 3.2. Let g ∈ Sε , and (X, V ) the characteristics associated to F + ∇ϕg . Then one has

∣∣|v| − ∣∣V (t,0, x, v)
∣∣∣∣ � 1 + t

∥∥F + ∇ϕg
∥∥∞. (3.42)

This lemma is trivial in the case under view, even with |v − V (t,0, x, v)| on the left-hand side.
But since the estimate with |v − V (t,0, x, v)| on the left-hand side is not valid in the presence of a
magnetic field, we prefer to use (3.42), which is sufficient for our purpose.

Let g ∈ Sε . That the point d is true for V[g] comes from the construction, in particular from the
choice of the operator Π (see (3.38)).

Let us explain why the point b is satisfied by f := Ṽ[g]. From the construction, on γ − one has
| f (t+, x, v)| � | f (t−, x, v)|. It follows that

∣∣ f (t, x, v)
∣∣ � ∣∣ f0

[
(X, V )(0, t, x, v)

]∣∣.
Now,

∣∣ f (t, x, v)
∣∣ � ∣∣∣∣ (1 + |V (0, t, x, v)|)γ

(1 + |V (0, t, x, v)|)γ f0
[
(X, V )(0, t, x, v)

]∣∣∣∣
�

∥∥(
1 + |v|)γ f0

∥∥
L∞

[
1 + ∣∣|v| − (|v| − ∣∣V (0, t, x, v)

∣∣)∣∣]−γ

�
∥∥(

1 + |v|)γ f0
∥∥

L∞

(
1 + ||v| − |V (0, t, x, v)||

1 + |v|
)γ

,

where we used

(
1 + ∣∣x − x′∣∣)−1 � 1 + |x|

1 + |x′| .

Note that ‖F + ∇ϕg‖∞ � ‖F‖∞ + ε � ‖F‖∞ + 1. With Lemma 3.2, we deduce that for some C > 0
independent of f0 and ε:

∣∣(1 + |v|)γ f (t, x, v)
∣∣ � C

∥∥(
1 + |v|)γ f0

∥∥
L∞ .

Then the fact that V[g] also satisfies b follows from the construction of the operator Π .
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Let us now explain the point c We have the following lemma:

Lemma 3.3. For g ∈ Sε , one has Ṽ[g] ∈ C1(Q T \ΣT ), with ΣT := [0, T ]×γ − . Moreover, for any (t, x, v) and
(t′, x′, v ′) in [0, T ] × [T2\ω] ×R

2 , with |v − v ′| � 1, one has

∣∣Ṽ[g](t, x, v) − Ṽ[g](t′, x′, v ′)∣∣� C
[‖ f0‖C1(T2×R2) + ∥∥(

1 + |v|)γ f0
∥∥

L∞(T2×R2)

]
× (

1 + |v|)∣∣(t, x, v) − (
t′, x′, v ′)∣∣, (3.43)

and also

∣∣Ṽ[g](t, x, v) − Ṽ[g](t, x′, v ′)∣∣
� C

[‖ f0‖C1(T2×R2) + ∥∥(
1 + |v|)γ f0

∥∥
L∞(T2×R2)

]∣∣(x, v) − (
x′, v ′)∣∣, (3.44)

the constant C being independent of f0 .

This lemma is rather technical. Actually without absorption, this estimate follows from Gronwall’s
lemma and the regularity of Ṽ[g] follows from the fact that f0 and the characteristics are of class C1.
But here at each passage in γ − , there is a jump between ∇Ṽ[g](t+, x, v) and ∇Ṽ[g](t−, x, v). One
can see by using an explicit computation based on the last equation in (3.36) that

∣∣∇Ṽ[g](t+, x, v
)∣∣ � ∣∣∇Ṽ[g](t−, x, v

)∣∣ + C
∣∣Ṽ[g](t−, x, v

)∣∣,
where ∇ is either ∇x or ∇v .

The main point is that the number n(x, v) of times a characteristic (X, V )(t,0, x, v) can cross γ −
is estimated as follows. Using dist(γ −, γ +) > 0 and Lemma 3.2, we infer that

n(x, v) � C
(

1 + max
t

∣∣V (t,0, x, v)
∣∣)� C

(
1 + |v|).

This allows to bound ∇Ṽ[g] using to the uniform estimates on (1 + |v|)γ Ṽ[g].
Finally, point a is a consequence of points b, c and an easy interpolation argument between

weighted Hölder spaces, provided that f0 is small enough. For the reader’s convenience, we detail
a little bit the argument below. First an L∞ bound on

∫
R2 (g − f )dv is easily obtained, using the fact

that γ > 2 and the estimate b:

∥∥∥∥
∫
R2

(g − f )dv

∥∥∥∥
L∞

� C1
[‖ f0‖C1(T2×R2) + ∥∥(

1 + |v|)γ f0
∥∥

C0(T2×R2)

]
.

Then the Hölder estimate is obtained with an interpolation inequality. We refer to [4] for a general
reference on interpolation between functional spaces. Here, the inequality can be directly obtained by
elementary means. For convenience, we denote h = g − f . Let γ = 1 + γ /2. By definition of δ1, δ2, it
follows that we can write:∣∣∣∣(1 + |v|)γ |h(t, x, v) − h(t′, x′, v)|

|(t, x, v) − (t′, x′, v)|δ1

∣∣∣∣
= ∣∣(1 + |v|)γ ∣∣h(t, x, v) − h

(
t′, x′, v

)∣∣∣∣ 1
γ + 1

2

∣∣∣∣ |h(t, x, v) − h(t′, x′, v)|
|(t, x, v) − (t′, x′, v)|δ2

∣∣∣∣
− 1

γ + 1
2

so that the Hölder estimate is a consequence of points b (for estimating the first term of the right-
hand side) and c (for the second one).
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3.4. A fixed point is relevant

Let us prove that, provided that ε is small enough, the fixed point that we constructed is indeed
a solution f starting at f0 and reaching 0 in T

2 \ ω at time T . For this, we show that Ṽ[ f ](T ) = 0 in
T

2 ×R
2.

Call again (X, V ) the characteristics associated to F + ∇ϕ f − ∇ϕ + E .
Due to the construction, it is enough to prove the following lemma.

Lemma 3.4. There exists ε1 > 0 such that for any 0 < ε < ε1 , all the characteristics (X, V ) meet γ 3− for some
time in [ T

24 , 23T
24 ].

Proof. We denote by (X, V ) the characteristics associated to F + E .
1. We first prove that for all (x, v) ∈ T

2 ×R
2, there exists σ ∈ [ T

12 , 3T
12 ] ∪ [ 9T

12 , 11T
12 ] such that

X(σ ,0, x, v) ∈ γ 4− :=
{
(x, v) ∈ S(x0, r0) ×R

2/|v|� 5

2
and v.ν(x) � −1

4
|v|

}
. (3.45)

Let (x, v) ∈ T
2 ×R

2. We claim that there exists t ∈ [ T
9 , 2T

9 ] ∪ [ 7T
9 , 8T

9 ] such that

X(t,0, x, v) ∈ B(x0, r0/4), (3.46)

and

∣∣V (t,0, x, v)
∣∣ � α. (3.47)

We discuss this according to the modulus of V (T /3,0, x, v):

• If |V (T /3,0, x, v)| � M � M1, then one can observe that |v| � max(m1,2α), using the character-
istics equation. Then by Proposition 3.1, the claim is proved for some t ∈ [ T

9 , 2T
9 ].

• If |V (T /3,0, x, v)| < M , then by Proposition 3.2, |V (2T /3,0, x, v)| � M + 1 � M2, and one can
once again apply Proposition 3.1, to prove the claim for some t ∈ [ 7T

9 , 8T
9 ].

Now, one can easily see that for some s > 0 with s <
3r0
α � T

200 ,

X(t,0, x, v) − sV (t,0, x, v) ∈ S(x0, r0) with V (t,0, x, v).ν � −
√

3

2

∣∣V (t,0, x, v)
∣∣, (3.48)

because a straight line arising from B(x0, r0/2) cuts S(x0, r0) with angle to the normal ν at the circle
of value at most π/6. The same argument shows that:

X(t,0, x, v) − 2sV (t,0, x, v) /∈ B(x0,3r0/2).

Now it is clear that

∣∣V (τ ,0, x, v) − V (t,0, x, v)
∣∣

� 2s
[‖F‖∞ + ‖∇ϕ1‖∞ + ‖∇ϕ3‖∞

]
for τ ∈ [t − 2s, t], (3.49)∣∣X(τ ,0, x, v) − X(t,0, x, v) + (t − τ )V (t,0, x, v)

∣∣
� 2s2[‖F‖∞ + ‖∇ϕ1‖∞ + ‖∇ϕ3‖∞

]
for τ ∈ [t − 2s, t]. (3.50)
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In the other hand, if Cr0 is large enough, we have the estimate:

∣∣X(t − 2s,0, x, v) − X(t,0, x, v) + 2sV (t,0, x, v)
∣∣ � r0

2
.

Therefore by the intermediate value theorem that there exists σ ∈ [t − T
100 , t] such that X(τ ,0, x, v) ∈

S(x0, r0). Using (3.48), (3.49) and (3.50), and provided that Cr0 is large enough (in terms of r0 only),
we deduce that for this σ , (3.45) applies.

2. Now to prove that all the characteristics meet γ 3− during [ T
12 , 11T

12 ], let us compare (X, V ) and
(X, V ). Using point a in the definition of Sε , we deduce by Gronwall’s lemma and elliptic estimates
that

∣∣(X, V ) − (X, V )
∣∣ � Cε.

Proceeding as previously, we deduce that if ε is small enough, then for all (x, v) ∈ T
2 × R

2, there
exists t ∈ [ T

24 , 23T
24 ], such that

(X, V )(t,0, x, v) ∈ γ 3−. �
We can now gather all the ingredients to prove Theorem 1.1.

Proof of Theorem 1.1. Using Lemma 3.1, we deduce the existence of some fixed point f = V[ f ]. Using
Lemma 3.4, and (3.33), (3.34) and (3.36), we see that, provided that ε is small enough, Ṽ[ f ](T ) = 0.
Hence f satisfies Supp[ f (T , ·,·)] ⊂ ω ×R

2.
It remains to prove that f satisfies (1.1). This comes from the fact that, due to (3.12) and (3.36),

one has

∂t f + v.∇x f + (
F + ∇ϕ f ).∇v f = 0 in [0, T ] × [

T
2 \ ω

] ×R
2.

Since f is C1, one has

∂t f + v.∇x f + (
F + ∇ϕ f ).∇v f = G in [0, T ] ×T

2 ×R
2,

for some continuous function G . This concludes the proof of Theorem 1.1. �
4. Global controllability for the bounded external field case

In this section, we prove Theorem 1.2.
We call H a hyperplane in R

n such that its image H by the canonical surjection s : Rn → T
n is

included in ω. We recall that H is supposed to be closed. We call nH a unit vector, orthogonal to H.
For l > 0, we denote

Hl := H+ [−l, l]nH .

Since H is closed in T
n , we can define d ∈ R

+∗ such that

H2d ⊂ ω,

and such that 4d is less than the distance between two different hyperplanes in s−1(H).
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4.1. Design of the reference solution

The reference solution is not quite the same as in Section 3. In order to get a global result, as
explained in Section 2, we will need the following property, referred to as a “non-concentration prop-
erty” for the characteristics (X, V ) associated to ϕ (up to a slight modification inside the control zone):
there exists c > 0 such that

∀x, y ∈ T
n,

∣∣X(t,0, x,0) − X(t,0, y,0)
∣∣ � c|x − y|.

The assumption on the control zone ω is motivated by the fact that in this case we can actually
construct a reference solution whose characteristics satisfy this condition.

To construct (ϕ, f ), we start with the following lemma.

Lemma 4.1. There exists ϕ ∈ C∞(Tn;R) such that

�ϕ = 0 on T
n \Hd, (4.1)

and

∇ϕ = nH on T
n \Hd. (4.2)

Proof. In the domain T
n\Hd , x �→ nH coincides with the gradient of a harmonic function. Call ϕ a

function in C∞(Tn;R), whose gradient coincides in T
n\Hd with nH ; this function is automatically

harmonic in Hd . �
Now given such a ϕ , we can construct ϕ and f . Consider a function Y ∈ C∞

0 (0, T ) satisfying

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

SuppY ⊂
(

T

3
,

2T

3

)
,

Y � 0,∫
[0,T ]

Y = 1.

(4.3)

Set

ϕ(t, ·) =
{

0 for t ∈ [
0, T

3

] ∪ [ 2T
3 , T

]
,

μY(t)ϕ(·) for t ∈ [ T
3 , 2T

3

]
,

E(t, ·) =
{

0 for t ∈ [
0, T

3

] ∪ [ 2T
3 , T

]
,

μY(t)nH for t ∈ [ T
3 , 2T

3

]
,

where μ is a positive parameter depending on ω, T and F only, according to the following lemma.

Lemma 4.2. Given ω as above, T > 0 and F , there exists μ > 0 such that all the characteristics associated to
E meet

γ 3− := {
(x, v) ∈ ∂Hd ×R

n/|v|� 2 and v.ν � −2
}
, (4.4)

for some time in [ T
6 , 5T

6 ], where ν = ±nH is the outward unit vector on ∂Hd.
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Once defined ϕ , we define f : [0, T ] ×T
2 ×R

2 as previously by (3.22)–(3.23).

Proof of Lemma 4.2. Let (x, v) ∈ T
n × R

n . Call (X, V ) the characteristics associated to E . We discuss
according to V ( T

6 ,0, x, v) · nH .

• If V ( T
6 ,0, x, v) · nH is large enough, say larger than c > 0, then one sees easily using the charac-

teristic equation that there exists t ∈ [ T
6 , T

4 ] such that (X, V )(t,0, x, v) ∈ γ 3− .

• For the other (x, v), one can find μ > 0 such that V ( 2T
3 ,0, x, v) · nH � c. Then there exists t ∈

[ 2T
3 , 5T

6 ] such that (X, V )(t,0, x, v) ∈ γ 3− . �
4.2. Definition of the fixed-point operator

For λ ∈ (0,1], we define again a subset Sλ
ε of Cδ2

b (Q T ) on which we will define the operator V
(which actually depends on λ):

Sλ
ε :=

{
g ∈ C δ2

b (Q T )/

a.

∥∥∥∥
∫
Rn

(g − f )dv

∥∥∥∥
Cδ1 (ΩT )

� ε,

b.
∥∥(

1 + |v|)γ (g − f )
∥∥

L∞(Q T )
� c1

[∥∥ f λ
0

∥∥
C1(Tn×Rn)

+ ∥∥(
1 + |v|)γ f λ

0

∥∥
C0(Tn×Rn)

]
,

c. ‖g − f ‖Cδ2 (Q T ) � c2
[∥∥ f λ

0

∥∥
C1(Tn×Rn)

+ ∥∥(
1 + |v|)γ f λ

0

∥∥
C0(Tn×Rn)

]
,

d. ∀t ∈ [0, T ],
∫

Tn×Rn

g(t, x, v)dx dv =
∫

Tn×Rn

f λ
0 (x, v)dx dv

}
, (4.5)

with c1, c2 to be fixed later depending only on γ , T and ω (and hence on ( f ,ϕ)), but not on λ; here,
δ1 and δ2 are fixed as follows:

δ1 = γ − n

2(n + 1)(γ + 1)
and δ2 = γ

γ + 1
.

For fixed c1 and c2 large enough depending only on ( f ,ϕ), one has for λ small enough depending
on ε that

∣∣∣∣
∫

f λ
0 dv dx

∣∣∣∣ � ε,

see (2.3). Hence in that case g(t, x, v) = f λ
0 (x, v) + f (t, x, v) belongs to Sλ

ε for λ < μ(ε), so Sλ
ε = ∅.

From now on, we suppose that this is the case.
We write Γ1 := H− dnH , Γ2 := H+ dnH and Γ := Γ1 ∪ Γ2. Let ν = −nh on Γ1 and ν = nh on Γ2.

We define

γ − := {
(x, v) ∈ Γ ×R

n/v.ν(x) < −1
}
, (4.6)

γ 2− := {
(x, v) ∈ Γ ×R

n/|v|� 1 and v.ν(x) � −3/2
}
, (4.7)

γ + := {
(x, v) ∈ Γ ×R

n/v.ν(x) � 0
}
. (4.8)
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Note that γ 3− defined in (4.4) can be reformulated as

γ 3− = {
(x, v) ∈ Γ ×R

n/|v|� 2 and v.ν(x) � −2
}
.

Again, we observe that

dist
((

Γ ×R
n)\γ −;γ 2−)

> 0.

We introduce a C∞ ∩ C1
b regular function U from Γ ×R

n to R the same way as previously, by

⎧⎪⎨
⎪⎩

0 � U � 1,

U ≡ 1 in
(
Γ ×R

n)\γ −,

U ≡ 0 in γ 2−.

(4.9)

The function Υ is again introduced by (3.34). As in Section 3, we define π as a continuous affine
extension operator π from C0(Tn \H2d;R) to C0(Tn;R), and which has the same property that each
Cα-regular function is continuously mapped to a Cα-regular function, for any α ∈ [0,1]. Moreover,
we manage again in order that for any f ∈ C0(Tn \ H2d;R), (3.38) occurs. The operator Π is given
by (3.40).

Now, given g ∈ Sλ
ε , we first define ϕg as in (3.35).

Then we introduce f = Ṽ[g] as the solution of the following system:

⎧⎪⎨
⎪⎩

f (0, x, v) = f λ
0 on T

n ×R
n,

∂t f + v.∇x f + (
F λ + ∇(

ϕg − ϕ
) + μY(t)nH

)
.∇v f = 0 in [0, T ] × [(

T
n ×R

n)\γ −]
,

f (t, x, v) = [
1 − Υ (t)

]
f
(
t−, x, v

) + Υ (t)U (x, v) f
(
t−, x, v

)
on [0, T ] × γ −.

(4.10)

The meaning of this equation is the same one as in Section 3 (and μY(t)nH plays the same role as E
in Section 3). Recall that F λ was defined in (2.5).

Then, as for Section 3, we define V[g] by

V[g] := f + Π( f |[0,T ]×(Tn\H2d)×Rn∪[0,T /48]×Tn×Rn ) in [0, T ] ×T
n ×R

n. (4.11)

Again, f |[0,T ]×(Tn\H2d)×Rn∪[0,T /48]×Tn×Rn is C1 regular, and, together with the construction of Π , it
will follow that V[g] is in C1([0, T ] ×T

n ×R
n).

Considering the form of (4.10), the characteristics that we consider in the sequel are (X g, V g)

associated to F λ + ∇(ϕg − ϕ) + μY(t)nH , which coincide with the ones associated to F λ + ∇ϕg

outside the control zone, but not necessarily inside.

4.3. Existence of a fixed point

Now our goal is to prove the following lemma.

Lemma 4.3. For any small ε > 0, there exists λ(ε) > 0 such that for any positive λ < λ(ε), the operator V has
a fixed point in Sλ

ε .
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Proof. We prove Lemma 4.3 by checking the assumptions for Schauder’s fixed point Theorem on V .
We will sometimes forget the indices and exponents ε and λ.

1. Again, S is a convex compact subset of C0(Q T ).
2. The continuity of V can be proven in the same way as in Section 3.
3. The difficulty is to check that for λ small, one has V(Sλ

ε ) ⊂ Sλ
ε . Accordingly, we have to check

the points a, b, c and d for V[g].
That V[g] satisfies d comes directly from the construction. That Ṽ[g] and consequently V[g] satis-

fies estimates as b is not difficult and proven as in Section 3. In particular Lemma 3.2 is still satisfied.
For what concerns point c we have as previously (see also [8, Lemma 4, p. 370]):

Lemma 4.4. For g ∈ Sλ
ε , one has Ṽ[g] ∈ C1(Q T \ΣT ), with ΣT := [0, T ] × γ − . Moreover, for any (t, x, v)

and (t′, x′, v ′) in [0, T ] × [T2\ω] ×R
2 , with |v − v ′| � 1, one has

∣∣Ṽ[g](t, x, v) − Ṽ[g](t′, x′, v ′)∣∣ � C
[‖ f0‖C1(T2×R2) + ∥∥(

1 + |v|)γ +2
f0

∥∥
L∞(T2×R2)

]
× (

1 + |v|)∣∣(t, x, v) − (
t′, x′, v ′)∣∣, (4.12)

and also

∣∣Ṽ[g](t, x, v) − Ṽ[g](t, x′, v ′)∣∣
� C

[‖ f0‖C1(T2×R2) + ∥∥(
1 + |v|)γ +2

f0
∥∥

L∞(T2×R2)

]∣∣(x, v) − (
x′, v ′)∣∣, (4.13)

the constant C being independent from f0 .

The central part is point a, where the smallness of λ and the non-concentration property of ϕ
are used. We begin by a lemma which asserts that the non-concentration property is preserved by a
small perturbation. Recall that (X g, V g) are associated to F λ + ∇(ϕg − ϕ) + μY(t)nH .

Lemma 4.5. There exists c > 0 such that for any λ small enough (in terms of T , ω and F ), for any g ∈ Sλ
ε , one

has

∀(x, y) ∈ (
T

n)2
, ∀t ∈ [0, T ], c−1|x − y| � ∣∣X g(t,0, x,0) − X g(t,0, y,0)

∣∣ � c|x − y|. (4.14)

Proof. Define (X, V ) as the characteristics associated to the force μY(t)nH . It is clear that (X, V )

satisfy the non-concentration property:

∀(x, y) ∈ (
T

n)2
, ∀t ∈ [0, T ], ∣∣X(t,0, x,0) − X(t,0, y,0)

∣∣ � |x − y|. (4.15)

(This is actually an equality!) Now, it follows from Gronwall’s inequality that for a constant C de-
pending only on μ, Y and F , one has

∥∥(
X g, V g) − (X, V )

∥∥
C0([0,T ]2×Tn×Rn)

� C
(
ε + λ2). (4.16)

One can get a further inequality in the following way (when it is not explicit, the norm considered is
the L∞ one):
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d

dt+
∥∥∇(

X g, V g)(t, s, x, v) − ∇(X, V )(t, s, x, v)
∥∥

�
∥∥∇V g(t, s, x, v) − ∇V (t, s, x, v)

∥∥
+ ∥∥∇x E g

(
t, X g(t, s, x, v)

)∇ X g(t, s, x, v) − ∇x E f

(
t, X(t, s, x, v)

)∇ X(t, s, x, v)
∥∥

+ ∥∥∇x,v F λ
(
t, X g(t, s, x, v), V g(t, s, x, v)

)∇(
X g, V g)(t, s, x, v)

− ∇x,v F λ
(
t, X(t, s, x, v), V (t, s, x, v)

)∇(X, V )(t, s, x, v)
∥∥

where ∇ stands either for ∇x or for ∇v . Now the second term is bounded as follows:

∥∥∇x E g
(
t, X g(t, s, x, v)

)∇ X g(t, s, x, v) − ∇x E f

(
t, X(t, s, x, v)

)∇ X(t, s, x, v)
∥∥ � A1 + A2 + A3,

with

⎧⎪⎪⎨
⎪⎪⎩

A1 = ∥∥∇x E g
(
t, X g(t, s, x, v)

)∇ X g(t, s, x, v) − ∇x E g
(
t, X g(t, s, x, v)

)∇ X(t, s, x, v)
∥∥,

A2 = ∥∥∇x E g
(
t, X g(t, s, x, v)

)∇ X(t, s, x, v) − ∇x E f

(
t, X g(t, s, x, v)

)∇ X(t, s, x, v)
∥∥,

A3 = ∥∥∇x E f

(
t, X g(t, s, x, v)

)∇ X(t, s, x, v) − ∇x E f

(
t, X(t, s, x, v)

)∇ X(t, s, x, v)
∥∥.

Now

A1 � ‖∇x E g‖C0(ΩT )

∥∥∇ X g(t, s, x, v) − ∇ X(t, s, x, v)
∥∥

C0([0,T ]2×Tn×Rn)
,

A2 � ‖∇x E g − ∇x E f ‖C0(ΩT )‖∇ X‖C0([0,T ]2×Tn×Rn),

A3 = 0.

Hence we obtain

∥∥∇x E g
(
t, X g(t, s, x, v)

)∇ X g(t, s, x, v) − ∇x E f

(
t, X(t, s, x, v)

)∇ X(t, s, x, v)
∥∥

� C
(
ε + ∥∥∇ X g(t, s, x, v) − ∇ X(t, s, x, v)

∥∥
C0([0,T ]2×Tn×Rn)

)
.

We treat the term concerning F λ in the same way and obtain

∥∥∇x,v F λ
(
t, X g(t, s, x, v), V g(t, s, x, v)

)∇(
X g, V g)(t, s, x, v)

− ∇x,v F λ
(
t, X(t, s, x, v), V (t, s, x, v)

)∇(X, V )(t, s, x, v)
∥∥

� C
(
λ + ∥∥∇(

X g, V g)(t, s, x, v) − ∇(X, V )(t, s, x, v)
∥∥

C0([0,T ]2×Tn×Rn)

)
.

It follows then by Gronwall’s lemma that for a certain constant C , one has

∥∥(
X g, V g) − (X, V )

∥∥
L∞([0,T ];C1(Tn×Rn))

� C(ε + λ).

Hence, if ε and λ are small enough, then (4.15) is still valid when replacing (X, V ) by (X g, V g), up
to a multiplicative constant. This gives (4.14). �
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Let us come back to the proof of point a. Let us treat the L∞-norm; the Cδ1 one will follow by
interpolation. From (4.14), we deduce that X g(t,0, ·,0) : Tn → T

n is invertible; call (X g
t )−1 its inverse,

and define the function W g
t : [0, T ] ×T

n →R
n by

W g
t (x) := V g(t,0,

(
X g

t

)−1
(x),0

)
.

One can describe (X g
t )−1(x) as the initial position of a particle, which starts with velocity 0 and

reaches x at time t; then W g
t (x) is its velocity at time t .

Let us give an estimate on v − W g
t (x). First,

v − W g
t (x) = V g(0, t, X g(t,0, x, v), V g(t,0, x, v)

) − V g(t,0,
(

X g
t

)−1
(x),0

)
.

By using Gronwall’s lemma on V (0, t, ·,·), we deduce that for some constant independent of λ ∈ (0,1]
∣∣v − W g

t (x)
∣∣ � C

(∣∣X g(t,0, x, v) − (
X g

t

)−1
(x)

∣∣ + ∣∣V g(t,0, x, v)
∣∣).

That the constant is independent of λ comes from the fact that we have uniform Lipschitz estimates
on F λ + ∇(ϕg − ϕ) + μY(t)nH for λ ∈ (0,1].

To estimate the first term, we first notice that the non-concentration property (4.14) gives

(
c′)−1∣∣(X g

t

)−1
(x) − X g(0, t, x, v)

∣∣
�

∣∣X g(t,0,
(

X g
t

)−1
(x),0

) − X g(t,0, X g(0, t, x, v),0
)∣∣

= ∣∣x − X g(t,0, X g(0, t, x, v),0
)∣∣

= ∣∣X g(t,0, X g(0, t, x, v), V g(0, t, x, v)
) − X g(t,0, X g(0, t, x, v),0

)∣∣,
where the first equality comes from the definition of (X g

t )−1, and the second one of the flow property.
Now, using Gronwall’s lemma for X g(t,0, ·,·), we deduce that for some constant C > 0 indepen-

dent of λ ∈ (0,1] one has

∣∣X g(t,0, X g(0, t, x, v), V g(0, t, x, v)
) − X g(t,0, X g(0, t, x, v),0

)∣∣ � C
∣∣V g(0, t, x, v)

∣∣.
Finally we deduce that for some constant K > 0 independent of λ, one has, for any λ ∈ (0,1] and any
g ∈ Sλ

ε ,

∣∣v − W g
t (x)

∣∣ � K
∣∣V g(0, t, x, v)

∣∣. (4.17)

Now, one has

∣∣ f (t, x, v)
∣∣ � ∣∣ f λ

0

[(
X g, V g)(0, t, x, v)

]∣∣
� λ2−n

∥∥ f0
(
1 + |v|)γ ∥∥

L∞(Tn×Rn)

(
1 + 1

λ

∣∣V g(0, t, x, v)
∣∣)−γ

.

Using (4.17), we get that

∣∣ f (t, x, v)
∣∣ � λ2−n

∥∥ f0
(
1 + |v|)γ ∥∥

L∞(Tn×Rn)

(
1 + 1

Kλ

∣∣v − W g
t (x)

∣∣)−γ

.
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It follows that

∣∣∣∣
∫
Rn

f (t, x, v)dv

∣∣∣∣ � λ2−n
∥∥ f0

(
1 + |v|)γ ∥∥

L∞(Tn×Rn)

∫
Rn

(
1 + 1

Kλ

∣∣v − W g
t (x)

∣∣)−γ

dv.

We deduce that ∣∣∣∣
∫
Rn

Ṽ[g](t, x, v)dv

∣∣∣∣ � κλ2−n
∥∥ f0

(
1 + |v|)γ ∥∥

L∞(Tn×Rn)
K nλn.

One deduces from the construction of V that∥∥∥∥
∫ (

V[g] − f
)
(t, x, v)dv

∥∥∥∥
L∞(ΩT )

� Cλ2−n
∥∥ f0

(
1 + |v|)γ ∥∥

L∞(Tn×Rn)
λn � C( f0)λ

2. (4.18)

Now we turn to the Hölder estimate. It follows by interpolation between points b and c, that for a
certain constant C independent from λ, and for γ̃ = n+γ

2 and δ = γ /(γ + 1) one has

∣∣V[g] − f
∣∣γ̃
δ
� C

[∥∥ f λ
0

∥∥
C1(Tn×Rn)

+ ∥∥(
1 + |v|)γ f λ

0

∥∥
C0(Tn×Rn)

]
.

We deduce that, for λ � 1 and another constant C (depending on f0 but not on λ),

∥∥∥∥
∫ (

V[g] − f
)

dv

∥∥∥∥
Cδ(ΩT )

� Cλ1−n.

Now we interpolate again this inequality with (4.18). We get that for δ1, one has

∥∥∥∥
∫ (

V[g] − f
)

dv

∥∥∥∥
Cδ1 (ΩT )

� K ′λ,

which concludes the point a, for it is sufficient to find a proper λ. This finally proves V(Sλ
ε ) ⊂ Sλ

ε . �
4.4. A fixed point is relevant

Now we can prove that the characteristics associated to the fixed point are relevant:

Lemma 4.6. There exists ε1 > 0 such that for any 0 < ε < ε1 , all the characteristics (X, V ) meet γ 2− for some
time in [ T

24 , 23T
24 ].

Proof. We recall that by the scaling F λ = λ2 F (λt, x, v
λ
), so that ‖F λ‖L∞

t,x,v
� λ2‖F‖L∞

t,x,v
. As for

Lemma 3.4, the proof follows, recalling Gronwall’s estimate (4.16), and the fact that the character-
istics associated to the reference solution f meet γ 3− × [ T

6 , 5T
6 ]. (We recall that μ was defined when

we have constructed the reference solution f .) �
Finally, we can conclude the proof of the theorem.

Proof of Theorem 1.2. Using Lemma 4.3, we deduce the existence of some fixed point g for λ suffi-
ciently small. Using Lemma 4.6, and (3.34), (4.9) and (4.10), we see that it satisfies Supp[g(T , ·,·)] ⊂
ω × R

2. Now, we define f (t, x, v) = g( t
λ
, x, λv), which satisfies the conclusions of Theorem 1.2. The

fact that (1.1) is satisfied for some G supported in ω is done as in Section 3. �
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5. External magnetic field case

In this section, we prove Theorem 1.3, that is the local controllability result for the external mag-
netic field case.

5.1. Rephrasing the geometric assumption

We begin by transforming the geometric assumption (1.13) in a way that is easier to handle in the
sequel. For a compact subset K of T2 and r > 0 we denote

Kr := {
x ∈ T

2/d(x, K ) � r
}
. (5.1)

The geometric assumption can be reinterpreted with the help of the following lemma.

Lemma 5.1. Let K ⊂ T
2 such that b > 0 on K and satisfying (1.13). Then there exist b > 0, d > 0 and D > 0

such that

b � b on K2d, (5.2)

∀x ∈ T
2, ∀e ∈ S

1, ∃t ∈ [0, D], ∀s ∈
[

t, t + d

2

]
, x + se ∈ Kd. (5.3)

Proof. An easy argument relying on the compactness of K shows that for d > 0 suitably small, one
has (5.2).

To prove (5.3), we use the compactness of T
2 × S

1. For any (x, e) ∈ T
2 × S

1, there exists t ∈ R
+

such that x + te ∈ K . One deduces that for (x′, e′) in an open neighborhood of (x, e) in T
2 × S

1, one
has x′ + te′ ∈ Kd/2.

Hence by compactness of T2 ×S
1, there exists a maximal time D such that for any (x, e) ∈ T

2 ×S
1,

there exists t ∈ [0, D] for which x + te ∈ Kd/2. Now if x + te ∈ Kd/2 and x + t′e /∈ Kd , then one has
|t − t′|� d/2, since dist(Kd/2,T

2 \ Kd)� d/2. The conclusion (5.3) follows. �
5.2. Design of the reference solution

The first step consists in building the reference solution, once again distinguishing between high
and low velocities. We first treat the case of large velocities. We prove that with the geometric as-
sumption on b, high velocity particles spontaneously reach the arbitrary open set. One can observe
that this is very different to the case of bounded force fields. Actually we can prove a stronger result
than announced, since we can add to the Lorentz force any additional bounded force field. Such a
generalization will be actually crucial for the proof of Lemma 5.3.

Proposition 5.1. Let T > 0 and r0 > 0. Let b satisfying the geometric condition (1.13). There exists m ∈ R
+∗

large enough depending only on b, T and ω such that for all F ∈ L∞(0, T ; W 1,∞(T2 × R
2)) satisfying

‖F‖L∞ � 1, the characteristics (X, V ) associated to b(x)v⊥ + F satisfy:

∀x ∈ T
2, ∀v ∈R

2 such that |v|� m, ∃t ∈ (T /4,3T /4), X(t,0, x, v) ∈ B(x0, r0/2) and

for all s ∈ [0, T ], |v|
2

�
∣∣V (s,0, x, v)

∣∣ � 2|v|. (5.4)

Proof. We prove Proposition 5.1 in several cases of increasing complexity. In a first time (cases 1–3),
we suppose that F= 0. In case 4, we explain how to take F into account.
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In all cases, we define

b := max
x∈T2

b(x). (5.5)

1. An enlightening case: constant magnetic field modulus. Let us first suppose b constant; for readabil-
ity we assume here that b(x) := 1.

As noticed in [8, Appendix A, pp. 373–374], there are only a finite number of direction in S
1

(identifying S
1 with [0,2π [, we denote them α1, . . . ,αN ∈ [0,2π [) for which there exists a half-line

in T
2 which does not intersect B(x0, r0/8). Indeed if the slope is irrational, then each corresponding

half-line is dense in the torus, and consequently meets B(x0, r0/8). If the slope is rational, say p/q
with p ∈ Z, q ∈ N \ {0} and gcd(p,q) = 1, then these half-lines L are closed periodic lines in T

2. Due
to Bézout’s theorem, the distance between two consecutive lines in s−1(L) is less than min( 1

|p| ,
1
q ),

and the conclusion follows.
We introduce the neighborhoods of αi :

Vi = (αi − βi/2,αi + βi/2),

as follows. Let βi > 0 and τ � T small enough such that

βi <
τ

4
and

τ

4
< min

i = j
d(Vi,V j).

By a compactness argument, there exists a length L > 0 such that for any x ∈ T
2, ∀ai ∈ S

1\⋃N
i=1 Vi ,

any particle starting from x with a direction ai has to travel at most a distance L to meet B(x0, r0/8).
We fix m large enough such that:

Tm := L

m
< τ/4.

This is the time “free” particles with velocity m take to cover the distance L. We observe that for any
|v| � m, we have T |v| := L

|v| � Tm .

Now let x ∈ T
2, v ∈R

2 with |v| � m. Let us discuss according to the direction of v .

• First case: v
|v| ∈ S

1\⋃N
i=1 Vi .

We denote (X#, V #) the characteristics associated to free transport.
We have, for any t < T |v| ,

∣∣X#(t + T /4, T /4, x, v) − X(t + T /4, T /4, x, v)
∣∣ � |v| T 2|v|

2
= L2

2|v| �
L2

2m
.

We can impose m large enough such that L2

2m < r0/8. As a result:

∃t ∈ (T /4, T /2], X(t,0, x, v) ∈ B(x0, r0/4),

and (5.4) is trivial here since |V (t,0, x, v)| is conserved.
• Second case: v

|v| ∈ ⋃N
i=1 Vi , say V j .

The idea is to simply wait for a time τ/4. Let us consider

(
x′, v ′) := (

X
(
(T + τ )/4, T /4, x, v

)
, V

(
(T + τ )/4, T /4, x, v

))
.
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We observe that because of the “rotation” induced by the magnetic field and due to the choice
of βi ,

v ′

|v ′| ∈ S
1\

N⋃
i=1

Vi,

and thus we are in the same case as before.

Consequently we have proven that:

∃t ∈ (T /4,3T /4], X(t,0, x, v) ∈ B(x0, r0/4).

2. Positive magnetic field modulus. Here we suppose that b > 0 on T
2.

We are in the case where in Lemma 5.1, we can take K = Kd = T
2 and

b = inf
x∈T2

b.

Keeping the same notations as before, we set τ ∈ (0, T ] and βi > 0 in order that

βi < b
τ

4
< min

i = j
d(Vi,V j).

The proof is very similar to the previous one. Indeed, the following estimate still holds:

∣∣X#(t, T /4, x, v) − X(t, T /4, x, v)
∣∣ � L2

2m
b. (5.6)

Let x̃ ∈ T
2, ṽ ∈ R

2. We distinguish as before between two possibilities. Using the previous inequal-
ity (5.6), the first case holds identically for m large. For the second case we just have to check that
with this magnetic field, the velocity is rotated by an angle at least equal to βi after some time
t ∈ (0, τ

4 ).
We use the following computation for general (x, v). Denote by θ(t) the angle (modulo 2π ) be-

tween v⊥ and V (t,0, x, v). We compute the scalar product of V (t,0, x, v) and dV (t,0,x,v)
dt , using the

identity:

dV (t,0, x, v)

dt
= b

(
X(t,0, x, v)

)
V (t,0, x, v)⊥.

We straightforwardly obtain that |V (t,0, x, v)| = |v|. Then, taking the scalar product of v⊥ and
dV (t,0,x,v)

dt , we likewise obtain:

sin θ(t)θ ′(t) = b
(

X(t,0, x, v)
)

sin θ(t),

so that

θ ′(t) = b
(

X(t,0, x, v)
)

(5.7)

(even if sin θ(t) = 0 in which case one considers the scalar product with v). We deduce that θ ′(t) � b.
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Thus going back to (x̃, ṽ), by the intermediate value theorem and the definition of the neighbor-
hoods Vi , there is a time T0 less or equal to τ/4 for which we have:

V

(
T0 + T

4
,

T

4
, x̃, ṽ

)
∈ S

1\
N⋃

i=1

Vi,

and we conclude as previously.
3. Magnetic field modulus satisfying the geometric condition. Let us consider the general case for b,

but without the additional force F.
Given K satisfying the geometric condition (1.13), we introduce d and D as in Lemma 5.1. Let

U := T
2 \ Kd,

where we recall the notation (5.1). We assume here that τ ∈ (0, T ] and βi are such that

βi <
b

2
inf

(
τ

4
,

τd

32D

)
< min

i = j
d(Vi,V j).

We denote by (X#, V #) the characteristics associated to free transport, while (X, V ) corresponds to
those associated to the magnetic field.

Let x ∈ T
2, v ∈ R

2. We once again distinguish between the two possibilities. As before the first
case is still similar since (5.6) is still valid. We have to give a new argument for the second case.

We will assume that m is large enough so that Tm < τ
8 . We distinguish between several sub-cases:

(a) Assume that X(t,0, x, v) ∈ Kd for some t in a time interval of length at least equal to T
4 inside

[ T
4 , 3T

4 ]. Then one can apply the positive magnetic modulus case (case 2).
(b) Assume more generally that L1({t ∈ [ T

4 , 3T
4 ], X(t,0, x, v) ∈ Kd}) � T /4. On U , one has b � 0, so

the angle of V (t,0, x, v) with v is non-decreasing over time. It follows that we can apply (5.7) to
each passage of the particle in Kd and we conclude as before.

(c) We assume now that the previous cases do not hold. Then X(t,0, x, v) remains in T
2\Kd at least

during a time T
4 in ( T

4 , 3T
4 ).

By (5.3), each passage in T
2\Kd of X#(t,0, x, v) lasts at most D/|v|. Actually, in U , the char-

acteristics X are not straight lines since they are modified by the magnetic field. Let us prove
nevertheless that if |v| is large enough, then the particle can remain at most during a time D/|v|
in U .
Let x ∈ U , and v

|v| ∈ S1, let σ ∈ ( T
4 , 3T

4 ). By Lemma 5.1, there exists s < D
|v| such that X#(σ + s,

σ , x, v) ∈ K . Now we can evaluate as for a previous computation:

∣∣X#(σ + s,σ , x, v) − X(σ + s,σ , x, v)
∣∣ � b

D2

2|v| .

We can choose m large enough such that for any |v| � m, X(σ + s, σ , x, v) ∈ Kd . Hence at each
passage of X(t,0, x, v) in T

2\Kd lasts at most during a time D/|v|, which proves the claim.
This involves that there are at least � T |v|

4D � − 1 passages in U , and therefore there are also at least

� T |v|
4D � − 2 passages in Kd . This is larger than T |v|

8D for |v| large enough.
Now we denote by t′ a time for which X(t′,0, x, v) ∈ Kd , with X(t,0, x, v) /∈ Kd for t < t′ and t
close to t′ . Let us show that X(t′ + s,0, x, v) remains in Kd for s � 1

4
d
|v| , if the velocity is large
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enough. We have for all s ∈ [0, 1
4

d
|v| ],

∣∣X#(
t′ + s, t′, x, v

) − X
(
t′ + s, t′, x, v

)∣∣ � b|v| (
1
4

d
|v| )

2

2
.

On the other hand, by (5.3), each passage of X# in Kd/2 lasts at least d
4|v| . Hence we can choose

m large enough such that for any |v| � m, X(t′ + s, t′, x, v) ∈ Kd for s ∈ [0, 1
4

d
|v| ].

Consequently, X(t,0, x, v) remains in Kd during a time T d
32D inside ( T

4 , 3T
4 ), and we conclude as

before.

4. With a non-trivial additional force F. Let us finally explain how one can take F into account.
First, we consider the equations for |V | and θ , where θ is the angle between v and V (t,0, x, v). The
following computations are valid for v large so that |V (t,0, x, v)| does not vanish and for a time
interval where θ ∈ [−π/2,π/2].

• For what concerns |V |, it suffices to take the scalar product with V (t,0, x, v) of the equation
of V . We infer

d

dt

∣∣V (t,0, x, v)
∣∣2 = 2F · V (t,0, x, v),

so that

d

dt

∣∣V (t,0, x, v)
∣∣ = F · V (t,0, x, v)

|V (t,0, x, v)| . (5.8)

In particular, for m large enough, one has for all (x, v) ∈ T
2 ×R

2 with |v| � m,

|v|
2

�
∣∣V (t,0, x, v)

∣∣ � 2|v|. (5.9)

• For what concerns θ , taking the scalar product of the equation of V with v we deduce

(
d

dt

∣∣V (t,0, x, v)
∣∣)|v| cos θ(t) − ∣∣V (t,0, x, v)

∣∣|v|θ ′(t) sin θ(t)

= b
(

X(t,0, x, v)
)

V ⊥(t,0, x, v) · v + F · v.

Hence

∣∣V (t,0, x, v)
∣∣|v|θ ′(t) sin θ(t) = b

(
X(t,0, x, v)

)∣∣V (t,0, x, v)
∣∣|v| sin

(
θ(t)

)
− F ·

(
v − V (t,0, x, v)|v|

|V (t,0, x, v)| cos θ(t)

)
.

We notice that

v − V (t,0, x, v)|v|
|V (t,0, x, v)| cos θ(t) = v − V (t,0, x, v) · v

|V (t,0, x, v)|2 V (t,0, x, v) = p{V (t,0,x,v)}⊥(v),
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where p{V (t,0,x,v)}⊥ (v) denotes the orthogonal projection of v on {V (t,0, x, v)}⊥ . So

θ ′(t) = b
(

X(t,0, x, v)
) + 1

|V (t,0, x, v)|F · p{V (t,0,x,v)}⊥(v)

|v| sin θ(t)
. (5.10)

Note that

∣∣p{V (t,0,x,v)}⊥(v)
∣∣ = |v|∣∣sin

(
θ(t)

)∣∣,
so that:

1

|V (t,0, x, v)|
∣∣∣∣F · p{V (t,0,x,v)}⊥(v)

|v| sin θ(t)

∣∣∣∣ �− 1

|V (t,0, x, v)| ‖F‖∞.

Now let us revisit the three sub-cases of case 3 to include F.

(a) Assume that X(t,0, x, v) ∈ Kd for all t in a time interval of length at least equal to bT
4 . Then using

(5.9) and (5.10) we deduce

θ ′(t) � b − 2
‖F‖∞

m
, (5.11)

so one can conclude as in the positive magnetic modulus case.
(b) Assume more generally that L1({t ∈ [ T

4 , 3T
4 ], X(t,0, x, v) ∈ Kd}) � T /4. On U , one has b � 0, so

the angle of V (t,0, x, v) with v satisfies

θ ′(t) � − 2

m
‖F‖∞, (5.12)

and (5.11) when X(t,0, x, v) ∈ Kd . In total the variation of θ is no less than bT
4 − T

2m ‖F‖∞ , so one
can conclude as previously (taking m large enough).

(c) We assume now that the previous cases do not hold. Then X(t,0, x, v) remains in T
2\Kd at least

during a time T
4 inside ( T

4 , 3T
4 ). Let us compare the characteristics (X, V ) associated to F+b(x)v⊥

with the characteristics (X, V ) associated to the magnetic field b(x)v⊥ alone.
Let x ∈ U , and v

|v| ∈ S1, and let σ ∈ ( T
4 , 3T

4 ). Using the analysis of case 3, there exists t′ < D
|v| such

that X(σ + t′, σ , x, v) ∈ Kd . Now comparing (X, V ) and (X, V ) and using Gronwall’s inequality
we deduce{ ∣∣V

(
σ + t′,σ , x, v

) − V
(
σ + t′,σ , x, v

)∣∣ � ‖F‖∞ exp
(‖b‖W 1,∞

(
1 + 2|v|)t′),∣∣X

(
σ + t′,σ , x, v

) − X
(
σ + t′,σ , x, v

)∣∣ � t′‖F‖∞ exp
(‖b‖W 1,∞

(
1 + 2|v|)t′). (5.13)

Using that |v|t′ is of order 1 and taking m large enough, we see that for any |v| � m, X(σ + t′,
σ , x, v) ∈ K3d/2. Hence each passage of X(t,0, x, v) in T

2\K3d/2 lasts at most D/|v|. We deduce

as previously that there are at least � T |v|
4D � − 2 passages of X(t,0, x, v) in K3d/2 during ( T

4 , 3T
4 ).

Now reasoning as in case 3, using Gronwall’s estimate (5.13), we see that if X(σ ,0, x, v) ∈ K3d/2,
and m is large enough, then X(σ + t′,0, x, v) remains in K2d for all times t′ < T d

64D , and we
conclude as before. �

Now let us turn to the case of low velocities. This time we proceed as in the case of bounded force
fields and prove that an analogue of Proposition 3.2 holds:
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Proposition 5.2. Let τ > 0 and M > 0. There exist M̃ > 0, E ∈ C∞([0, τ ] × T
2;R2) and ϕ ∈ C∞([0, τ ] ×

T
2;R) satisfying

E = −∇ϕ in [0, τ ] × (
T

2\B(x0, r0)
)
, (5.14)

Supp(E) ⊂ (0, τ ) ×T
2, (5.15)

�ϕ = 0 in [0, τ ] × (
T

2\B(x0, r0)
)
, (5.16)

such that, for any F ∈ L∞(0, T ; W 1,∞(T2 ×R
2)) satisfying ‖F‖L∞ � 1, if (X, V ) are the characteristics cor-

responding the force F+ E + b(x)v⊥ ,

∀(x, v) ∈ T
2 × B(0, M), V (τ ,0, x, v) ∈ B(0, M̃) \ B(0, M + 1). (5.17)

Proof. Again, we introduce θ and E as in the proof of Proposition 3.2. Let us denote by (X, V ) the
characteristics corresponding to the force E alone. Again, one can choose C and then τ ′ such that:

∀(x, v) ∈ T
2 × B(0, M), V (τ ,0, x, v) ∈R

2 \ B
(
0, M + 2 + τ‖F‖∞

)
.

We first observe that we have:

d

dt
|V |2 = (

F(s, X, V ) + E(s, X)
) · V .

Thus, using Cauchy–Schwarz and Gronwall’s estimates, we obtain:

|V |2 � max
(
1, |v|2et(‖F‖∞+‖E‖∞)

)
.

We evaluate:

∣∣X(t,0, x, v) − X(t,0, x, v)
∣∣ �

t∫
0

∣∣V (s,0, x, v) − V (s,0, x, v)
∣∣ds,

∣∣V (t,0, x, v) − V (t,0, x, v)
∣∣ �

t∫
0

[∣∣E(
s, X(s,0, x, v)

) − E
(
s, X(s,0, x, v)

)∣∣
+ ∣∣F(t, X, V )

∣∣ + b
∣∣V (s,0, x, v)⊥

∣∣]ds

�
t∫

0

‖∇E‖∞(t − s)
∣∣V (s,0, x, v) − V (s,0, x, v)

∣∣ds

+ max

(
T ,

2M

‖E‖∞ + ‖F‖∞
(
e

t
2 (‖E‖∞+‖F‖∞) − 1

))
.

By Gronwall’s inequality:

∣∣V (t,0, x, v) − V (t,0, x, v)
∣∣ � max

(
T /2,

2M

‖E‖∞ + ‖F‖∞
(
e

t
2 (‖E‖∞+‖F‖∞) − 1

))
e

t2
2 ‖∇2ϕ‖∞ .

(5.18)
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For t = τ ′ , we have:

‖∇E‖∞ = C

τ ′ , ‖E‖∞ = C ′

τ ′ ,

where C and C ′ depend only on ω, M , and the conclusion follows as previously since

∣∣∣∣V (τ ,0, x, v)
∣∣ − ∣∣V

(
τ ′,0, x, v

)∣∣∣∣� ∣∣τ − τ ′∣∣‖F‖∞. �
The reference solution. Let us now describe the reference solution. Consider x0 in ω and r0 > 0
such that B(x0,2r0) ⊂ ω. We define the reference potential ϕ : [0, T ] × T

2 → R as follows. We apply
Proposition 5.1 with τ = T /3, we obtain some m > 0 such that (5.4) is satisfied. Then we apply
Proposition 5.2 with τ = T /3 and

M = max

(
m + T

3
,100,

800r0

T
,32r0(b + 1)

)
, (5.19)

and obtain some ϕ2, E2 and some M̃ > 0 such that (5.17) is satisfied. We set

ϕ(t, ·) =
{

0 for t ∈ [
0, T

3

] ∪ [ 2T
3 , T

]
,

ϕ2
(
t − T

3 , ·) for t ∈ [ T
3 , 2T

3

]
,

and

E(t, ·) =
{

0 for t ∈ [
0, T

3

] ∪ [ 2T
3 , T

]
,

E2
(
t − T

3 , ·) for t ∈ [ T
3 , 2T

3

]
.

Then once defined ϕ , we define f : [0, T ] ×T
2 ×R

2 as previously by (3.22)–(3.23).

5.3. Proof of Theorem 1.3

We consider Sε the same convex set as in the proof of Theorem 1.1, and V the same fixed point
operator with F = b(x)v⊥ . As before, the proof consists in proving first the existence of a fixed point,
and in a second time in proving that such a fixed point is relevant.

For what concerns the existence of a fixed point we have:

Lemma 5.2. There exists ε0 > 0 such that for any 0 < ε < ε0 , there exists a fixed point of V in Sε .

Proof. The proof of Lemma 5.2 is exactly the same as the one of Lemma 3.1 and is therefore omitted.
Note in particular that a variant of the crucial Lemma 3.2 is still valid here, using (5.8). �

In the second part of the proof we show that a fixed point is relevant. In this part lies the main
difference with the end of the proof of Theorem 1.1. This is given by the following lemma.

Lemma 5.3. There exists ε1 > 0 such that for any 0 < ε < ε1 , all the characteristics (X, V ) associated to
b(x)v⊥ + E − ∇ϕ + ∇ϕ f , where f is a fixed point of V in Sε , meet γ 3− for some time in [ T

12 , 11T
12 ].
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Proof. We begin by noticing that ∇ϕ f − ∇ϕ satisfies

∥∥∇ϕ f − ∇ϕ
∥∥∞ � 1, (5.20)

provided that ε is small enough, which we suppose from now on. Consequently we can apply Propo-
sitions 5.1 and 5.2 to F := ∇ϕ f − ∇ϕ .

It follows that any (x, v) ∈ T
2 ×R

2 is (at least) in one of the following situations:

• If |V ( T
3 ,0, x, v)| � M , then using (5.20), we deduce |v| � m. Hence there exists τ ∈ [ T

12 , 3T
12 ] such

that

X(τ ,0, x, v) ∈ B(x0, r0/2), (5.21)

and reasoning as for (5.9) we deduce that for all s ∈ [0, T
3 ] one has

∣∣V (s,0, x, v)
∣∣ � M

2
, (5.22)

where M was defined in (5.19).
• Or |V ( T

3 ,0, x, v)| < M , so |V ( 2T
3 ,0, x, v)| � M + 1, and there exists τ ∈ [ 9T

12 , 11T
12 ] such that (5.21)

is true and (5.22) is valid for all s ∈ [ 2T
3 , T ].

Let us consider (x, v) in the first situation, the reasoning being identical for the second situation. As
in the proof of Lemma 3.4, we deduce the existence of some s > 0 with s <

4r0|v| �
T

100 such that

X(τ ,0, x, v) − sV (τ ,0, x, v) ∈ S

(
x0,

3r0

2

)
with V (τ ,0, x, v).ν �−

√
3

2

∣∣V (τ ,0, x, v)
∣∣.
(5.23)

Let us show that this involves for |v| large enough the existence of τ∗ ∈ [τ , t] such that

x∗ := X(τ ,0, x, v) − (τ∗ − τ )V (τ ,0, x, v) ∈ S(x0, r0).

We have for σ ∈ [τ − s, τ ]:

M

2
�

∣∣V (σ ,0, x, v)
∣∣ � 2|v|, (5.24)

∣∣∣∣ V (σ ,0, x, v)

|V (σ ,0, x, v)| − V (τ ,0, x, v)

|V (τ ,0, x, v)|
∣∣∣∣ � s

[
b + 2‖∇ϕ f ‖∞

M

]
, (5.25)

∣∣X(σ ,0, x, v) − X(τ ,0, x, v) + (τ − σ)V (τ ,0, x, v)
∣∣ � s2

2

(
2|v| + ∥∥∇ϕ f

∥∥∞
)
. (5.26)

Estimate (5.25) comes from the identity

d

dσ

(
V (σ ,0, x, v)

|V (σ ,0, x, v)|
)

=
dV
dσ (σ ,0, x, v)

|V (σ ,0, x, v)| + ∇ϕ f (σ , x, v) · V (σ ,0, x, v)

|V (σ ,0, x, v)|3 V (σ ,0, x, v).
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Let us check that this involves the existence of t ∈ [τ , τ − s] such that (X(t,0, x, v), V (t,0, x, v)) ∈
γ 3− . The existence of t ∈ [τ , τ − s] such that X(t,0, x, v) ∈ S(x0, r0) follows from (5.26) and

s2

2

(
2|v| + ∥∥∇ϕ f

∥∥∞
)
� 8r0

|v|2
(
2|v| + 1

)
� 8r0

2M + 1

M2
� 24r0

M
� r0

4
.

At such a t , from (5.24), we have |V (t,0, x, v)| � 2 since M � 4.
The fact that at such a moment t , one has V (t,0, x, v).ν(X(t,0, x, v)) � − 1

5 |V (t,0, x, v, )| comes
from ∣∣∣∣ V (t,0, x, v)

|V (t,0, x, v)| · ν(
X(t,0, x, v)

) − V (τ ,0, x, v)

|V (τ ,0, x, v)| · ν(x∗)
∣∣∣∣

�
∣∣∣∣ V (t,0, x, v)

|V (t,0, x, v)| − V (τ ,0, x, v)

|V (τ ,0, x, v)|
∣∣∣∣ + ∣∣ν(

X(t,0, x, v)
) − ν(x∗)

∣∣
�

(
b + 2

M

)
4r0

|v| + 1

r0

∣∣X(t,0, x, v) − x∗
∣∣

� (b + 1)
4r0

M
+ 24

M
� 1

4
,

and from (5.23). This concludes the proof of Lemma 5.3. �
Let us finally gather all the pieces to prove Theorem 1.3.

Proof of Theorem 1.3. Using Lemma 5.2, we deduce the existence of some fixed point f of V
in Sε . Using Lemma 5.3 we can again use the definitions (3.33), (3.34) and (3.36) to deduce that
Supp[ f (T , ·,·)] ⊂ ω ×R

2 and one checks that f satisfies the equation for some G as previously. This
concludes the proof of Theorem 1.3. �
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