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Abstract

This paper is concerned with the analysis of a mathematical model arising in
plasma physics, more specifically in fusion research. It directly follows [18], where
the three-dimensional analysis of a Vlasov-Poisson equation with finite Larmor radius
scaling was led, corresponding to the case of ions with massless electrons whose density
follows a linearized Maxwell-Boltzmann law. We now consider the case of electrons
in a background of fixed ions, which was only sketched in [18]. Unfortunately, there
is evidence that the formal limit is false in general. Nevertheless, we formally derive
from the Vlasov-Poisson equation a fluid system for particular monokinetic data. We
prove the local in time existence of analytic solutions and rigorously study the limit
(when the inverse of the intensity of the magnetic field and the Debye length vanish)
to a new anisotropic fluid system. This is achieved thanks to Cauchy-Kovalevskaya
type techniques, as introduced by Caflisch [7] and Grenier [14]. We finally show that
this approach fails in Sobolev regularity, due to multi-fluid instabilities.

Keywords: Gyrokinetic limit - Finite Larmor Radius Approximation - Anisotropic
quasineutral limit - Anisotropic hydrodynamic systems - Analytic regularity - Cauchy-
Kovalevskaya theorem - Ill-posedness in Sobolev spaces.

1 Introduction

1.1 Presentation of the problem

The main goal of this paper is to derive some fluid model in order to understand the
behaviour of a quasineutral gas of electrons in a neutralizing background of fixed ions
and submitted to a strong external magnetic field. For simplicity, we consider that the
magnetic field has fixed direction and intensity. The density of the electrons is governed
by the classical Vlasov-Poisson equation. We first introduce some notations:

Notations. Let (e1, e2, e‖) be a fixed orthonormal basis of R3.

• The subscript ⊥ stands for the orthogonal projection on the plane (e1, e2), while the
subscript ‖ stands for the projection on e‖ .

• For any vector X = (X1, X2, X‖), we define X⊥ as the vector (X2,−X1, 0) = X ∧e‖.

• We define the differential operators ∆x‖ = ∂2
x‖

and ∆x⊥ = ∂2
x1

+ ∂2
x2
.
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Then the magnetic field we consider can be taken as:

B = Be‖,

where B > 0 is a constant. In order to describe the turbulent behaviour of the plasma
(we refer to the appendix for physical explanations), we study the following scaled Vlasov-
Poisson system (for t > 0, x ∈ T3 := R3/Z3, v ∈ R3 and ε is a small positive constant):

∂tfε + v⊥
ε .∇xfε + v‖.∇xfε + (Eε +

v∧e‖
ε ).∇vfε = 0

Eε = (−∇x⊥Vε,−ε∇x‖Vε)
−ε2∆x‖Vε −∆x⊥Vε =

∫
fεdv −

∫
fεdvdx

fε,t=0 = fε,0 ≥ 0,
∫
fε,0dvdx = 1.

(1.1)

The non-negative quantity fε(t, x, v) is interpreted as the distribution function of the elec-
trons: this means that fε(t, x, v)dxdv is the probability of finding particles at time t with
position x and velocity v; Vε(t, x) and Eε(t, x) are respectively the electric potential and
force. Finally, v∧e‖ε corresponds to the Lorentz force and is due to the magnetic field B.

This corresponds to the so-called finite Larmor radius scaling for the Vlasov-Poisson
equation, which was introduced by Frénod and Sonnendrücker in the mathematical litera-
ture [10]. The 2D version of the system (obtained when one restricts to the perpendicular
dynamics) and the limit ε→ 0 were studied in [10] and more recently in [3, 11, 9]. We also
refer to the recent work [20] of Hauray and Nouri, dealing with the wellposedness theory
with a diffusive version of a related 2D system.

A version of the full 3D system describing ions with massless electrons was studied by
the author in [18]. In this former work, we considered that the density of electrons follows
a linearized Maxwell-Boltzmann law. This means that we studied the following Poisson
equation for the electric potential:

Vε − ε2∆x‖Vε −∆x⊥Vε =

∫
fεdv −

∫
fεdvdx. (1.2)

In this case it was shown after some filtering that the number density fε weakly converges
as ε→ 0 to some solution f to another kinetic system exhibiting the so-called E×B drift in
the orthogonal plane, but with trivial dynamics in the parallel direction. This last feature
seemed somehow disappointing.

We observed in [18] that in the case where the Poisson equation reads (which precisely
corresponds to the case of (1.1)):

−ε2∆x‖Vε −∆x⊥Vε =

∫
fεdv −

∫
fεdvdx, (1.3)

we could expect to make a pressure appear in the limit process ε → 0, due to some
incompressibility constraint. Indeed, passing formally to the limit ε → 0 (and assuming
that fε converges to f and Vε converges to V in some sense), we obtain:

−∆x⊥V =

∫
fdv −

∫
fdvdx,

and integrating this equation with respect to x⊥, we finally get the incompressibility con-
straint: ∫

fdvdx⊥ =

∫
fdvdx.
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Unfortunately, we were not able to rigorously derive a kinetic limit or even a fluid
limit from (1.1). This is not only due to technical mathematical difficulties. This is
related to the existence of instabilities for the Vlasov-Poisson equation, such as the double-
humped instabilities (see Guo and Strauss [16]) and their counterpart in the multi-fluid
Euler equations, such as the two-stream instabilities (see Cordier, Grenier and Guo [8]).
Such instabilities actually take over in the limit ε → 0 and the formal limit is false in
general, unless fε,0 does not depend on parallel variables, which corresponds to the 2D
problem studied by Frénod and Sonnendrücker [10].

Actually, we can observe that if on the contrary the initial data fε,0 depends only on
parallel variables, we obtain the one-dimensional quasineutral system (the first equation is
simply the one-dimensional Vlasov equation, note that there is no more magnetic field):

∂tfε + v‖∂x‖fε − ∂x‖Vε∂v‖fε = 0

−ε∂2
x‖
Vε =

∫
fεdv −

∫
fεdvdx‖

fε,t=0 = fε,0 ≥ 0,
∫
fε,0dvdx‖ = 1.

(1.4)

The formal limit is easily obtained, by taking ε = 0:
∂tf + v‖∂x‖f − ∂x‖V ∂v‖f = 0∫
fdv =

∫
fdvdx‖

ft=0 = f0 ≥ 0,
∫
f0dvdx‖ = 1.

(1.5)

In [15], an explicit example of Grenier shows that the formal limit is false in general,
because of the double-humped instability:

Theorem 1.1 (Grenier, [15]). We define an initial data f0 by:

f0(x, v) = 1 for − 1 ≤ v ≤ −1/2 and 1/2 ≤ v ≤ 1

= 0 elsewhere.

For any N and s in N, and for any ε < 1, there exist for i = 1, 2, 3, 4, vεi (x) ∈ Hs(T) with
‖vε1(x) + 1‖Hs ≤ εN , ‖vε2(x) + 1/2‖Hs ≤ εN , ‖vε3(x) − 1/2‖Hs ≤ εN , ‖vε4(x) − 1‖Hs ≤ εN ,
such that the solution fε(t, x, v) associated to the initial data defined by:

fε,0(x, v) = 1 for vε1(x) ≤ v ≤ vε2(x) and vε3(x) ≤ v ≤ vε4(x)

= 0 elsewhere,

does not converge to f0 in the following sense:

lim inf
ε→0

sup
t≤T

∫
|fε(t, x, v)− f0(v)|v2dvdx > 0 (1.6)

for any T > 0 and also for T = εα, with α < 1/2.

In order to overcome the effects of these instabilities for the usual quasineutral limit,
there are two possibilities:

• One consists in restricting to particular initial profiles chosen in order to be stable
(this would imply in particular some monotony conditions on the data, such as the
Penrose condition [25]).

• The other one consists in considering data with analytic regularity, in which case the
instabilities (which turn out to be essentially of “Sobolev” nature) do not have any
effect.
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Here the situation is worst: by opposition to the usual quasineutral limit (see [6], [15]),
restricting to stable profiles is not sufficient. This is due to the anisotropy of the problem
and the dynamics in the perpendicular variables.

In this paper, we illustrate this phenomenon by studying the following fluid system,
formally derived from the kinetic system (1.1) by considering some physically relevant
monokinetic data (we refer to the appendix for the detailed formal derivation).

∂tρε +∇⊥.(E⊥ε ρε) + ∂‖(v‖,ερε) = 0

∂tv‖,ε +∇⊥.(E⊥ε v‖,ε) + v‖,ε∂‖(v‖,ε) = −ε∂‖φε(t, x)− ∂‖Vε(t, x‖)
E⊥ε = −∇⊥φε
−ε2∂2

‖φε −∆⊥φε = ρε −
∫
ρεdx⊥

−ε∂2
‖Vε =

∫
ρεdx⊥ − 1,

(1.7)

where:

• ρε(t, x⊥, x‖) : R+ × T3 → R+
∗ can be interpreted as a charge density,

• v‖,ε(t, x⊥, x‖) : R+ × T3 → R can be interpreted as a “parallel” current density.

• φε(t, x‖) and Vε(t, x) are electric potentials.

Although we have considerered monokinetic data, (1.7) is intrinsically a “multi-fluid”
system, because of the dependence on x⊥. Hence, we still have to face the two-stream
instabilities ([8]): because of these, the limit is false in Sobolev regularity and we thus
decide to study the associated Cauchy problem for analytic data.

We then prove the limit to a new fluid system which is strictly speaking compressible
but also somehow “incompressible in average”. This rather unusual feature is due to the
anisotropy of the model. The fluid system is the following (obtained formally by taking
ε = 0): 

∂tρ+∇⊥.(E⊥ρ) + ∂‖(v‖ρ) = 0

∂tv‖ +∇⊥.(E⊥v‖) + v‖∂‖(v‖) = −∂‖p(t, x‖)
E⊥ = ∇⊥∆−1

⊥
(
ρ−

∫
ρdx⊥

)∫
ρdx⊥ = 1.

(1.8)

We observe that this system can be interpreted as an infinite system of Euler-type
equations, coupled together through the “parameter” x⊥ by the constraint:∫

ρdx⊥ = 1.

It has some interesting features:

• This system is anisotropic in x⊥ and x‖ and it somehow combines two features of the
incompressible Euler equations. The 2D part of the dynamics of the equation for ρ
is nothing but the vorticity formulation of 2D incompressible Euler. Nevertheless,
physically speaking, ρ should be interpreted here as a density rather than a vorticity.
The dynamics in the parallel direction is similar to the dynamics of incompressible
Euler written in velocity. We finally observe that the pressure p only depends on the
parallel variable x‖ and not on x⊥.

• This does not strictly speaking describe an incompressible fluid, since (E⊥, v‖) is
not divergence free. Somehow, the fluid is hence compressible. But the constraint∫
ρdx⊥ = 1 can be interpreted as a constraint of “incompressibility in average” which
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allows one to recover the pressure law from the other unknowns. Indeed, we easily
get, by integrating with respect to x⊥ the equation satisfied by ρ:

∂x‖

∫
ρv‖dx⊥ = 0. (1.9)

So by plugging this constraint in the equation satisfied by ρv‖, that is:

∂t(ρv‖) +∇⊥.(E⊥ρ‖v‖) + ∂‖(ρv
2
‖) = −∂‖p(t, x‖)ρ,

we get the (one-dimensional) elliptic equation allowing to recover −∂x‖p:

−∂2
‖p(t, x‖) = ∂2

‖

∫
ρv2
‖dx⊥,

from which we get:

−∂‖p(t, x‖) = ∂‖

∫
ρv2
‖dx⊥. (1.10)

• From the point of view of plasma physics, E⊥.∇⊥ corresponds to the so-called electric
drift. By analogy with the so-called drift-kinetic equations [28], we can call this
system a drift-fluid equation. To the best of our knowledge, this is the very first time
such a model is exhibited in the literature.

From now on, when there is no risk of confusion, we will sometimes write v and vε
instead of v‖ and v‖,ε.

1.2 Organization of the paper

The outline of this paper is as follows. In Section 2, we will state the main results of this
paper that are: the existence of analytic solutions to (1.7) locally in time but uniformly in
ε (Theorem 2.1), the strong convergence to (1.8) with a complete description of the plasma
oscillations (Theorem 2.2) and the existence and uniqueness of local analytic solutions to
(1.8), in Proposition 2.1.

Section 3 is devoted to the proof of Theorem 2.1. First we recall some elementary
features of the analytic spaces we consider (section 3.1), then we implement an approxima-
tion scheme for our Cauchy-Kovalesvkaya type existence theorem. The results are based
on a decomposition of the electric field allowing for a good understanding of the so-called
plasma waves (section 3.2).

In section 4, we prove Theorem 2.2, by using the uniform in ε estimates we have obtained
in the previous theorem. The proof relies on another decomposition of the electric field, in
order to exhibit the effects of the plasma waves as ε goes to 0.

Then, in section 5, we discuss the sharpness of our results:

• In sections 5.1 and 5.2, we discuss the analyticity assumption and explain why we
can not lower down the regularity to Sobolev. In section 5.3, we explain why it is not
possible to obtain global in time results. We obtain these results by considering some
well-chosen initial data and using results of Brenier on multi-fluid Euler systems [5].

• Because of the two-stream instabilities, studying the limit with the relative entropy
method is bound to fail. Nevertheless we found it interesting to try to apply the
method and see at which point things get nasty: this is the object of section 5.4,
where we study a kinetic toy model which retains the main unstable feature of system
(1.7).

The two last sections are respectively a short conclusion and an appendix where we
explain the scaling and the formal derivation of system (1.7).
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2 Statement of the results

In order to prove both the existence of strong solutions to systems (1.7) and (1.8) and
also prove the results of convergence, we follow the construction of Grenier [14], with some
modifications adapted to our problem.

In [14], Grenier studies the quasineutral limit of the family of coupled Euler-Poisson
systems: 

∂tρ
ε
Θ + div(ρεΘv

ε
Θ) = 0

∂tv
ε
Θ + vεΘ.∇(vεΘ) = Eε

rotEε = 0
εdivEε =

∫
M ρεΘµ(dΘ)− 1,

(2.1)

with (M,Θ, µ) a probability space.
Following the proof of the Cauchy-Kovalevskaya theorem given by Caflisch [7], Grenier

proved the local existence of analytic functions (with respect to x) uniformly with respect
to ε and then, after filtering the fast oscillations due to the force field, showed the strong
convergence to the system: 

∂tρΘ + div(ρΘvΘ) = 0
∂tvΘ + vεΘ.∇(vΘ) = E
rotE = 0∫
ρΘµ(dΘ) = 1.

(2.2)

We notice that the class of systems studied by Grenier is close to system (1.7), if we
take x = x‖, Θ = x⊥ and (M,µ) = (T2, dx⊥), the main difference being that we have to
deal with a dynamics in Θ = x⊥.

Hence, we introduce the same spaces of analytic functions as in [14], but this time
depending also on Θ = x⊥.

Definition. Let δ > 1. We define Bδ the space of real functions φ on T3 such that

|φ|δ =
∑
k∈Z3

|Fφ(k)|δ|k| < +∞, (2.3)

where Fφ(k) is the k-th Fourier coefficient of φ defined by:

Fφ(k) =

∫
T3

φ(x)e−i2πk.xdx.

The first theorem proves the existence of local analytic solutions of (1.7) with a life
span uniform in ε.

Theorem 2.1. Let δ0 > 1. Let ρε(0) and vε(0) be two bounded families of Bδ0 such that∫
ρε(0)dx = 1 and: ∣∣∣∣∫ ρε(0)dx⊥ − 1

∣∣∣∣
δ0

≤ C
√
ε, (2.4)

where C > 0 is some given universal constant. Then there exists η > 0 such that for every
δ1 ∈]1, δ0[, for any ε > 0, there exists a unique strong solution (ρε, vε) to (1.7) bounded
uniformly in C([0, η(δ0 − δ1)[, Bδ1) with initial conditions (ρε(0), vε(0)). Moreover,

√
ε∂‖Vε

is uniformly bounded in C([0, η(δ0 − δ1)[, Bδ1).

Remark 2.1. • The condition (2.4) implies that
√
ε∂‖Vε(0) is bounded uniformly in

Bδ0 (this is the correct scale in view of the energy conservation).

6



• Note that for all t ≥ 0,
∫
ρεdx = 1. Hence the Poisson equation −ε∂2

‖Vε =
∫
ρεdx⊥−1

can always be solved.

• As explained in the introduction, due to the two-streams instabilities, we have to
restrict to data with analytic regularity: the Sobolev version of these results is false
in general (see [8] and the discussion of Section 5).

We can then prove the convergence result:

Theorem 2.2. Let (ρε, vε) be solutions to the system (1.7) for 0 ≤ t ≤ T satisfying for
some s > 7/2 the following uniform estimates:

(H) : sup
t≤T,ε

(
‖ρε‖Hs

x⊥,x‖
+ ‖vε‖Hs

x⊥,x‖
+ ‖
√
ε∂x‖Vε‖Hs

x‖

)
< +∞. (2.5)

Then, up to a subsequence, we get the following convergences

ρε → ρ,

vε −
1

i
(E+e

it/
√
ε − E−e−it/

√
ε)→ v,

strongly respectively in C([0, T ], Hs′
x⊥,x‖

) and C([0, T ], Hs′−1
x⊥,x‖

) for all s′ < s, and

−
√
ε∂x‖Vε − (E+e

it/
√
ε + E−e

−it/
√
ε)→ 0,

strongly in C([0, T ], Hs′
x‖

) for all s′ < s − 1, and where (ρ, v) is solution to the asymptotic
system (1.8) on [0, T ] with initial conditions:

ρ(0) = lim
ε→0

ρε(0),

v(0) = lim
ε→0

(
vε(0)−

∫
ρεvεdx⊥(0)

)
and E+(t, x‖), E−(t, x‖) are gradient correctors which satisfy the transport equations:

∂tE± +

(∫
ρvdx⊥

)
∂x‖E± = 0,

with initial data:

E+(0) = lim
ε→0

1

2

(
−
√
ε∂x‖Vε(0) + i

∫
ρεvεdx⊥(0)

)
, (2.6)

E−(0) = lim
ε→0

1

2

(
−
√
ε∂x‖Vε(0)− i

∫
ρεvεdx⊥(0)

)
. (2.7)

Remark 2.2. • It is clear that solutions built in Theorem 2.1 satisfy (H).

• If instead of (H) we make the stronger assumption, for δ > 1

(H ′) : sup
t≤T,ε

(
‖ρε‖Bδ + ‖vε‖Bδ + ‖

√
ε∂x‖Vε‖Bδ

)
< +∞, (2.8)

(which is still satisfied by the solutions built in Theorem 2.1), then we get the same
strong convergences in C([0, T ], Bδ′) for all δ′ < δ.

Using Lemma 3.1 (ii), (iv), the proof under assumption (H ′) is the same as under
assumption (H).
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• The “well-prepared” case corresponds to the case when:

lim
ε→0
−
√
ε∂x‖Vε(0) = 0,

lim
ε→0

∫
ρεvεdx⊥(0) = 0.

Then there is no corrector.

With the same method used for Theorem 2.1, we can also prove a theorem of existence
and uniqueness of analytic solutions to system (1.8).

Proposition 2.1. Let δ0 > 1. For initial data ρ(0), v(0) ∈ Bδ0 satisfying

ρ(0) ≥ 0, (2.9)∫
ρ(0)dx⊥ = 1 (2.10)

and
∂‖

∫
ρ(0)v(0)dx⊥ = 0, (2.11)

there exists η > 0 depending on δ0 and on the initial conditions only such that there is a
unique strong solution (ρ, v‖, p) to the system (1.8) with ρ, v ∈ C([0, η(δ0− δ1)[, Bδ1) for all
1 < δ1 < δ0.

Remark 2.3. The uniqueness proved in Proposition 2.1 allows to say that the convergences
of Theorem 2.2 hold without having to consider subsequences, provided that the whole se-
quences of initial data converge to some functions in Bδ0 satisfying the assumptions of
Proposition 2.1.

3 Proof of Theorem 2.1

3.1 Functional analysis on Bδ spaces

First we define the time dependent analytic spaces we will work with.
Let β be an arbitrary constant in ]0, 1[ (take for instance β = 1/2 to fix ideas) and

η > 0 a parameter to be chosen later.

Definition. Let δ0 > 1. We define the space Bη
δ0

= {u ∈ C0([0, η(δ0 − 1)], Bδ0−t/η)},
endowed with the norm

‖u‖δ0 = sup 1 < δ ≤ δ0

0 ≤ t ≤ η(δ0 − δ)

(
|u(t)|δ +

(
δ0 − δ −

t

η

)β
|∇u(t)|δ)

)
,

where the norm |u|δ was defined in (2.3):

|u|δ =
∑
k∈Z3

|Fu(k)|δ|k|,

We now gather from [14] a few elementary properties of these spaces, that we recall for
the reader’s convenience.
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Lemma 3.1. For all δ > 1:

(i) The spaces Bδ and Bη
δ are Banach algebra. More precisely, if φ1, φ2 ∈ Bδ, and

ψ1, ψ2 ∈ Bη
δ then:

|φ1φ2|δ ≤ |φ1|δ|φ2|δ,

‖ψ1ψ2‖δ ≤ ‖ψ1‖δ‖ψ2‖δ.

(ii) If δ′ < δ then Bδ ⊂ Bδ′ , the embedding being continuous and compact.

(iii) For all s ∈ R, Bδ ⊂ Hs, the embedding being continuous and compact.

(iv) For all 1 < δ′ < δ, if φ ∈ Bδ,

|∇φ|δ′ ≤
δ

δ − δ′
|φ|δ.

(v) If u is in Bη
δ0

and if δ′ + t/η < δ0 then

|∂2
xi,xju(t)|δ′ ≤ 2‖u‖δ0δ0

(
δ0 − δ′ −

t

η

)−β−1

.

For further properties of these spaces we refer to the recent work of Mouhot and Villani
[24], in which similar analytic spaces (and more sophisticated versions) are considered. The
fact that considering analytic functions is useful both for the quasineutral limit (as studied
here) and for the study of Landau damping (as done in [24]) is not a pure coincidence.
Indeed, it turns out that because of scaling properties, these two questions are related (we
refer for instance to the introduction of [19]).

Proof of Lemma 3.1. For the reader’s convenience, we briefly sketch the proof (more details
can be found in [14]). Point (i) can be readily checked from the Fourier series caracteriza-
tion. We give an elementary proof for (ii) which is not given in [14] . The embedding is
obvious. We consider for N ∈ N the map iN defined by:

iN (φ) =
∑
|k|≤N

Fφ(k)ei2πx.k.

We then compute:

|(Id− iN )φ|δ′ =
∑
|k|>N

|Fφ(k)|δ′|k| ≤
(
δ′

δ

)N ∑
|k|>N

|Fφ(k)|δ|k| ≤
(
δ′

δ

)N
|φ|δ.

So the embedding Bδ ⊂ Bδ′ is compact as the limit of finite rank operators. Point (iii)
can be proved similarly. Point (iv) relies on the elementary estimate:

|k|δ′|k| ≤ δ

δ − δ′
δ|k|.

For (v), consider δ = δ′ + δ0−δ′−t/η
2 and apply (iv).

We will also need the following elementary observation:

Remark 3.1. Let φ ∈ Bδ. Then: ∣∣∣∣∫ φdx⊥

∣∣∣∣
δ

≤ |φ|δ.
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Proof. We simply compute:∣∣∣∣∫ φdx⊥

∣∣∣∣
δ

=
∑

k=(0,k)∈N2×N

|F(φ)(k)|δ|k| ≤
∑
k∈N3

|F(φ)|δ|k| = |φ|δ.

3.2 Description of plasma oscillations

To simplify notations, we set Eε,‖ = −∂x‖Vε(t, x‖) (which has nothing to do with E⊥ε ). In
this paragraph, we want to understand the oscillatory behaviour of Eε,‖. We will see that
the dynamics in x⊥ does not interfer too much with the equations on Eε,‖, so that we get
almost the same description of oscillations as in Grenier’s paper [14].

First we differentiate twice with respect to time the Poisson equation satisfied by Vε:

ε∂2
t ∂x‖Eε,‖ = ∂2

t

∫
ρεdx⊥. (3.1)

Integrating with respect to x⊥ the equation satisfied by ρε, we obtain:

∂t

∫
ρεdx⊥ = −

∫
∇⊥.(E⊥ε ρε)dx⊥︸ ︷︷ ︸

=0

−∂x‖
∫
ρεvεdx⊥. (3.2)

Then we integrate with respect to x⊥ the equation satisfied by ρεvε, that is:

∂t(ρεvε) +∇⊥.(E⊥ε ρεvε) + ∂x‖(v
2
ε ρε) = −ρε(ε∂x‖φε(t, x) + ∂x‖Vε(t, x‖))

and we get:

−∂t
∫
ρεvεdx⊥ = ∂x‖

∫
ρεv

2
εdx⊥ − Eε,‖

∫
ρεdx⊥ +

∫
ρε(ε∂x‖φε)dx⊥, (3.3)

so that, combining (3.2) and (3.3):

∂2
t

∫
ρεdx⊥ = ∂2

x‖

∫
ρεv

2
εdx⊥ − ∂x‖(Eε,‖

∫
ρεdx⊥) + ∂x‖

∫
ρε(ε∂x‖φε)dx⊥. (3.4)

Recall that by the Poisson equation:∫
ρεdx⊥ = 1 + ∂x‖Eε,‖.

Thus it comes by (3.1) and (3.4):

ε∂2
t ∂x‖Eε,‖ + ∂x‖Eε,‖ = ∂2

x‖

∫
ρεv

2
εdx⊥ − ε∂x‖ [Eε,‖∂x‖Eε,‖] + ∂x‖

∫
ρε(ε∂x‖φε)dx⊥. (3.5)

Equation (3.5) is the wave equation allowing to describe the essential oscillations. At
least formally, this equation indicates that there are time oscillations with frequency 1√

ε

and magnitude 1√
ε
created by the right-hand side of the equation which acts like a source.

We observe here that the source is expected to be of order O(1): indeed, by assumption
on the data at t = 0, we can check that this quantity is bounded in a Bδ space.

In particular if we want to prove strong convergence results we will have to introduce
non-trivial correctors in order to get rid of these oscillations. We notice also that (3.5) is
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very similar to the wave equation obtained in [14] (the only difference is a new term in the
source), so that most of the calculations and estimates on Eε,‖ we will need are done in
[14].

We have just observed that Eε,‖ roughly behaves like 1√
ε
e±it/

√
ε. Hence if we consider

the average in time:

Gε =

∫ t

0
Eε,‖(s, x‖)ds, (3.6)

we expect that Gε is bounded uniformly with respect to ε in some functional space. We
have the representation lemma which will be very useful to obtain a priori estimates:

Lemma 3.2. The following identity holds:

F‖Gε(t, k‖) =

∫ t

0

(
1

ik‖

[
1− cos

(
t− s√
ε

)]
F‖gε(s, k‖)

)
ds+ F‖G0

ε , (3.7)

denoting by F‖ the Fourier transform with respect to the parallel variable only and k‖ the
Fourier variable and where:

gε = ∂2
x‖

∫
ρεv

2
εdx⊥ − ε∂x‖ [Eε,‖∂x‖Eε,‖] + ∂x‖

∫
ρε(ε∂x‖φε)dx⊥, (3.8)

G0
ε =
√
εEε,‖(0, x‖) sin

(
s√
ε

)
− ε∂tEε,‖(0, x‖)

(
cos

(
s√
ε

)
− 1

)
. (3.9)

Proof of Lemma 3.2. We use Duhamel’s formula for the “wave” equation (3.5) to get the
following identity:

F‖Eε(t, k‖) =
1√
ε

∫ t

0

(
1

ik‖
sin

(
t− s√
ε

)
F‖gε(s, k‖)

)
ds+ F‖E0

ε , (3.10)

with gε defined in (3.8) and

E0
ε,‖ = Eε,‖(0, x) cos(

s√
ε
) +
√
ε∂tEε,‖(0, x) sin(

s√
ε
). (3.11)

Then we can integrate this formula to recover (3.7).

We now introduce the translated current (which corresponds to some filtering of the
time oscillations created by the electric field):

wε = vε −Gε, (3.12)

so that the transport equations of system (1.7) now read:{
∂tρε +∇⊥.(E⊥ε ρε) + ∂‖((wε +Gε)ρε) = 0

∂twε +∇⊥.(E⊥ε (wε +Gε)) + (wε +Gε)∂‖(wε +Gε)) = −ε∂‖φε(t, x‖).
(3.13)

3.3 Approximation scheme

To construct a solution, we use the usual approximation scheme for Cauchy-Kovalevskaya
type of results ([7]). The principle is to define ρnε , wnε , Gnε , V n

ε , φ
n
ε by recursion:

Initialization First of all, for 0 < t < η(δ0 − 1), G0
ε (t) is given by formula (3.9); then

for 0 < t < η(δ0 − 1), we can define:
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ρ0
ε (t) = ρε(0),

w0
ε (t) = vε(0)−G0

ε (t),

−ε2∂2
x‖
φ0
ε −∆x⊥φ

0
ε = ρ0

ε −
∫
ρ0
εdx⊥,

E⊥,0ε = −∇⊥φ0
ε ,

and −∂x‖V 0
ε (t) = ∂tG

0
ε (t).

Recursion For 0 < t < η(δ0 − 1), we define ρn+1
ε , wn+1

ε by the transport equations:{
∂tρ

n+1
ε +∇⊥.(E⊥,nε .ρnε ) + ∂‖((w

n
ε +Gnε )ρnε ) = 0

∂tw
n+1
ε +∇⊥.(E⊥,nε (wnε +Gnε )) + (wnε +Gnε )∂‖(w

n
ε +Gnε )) = −ε∂‖φnε (t, x‖),

(3.14)

with the initial conditions: ρn+1
ε (0) = ρε(0) and wn+1

ε = vε(0)−G0
ε .

Then we can define φn+1
ε as the solution to the Poisson equation:

−ε2∂2
x‖
φn+1
ε −∆x⊥φ

n+1
ε = ρn+1

ε −
∫
ρn+1
ε dx⊥.

E⊥,n+1
ε = −∇⊥φn+1

ε ,

Furthermore, we can define Gn+1
ε (t) by a variant of formula (3.7):

F‖Gn+1
ε (t, k‖) =

∫ t

0

(
1

ik‖

[
1− cos(

t− s√
ε

)

]
F‖gnε (s, k‖)

)
ds+ F‖G0

ε , (3.15)

with gnε = ∂2
x‖

∫
ρnε (wnε +Gnε )2dx⊥ − ε∂x‖ [Enε,‖∂x‖E

n
ε,‖] + ∂x‖

∫
ρnε (ε∂x‖φ

n
ε )dx⊥.

Finally we define:
−ε∂x‖V

n+1
ε = ∂tG

n+1(t).

3.4 A priori estimates

Let n ≥ 0. The goal is now to prove some a priori estimates for Gn+1
ε , ρn+1

ε and wn+1
ε (in

terms of Gnε , ρnε and wnε ). We are also able to get similar estimates on E⊥,n+1
ε and ε∂x‖φ

n+1
ε ,

thanks to the Poisson equation satisfied by φn+1
ε . Ultimately the goal is to prove that if

the parameter η is chosen small enough, then all these sequences are Cauchy sequences in
Bη
δ0
.

3.4.1 Estimate on Gn+1
ε and

√
εEn+1

ε,‖

The first aim in this paragraph is to estimate ‖Gn+1
ε ‖δ0 , using (3.15). We have:

|Gn+1
ε |δ ≤

∣∣∣∣∫ t

0
F−1
‖

(
1

ik‖
[1− cos(

t− s√
ε

)]F‖gnε (s, k‖)

)
ds

∣∣∣∣
δ

+ |G0
ε |δ

≤ 2

∫ t

0

∣∣∣∣F−1
‖

(
1

ik‖
F‖gnε (s, k‖)

)∣∣∣∣
δ

ds+ |G0
ε |δ,
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with:

1

ik‖
F‖gnε = F‖

(
∂x‖

∫
ρε(w

n
ε +Gnε )2dx⊥

)
− εF‖

(
Enε,‖∂x‖E

n
ε,‖

)
+F‖

(∫
ρnε (ε∂x‖φ

n
ε )dx⊥

)
.

Thanks to Remark 3.1 and Lemma 3.1 , (i), we first estimate:

∣∣∣∣∫ ∂x‖(ρ
n
ε (wnε +Gnε )2)dx⊥

∣∣∣∣
δ

≤
∣∣∣∂x‖(ρnε (wnε +Gnε )2)

∣∣∣
δ
≤(δ0 − δ −

s

η
)−β‖ρnε (wnε +Gnε )2‖δ0

≤(δ0 − δ −
s

η
)−β‖ρnε ‖δ0‖wnε +Gnε ‖2δ0 .

(3.16)

Similarly, we prove:

ε
∣∣∣Enε,‖∂x‖Enε,‖∣∣∣

δ
≤ 1

2

∣∣∣∂x‖(√εEnε,‖)2
∣∣∣
δ

≤ 1

2
(δ0 − δ −

s

η
)−β

∥∥∥(
√
εEnε,‖)

2
∥∥∥
δ0

≤ 1

2
(δ0 − δ −

s

η
)−β‖

√
εEnε,‖‖

2
δ0 ,

(3.17)

∣∣∣∣∫ ∂x‖

(
ρnε (ε∂x‖φ

n
ε )
)
dx⊥

∣∣∣∣
δ

≤ (δ0 − δ −
s

η
)−β‖ρnε ‖δ0‖ε∂x‖φ

n
ε ‖δ0 .

Thus, we finally obtain:

|Gn+1
ε |δ ≤ 2

∫ t

0
(δ0 − δ −

s

η
)(−β)(‖ρε‖δ0‖wnε +Gnε ‖2δ0 + ‖

√
εEnε,‖‖

2
δ0 + ‖ρnε ‖δ0‖ε∂x‖φ

n
ε ‖δ0)ds+ |G0

ε |δ.

In what follows, C(δ0, β) is a constant depending only on δ0 and β that may change
from one line to another. As before, one can show (this time we use lemma 3.1, (v)) that:

|∂x‖Gn+1
ε |δ ≤ C(δ0, β)

∫ t
0 (δ0 − δ − s

η )(−β−1)
(
‖ρnε ‖δ0‖wnε +Gnε ‖2δ0 + ‖

√
εEnε,‖‖

2
δ0

+‖ρnε ‖δ0‖ε∂x‖φnε ‖δ0
)
ds+ |∂x‖G0

ε |δ.

Hence using the elementary estimates∫ t

0

ds

(δ0 − δ − s
η )β
≤ η 2

1− β
δ1−β

0 ,

∫ t

0

ds

(δ0 − δ − s
η )β+1

≤ 2η

β
(δ0 − δ −

t

η
)−β,

we get:

‖Gn+1
ε ‖δ0 ≤ ηC(δ0, β)

(
(‖wnε ‖δ0 + ‖Gnε ‖δ0)2‖ρnε ‖δ0 + ‖

√
εEnε,‖‖

2
δ0 + ‖ρnε ‖δ0‖ε∂x‖φ

n
ε ‖δ0

)
+‖G0

ε‖δ0 .
(3.18)

Finally, we compare two solutions (wn+1
ε , ρn+1

ε , Gn+1
ε ) and (wn+2

ε , ρn+2
ε , Gn+2

ε ) (observe that
these have the same initial data).

|Gn+2
ε −Gn+1

ε |δ ≤
∫ t

0

∣∣∣∣F−1
‖

(
1

ik‖
[1− cos(

t− s√
ε

)]
[
F‖gn+1

ε (s, k‖)−F‖gnε (s, k‖)
])∣∣∣∣

δ

ds,

(3.19)
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We decompose the products appearing in gn+1
ε − gnε in the following way:

ρn+1
ε (wn+1

ε )2 − ρnε (wnε )2 = (ρn+1
ε − ρnε )(wn+1

ε )2 + (wn+1
ε − wnε )(wn+1

ε + wnε )ρnε ,

and we proceed likewise for the other terms. Then we obtain the following estimate with
the same method as before:

‖Gn+1
ε −Gn+2

ε ‖δ0 ≤ ηC(δ0, β)
(

(‖wn+1
ε − wnε ‖δ0 + ‖Gn+1

ε −Gnε ‖δ0)

×(‖wn+1
ε ‖δ0 + ‖wnε ‖δ0 + ‖Gn+1

ε ‖δ0 + ‖Gnε ‖δ0)(‖ρn+1
ε ‖δ0 + ‖ρnε ‖δ0)

+ ‖ρn+1
ε − ρnε ‖δ0(‖wn+1

ε ‖2δ0 + ‖wnε ‖2δ0 + ‖Gn+1
ε ‖2δ0 + ‖Gnε ‖2δ0)

+ ‖ρn+1
ε − ρnε ‖δ0(‖ε∂x‖φ

n+1
ε ‖δ0 + ‖ε∂x‖φ

n
ε ‖δ0)

+ ‖ε∂x‖φ
n+1
ε − ε∂x‖φ

n
ε ‖δ0(‖ρn+1

ε ‖δ0 + ‖ρnε ‖δ0)

+ ‖
√
εEn+1

ε,‖ −
√
εEnε,‖‖δ0(‖

√
εEn+1

ε,‖ ‖δ0 + ‖
√
εEnε,‖‖δ0)

)
. (3.20)

Likewise we get the same kind of estimates for ‖
√
εEn+1

ε,‖ ‖δ0 since from (3.10) we have
the formula:

F‖(
√
εEn+1

ε,‖ )(t, k‖) =

∫ t

0

(
1

ik‖
[sin(

t− s√
ε

)]F‖gnε (s, k‖)

)
ds+ F‖(

√
εE0

ε,‖), (3.21)

3.4.2 Estimate on E⊥,n+1
ε and ε∂x‖φ

n+1
ε

We now use the scaled Poisson equation satisfied by φn+1
ε to get some similar a priori

estimates. For the reader’s convenience, we first recall this equation:

−ε2∂2
x‖
φn+1
ε −∆⊥φ

n+1
ε = ρn+1

ε −
∫
ρn+1
ε dx⊥.

The principle here is to look at the symbols of the operators involved in the Poisson
equation. Accordingly, we compute in Fourier variables:

ε2k2
‖Fφ

n+1
ε + |k⊥|2Fφn+1

ε = F
(
ρn+1
ε −

∫
ρn+1
ε dx⊥

)
. (3.22)

Thus it comes:

Fφn+1
ε =

F(ρn+1
ε −

∫
ρn+1
ε dx⊥)

ε2k2
‖ + |k⊥|2

.

Since
∫

(ρn+1
ε −

∫
ρn+1
ε dx⊥)dx⊥ = 0, we have for all k‖ ∈ Z:

F
(
ρn+1
ε −

∫
ρn+1
ε dx⊥

)
(0, k‖) = 0.

Thus we get, for all k⊥, k‖ ∈ Z:

|Fφn+1
ε | ≤

|F(ρn+1
ε −

∫
ρn+1
ε dx⊥)|

|k⊥|2
.

In particular we easily get, using the relation E⊥,n+1
ε = −∇⊥φn+1

ε :
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|FE⊥,n+1
ε | ≤

|F(ρn+1
ε −

∫
ρn+1
ε dx⊥)|

|k⊥|
≤
∣∣∣∣F (ρn+1

ε −
∫
ρn+1
ε dx⊥

)∣∣∣∣ .
Hence:

‖E⊥,n+1
ε ‖δ0 ≤ 2‖ρn+1

ε ‖δ0 . (3.23)

Likewise, using the elementary inequality ab ≤ 1
2(a2 + b2) and |k⊥| ≥ 1:

|F(ε∂x‖φ
n+1
ε )| ≤

ε|k‖||F(ρε −
∫
ρεdx⊥)|

ε2k2
‖ + |k⊥|2

≤ 1

2
|F(ρn+1

ε −
∫
ρn+1
ε dx⊥)|,

and consequently:
‖ε∂x‖φ

n+1
ε ‖δ0 ≤ ‖ρn+1

ε ‖δ0 . (3.24)

Finally, if we compare two solutions at step n+ 1 and n+ 2:

‖E⊥,n+2
ε − E⊥,n+1

ε ‖δ0 + ‖ε∂x‖φ
n+2
ε − ε∂x‖φ

n+1
ε ‖δ0 ≤ 2‖ρn+2

ε − ρn+1
ε ‖δ0 . (3.25)

3.4.3 Estimate on ρn+1
ε and wn+1

ε

We now use the conservation laws satisfied by ρn+1
ε and wn+1

ε to get the appropriate
estimates. We first recall that the density ρn+1

ε satisfies the equation:

∂tρ
n+1
ε +∇⊥.(E⊥,nε ρnε ) + ∂‖((w

n
ε +Gnε )ρnε ) = 0.

Writing ρn+1
ε =

∫ t
0 ∂tρ

n+1
ε ds+ ρε(0), we get:

|ρn+1
ε |δ ≤

∫ t

0
|∂tρn+1

ε |δds+ |ρε(0)|δ

With the same kind of computations as before and using estimate (3.23) we get:

|∇⊥.(E⊥,nε ρnε )|δ ≤ (δ0 − δ −
s

η
)−β‖E⊥,nε ‖δ0‖ρnε ‖δ0 ≤ 2(δ0 − δ −

s

η
)−β‖ρnε ‖2δ0 ,

|∂‖((wnε +Gnε )ρε)|δ ≤ (δ0 − δ −
s

η
)−β‖wnε +Gnε )‖δ0‖ρnε ‖δ0 .

As a consequence we obtain:

|ρn+1
ε |δ ≤ |ρε(0)|δ + C(δ0, β)

∫ t

0
(δ0 − δ −

s

η
)−β‖ρnε ‖δ0(‖ρnε ‖δ0 + ‖wnε ‖δ0 + ‖Gnε ‖δ0)ds.

Similarly we estimate |∂xiρn+1
ε |δ by differentiating with respect to xi the equation sat-

isfied by ρn+1
ε . Finally we get:

‖ρn+1
ε ‖δ0 ≤ ηC(δ0, β)‖ρnε ‖δ0(‖ρnε ‖δ0 + ‖wnε ‖δ0 + ‖Gnε ‖δ0) + ‖∇ρε(0)‖δ0 . (3.26)

If we compare solutions at steps n+ 1 and n+ 2, we get likewise:

‖ρn+2
ε − ρn+1

ε ‖δ0 ≤ ηC(δ0, β)
(

(‖ρn+1
ε ‖δ0 + ‖ρnε ‖δ0)(‖wn+1

ε − wnε ‖δ0 + ‖Gn+1
ε −Gnε ‖δ0)

+ (‖ρn+1
ε ‖δ0 + ‖ρnε ‖δ0 + ‖wn+1

ε ‖δ0 + ‖wnε ‖δ0 + ‖Gn+1
ε ‖δ0 + ‖Gnε ‖δ0)

× (‖ρn+1
ε − ρnε ‖δ0)

)
. (3.27)
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In the same fashion, we recall that wn+1
ε satisfies the following transport equation:

∂tw
n+1
ε +∇⊥.(E⊥,nε (wnε +Gnε )) + (wnε +Gnε )∂‖(w

n
ε +Gnε )) = −ε∂‖φnε (t, x‖),

and we can once again estimate the δ0 norm of wn+1
ε :

‖wn+1
ε ‖δ0 ≤ ηC(δ0, β)

(
(‖wnε ‖δ0 + ‖Gnε ‖δ0)‖ρnε ‖δ0 + (‖wnε ‖δ0 + ‖Gnε ‖δ0)2 + ‖ε∂‖φnε ‖δ0

)
,

(3.28)
and if we compare two solutions at steps n+ 1 and n+ 2:

‖wn+2
ε − wn+1

ε ‖δ0 ≤ ηC(δ0, β)
(

(‖ρn+1
ε ‖δ0 + ‖ρnε ‖δ0)(‖wn+1

ε − wnε ‖δ0 + ‖Gn+1
ε −Gnε ‖δ0)

+ (‖wn+1
ε ‖δ0 + ‖wnε ‖δ0 + ‖Gn+1

ε ‖δ0 + ‖Gnε ‖δ0)

×(‖wn+1
ε − wnε ‖δ0 + ‖Gn+1

ε −Gnε ‖δ0 + ‖ρn+1
ε − ρnε ‖δ0)

‖ε∂‖φn+1
ε − ε∂‖φn+1

ε ‖δ0
)
. (3.29)

3.5 Finding a fixed point

We are now in position to use our estimates to prove the existence and uniqueness of a
fixed point.

First let C1 defined by:

C1 = sup
η≤1

{
‖ρε(0)‖δ0 , ‖wε(0)‖δ0 , ‖Gε(0)‖δ0 , ‖

√
εEε(0)‖δ0 , 1

}
Let C2 = C1 + 1. It is possible to choose η small enough with respect to C1 to

propagate the following estimates by recursion (we refer to [14] for more details; more
explicitly η = 1

200C(δ0,β)C3
2 )

is for instance convenient). At Step n (n ≥ 1), the property
reads:

(i) 
‖ρnε ‖δ0 ≤ C2,
‖wnε ‖δ0 ≤ C2,
‖Gnε ‖δ0 ≤ C2,
‖
√
εEnε,‖‖δ0 ≤ C2.

(ii) 
‖ρnε − ρn−1

ε ‖δ0 ≤ C2
2n ,

‖wnε − wn−1
ε ‖δ0 ≤ C2

2n ,

‖Gnε −Gn−1
ε ‖δ0 ≤ C2

2n ,

‖
√
εEnε,‖ −

√
εEn−1

ε,‖ ‖δ0 ≤
C2
2n .

One first checks that (i) is satisfied for n = 0. In particular for the last condition,
we use (2.4). As in [14], checking that (ii) is satisfied for n = 1 in fact needs a special
treatment which is very similar to the general case, so we will not detail it.

To propagate these estimates for n ≥ 1, we use the crucial estimates (3.20),(3.27),(3.29).
Let us briefly explain the passage from Step (n+1) to Step (n+2) by examining the case of
Property (ii) for Gnε (the other cases are treated similarly). Using (3.20) and the Properties
(i) and (ii) at step n+ 1 we have:

‖Gn+1
ε −Gn+2

ε ‖δ0 ≤ ηC(δ0, β)
C2

2n+1
30C2,
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and with our choice of η, we notice that ηC(δ0, β) C2
2n+1 30C2

2 ≤ C2
2n+2 , which proves the

property (ii) for Gε at step (n+ 2).
This proves that the sequences ρnε , wnε , Gnε ,

√
εEε, E

⊥,n
ε , ε∂x‖φ

n
ε are Cauchy sequences

(with respect to n) in Bη
δ0
, and consequently converge strongly in Bη

δ0
, the estimates being

uniform in ε. It is clear that the limit satisfies System (1.7). The requirement δ1 < δ0 and
the explicit life span in Theorem 2.1 come directly from the definition of the Bη

δ0
spaces.

For the uniqueness part, one can simply notice that the estimates we have shown allow
us to prove that the application F defined by:

F(ρε, wε) =

( ∫ t
0 (−∇⊥.(E⊥ε ρε)− ∂‖((wε +Gε)ρε))ds∫ t

0 (−∇⊥.(E⊥ε (wε +Gε))− (wε +Gε)∂‖(wε +Gε))− ε∂‖φε(t, x‖))ds

)
,

is a contraction on the closed subset B of Bδ0 ×Bδ0 , defined by:

B = {ρ, w ∈ Bδ0 ; ‖ρ‖δ0 ≤ C, ‖w‖δ0 ≤ C} ,

with C large enough, provided that η is chosen small enough. The uniqueness of the
analytic solution then follows.

3.6 Proof of Proposition 2.1

We can lead the same analysis as for the proof of Theorem 2.1, but even simpler since here
we do not have to deal anymore with the fast oscillations in time. The only slightly different
point is to estimate the norm of

∫ t
0 −∂‖pds =

∫ t
0 ∂‖

∫
ρv2dx⊥ds, which is straightforward:∥∥∥∥∫ t

0
∂‖pds

∥∥∥∥
δ0

≤ ηC‖ρ‖δ0‖v‖2δ0 .

Then as before, we can use a contraction argument to prove the proposition.

4 Proof of Theorem 2.2

Step 1: Another average in time for Eε,‖

We have observed previously that the wave equation (3.5) describing the time oscillations
of Eε,‖ was the same as the one appearing in Grenier’s work, except for a slight change
in the source. Therefore the following decomposition taken from [14, Proposition 3.1.1]
identically holds, since the proof only relies on the fact that the source gε (defined in (3.8))
is bounded in L∞t H

s−1
x , which is still the case here, under the assumptions of Theorem

(2.2).

Lemma 4.1. Under assumption (H), there exist E(1)
ε , E

(2)
ε and Wε such that Eε,‖ = E

(1)
ε +

E
(2)
ε and a positive constant C independent of ε such as:

(i) ‖
√
εE

(1)
ε ‖L∞(Hs−1

x‖ ) ≤ C.

(ii) ∂tWε = E
(1)
ε , ‖Wε‖L∞(Hs−1

x‖ ) ≤ C and Wε ⇀ 0 in L2.

(iii) Wε(0) = −ε∂tEε,‖(0) =
∫
ρε(0)vε(0)dx⊥.

(iv) ‖E(2)
ε ‖L∞(Hs−1

x‖ ) ≤ C.

17



(v)
∫
E

(1)
ε dx‖ =

∫
E

(2)
ε dx‖ = 0.

Roughly speaking, this lemma allows to decompose Eε,‖ into a oscillating part with
magnitude 1√

ε
that we will have to filter out and a bounded part that will give rise to the

pressure term.

Step 2: Uniform bound on E⊥ε and ∂x‖φε

Under hypothesis (H), using the Poisson equation satisfied by φε, one can check that E⊥ε
and ∂x‖φε are bounded in L∞t (Hs−1) uniformly with respect to ε (we do not need any gain
of elliptic regularity). Indeed, since:∫ (

ρε −
∫
ρεdx⊥

)
dx⊥ = 0,

we can use the trivial bound on the symbol

1

|k⊥|2 + ε2|k‖|2
≤ 1, for k⊥ 6= 0

to get

‖φε‖Hs
x⊥,x‖

≤
∥∥∥∥ρ− ∫ ρdx⊥

∥∥∥∥
Hs
x⊥,x‖

.

Hence the result holds.

Step 3: Passage to the limit

Let wε = vε−Wε. According to assumption (H) and Lemma 4.1, wε is uniformly bounded
in L∞t ([0, T ], Hs−1). On the other hand, we have :

∂twε +∇⊥.(E⊥ε wε) +wε∂x‖wε = −ε∂x‖φε +E(2)
ε −wε∂x‖Wε−Wε∂x‖wε−Wε∂x‖Wε. (4.1)

(Notice that ∇⊥.(E⊥ε Wε) = Wε∇⊥.(E⊥ε ) = 0.)
Thus, using the uniform bounds of assumption (H) and the fact the Hs−2

x is an algebra,
we can easily see that ∂twε is bounded in L∞t ([0, T ], Hs−2). Thanks to the Aubin-Lions
lemma (see for instance [26]), wε converges strongly (up to a subsequence) to some function
w in C([0, T ], Hs′−1) for all s′ < s.

According to Step 2, ε∂x‖φε ⇀ 0 in the distributional sense.
Since wε strongly converges in C([0, T ], Hs′−1), it also converges strongly in L2([0, T ], L2)

and by Lemma 4.1, (ii), Wε weakly converges to 0 in L2([0, T ], L2). Thus, the following
convergence also holds in the sense of distributions:

−wε∂x‖Wε −Wε∂x‖wε ⇀ 0,

and −Wε∂x‖Wε + E
(2)
ε weakly converges (up to a subsequence) to some function F since

this term is uniformly bounded in L∞([0, T ], Hs−2
x‖

).
Furthermore, we observe that:∫ (

−Wε∂x‖Wε + E(2)
ε

)
dx‖ =

∫ (
−1

2
∂x‖W

2
ε + E(2)

ε

)
dx‖ = 0,

using Lemma 4.1, (v). This implies that
∫
Fdx‖ = 0, and thus there exists p such that

F = −∂x‖p.
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Since E⊥ε is uniformly bounded in L∞t ([0, T ], Hs−1), it also weakly converges, up to a
subsequence, to some function E⊥.

We now use the strong limit of wε in C([0, T ], Hs′−1) in order to pass to the limit in
the sense of distributions in the convection terms. As a consequence, we obtain, passing
to the limit in the sense of distributions:

∂tw +∇⊥.(E⊥w) + w∂x‖w = −∂x‖p. (4.2)

We recall now that the equation satisfied by ρε is:

∂tρε +∇⊥.(E⊥ε ρε) + ∂‖(wερε) = −∂‖(Wερε).

Proceeding similarly, we infer that ρε converges strongly, up to a subsequence, to ρ in
C([0, T ], Hs′) for all s′ < s, that satisfies the equation:

∂tρ+∇⊥.(E⊥ρ) + ∂‖(wρ) = 0.

One can likewise take limits in the Poisson equations. We finally obtain (1.8).

Step 4: Equations for the correctors

The final step relies on the following lemma proved in Grenier’s paper [14, Proposition
3.3.4] (the main point is to notice that the application ϕ 7→ e±it/

√
εϕ is an isometry on

L∞(Hs) for any s).

Lemma 4.2. There exist two correctors E+(t, x‖) and E−(t, x‖) in C([0, T ], Hs−1) such
that, for all s′ < s:

• ‖
√
εE

(1)
ε − eit/

√
εE+ − e−it/

√
εE−‖C([0,T ],Hs′−1) → 0,

• ‖Wε − 1
i

(
eit/
√
εE+ − e−it/

√
εE−

)
‖C([0,T ],Hs′−1) → 0.

In particular we can deduce that:

e−it/
√
ε√εE(1)

ε ⇀ E+

(and similarly eit/
√
ε√εE(1)

ε ⇀ E−).
Then, the idea is to use Lemmas 4.1 and 4.2 and the wave equation (3.5) in order to

obtain the equations satisfied by E±. Let us show how one can obtain the equation for
E− (the method being similar for E+). Let us denote Fε =

√
εeit/

√
εEε,‖. One can then

observe that:
ε∂2
tEε,‖ + Eε,‖ = e−it/

√
ε
(√
ε∂2
t Fε − 2i∂tFε

)
.

Furthermore, by Lemmas 4.1 and 4.2, Fε weakly converges (in the distributional sense) to
E−. Using (3.5), we obtain an equation satisfied by Fε:

√
ε∂2
t ∂x‖Fε − 2i∂t∂x‖Fε = eit/

√
ε∂2
x‖

∫
ρε(wε +Wε)

2dx⊥

+eit/
√
ε∂x‖

∫
ρε(ε∂x‖φε)dx⊥ − e

it/
√
εε∂x‖ [Eε,‖∂x‖Eε,‖].

(4.3)
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We first show that
√
ε∂2
t ∂x‖Fε,‖ weakly converges to 0 in the distributional sense. For

this purpose let Ψ(t, x‖) a smooth test function compactly supported in R+∗×R. We have
by integration by parts:∫ √

ε∂2
t ∂x‖FεΨdtdx‖ =−

∫ √
ε∂tFε∂t∂x‖Ψdtdx‖

=

∫ √
εFε∂

2
t ∂x‖Ψdtdx‖,

and we can conclude that the contribution of this three term vanishes as ε vanishes since
Fε is uniformly bounded in C([0, T ], Hs′−1

x‖
) by Lemma 4.1. Likewise, we show that −2i∂tFε

converges in the distributional sense to −2i∂tE−.
By Step 3, we recall that ρε converges strongly (up to a subsequence) in C([0, T ], Hs′)

(with s′ < s). Let us show that ε∂x‖φε also converges strongly (up to a subsequence) in
C([0, T ], Hs′). To that purpose, we rely once again on the Poisson equation satisfied by φε,
that we recall below:

−ε2∂2
x‖
φε −∆⊥φε = ρε −

∫
ρεdx⊥.

By the same symbolic analysis as before, one can easily check, using assumption (H),
that ε∂x‖φε is uniformly bounded in L∞t (Hs

x). Deriving the Poisson equation with respect
to time, we obtain:

−ε2∂2
x‖
∂tφε −∆⊥∂tφε = ∂tρε −

∫
∂tρεdx⊥.

Using this time the uniform estimates on ∂tρε, we deduce that ε∂t∂x‖φε is uniformly
bounded in L∞t (Hs−2

x ).
Therefore, using the Aubin-Lions lemma, we have proved our claim.
We deduce that ∂x‖

∫
ρε(ε∂x‖φε)dx⊥ converge strongly (up to a subsequence) in C([0, T ], Hs′−1

x‖
),

so we can see that:
eit/
√
ε∂x‖

∫
ρε(ε∂x‖φε)dx⊥ ⇀ 0

in the sense of distributions.
In order to take the limit in the other terms, we have to be a little more precise. By

Lemmas 4.1 and 4.2, we can write:
√
εEε,‖ = eit/

√
εE+ + e−it/

√
εE− + rε,

Wε =
1

i

(
eit/
√
εE+ − e−it/

√
εE−

)
+ sε,

where rε and sε converge strongly to 0 in C([0, T ], Hs′−1
x‖

). Consequently we deduce that

eit/
√
εε∂x‖ [Eε,‖∂x‖Eε,‖] converges to 0 in the sense of distributions. Indeed, we have:

eit/
√
εε∂x‖ [Eε,‖∂x‖Eε,‖] =

1

2
eit/
√
ε∂2
x‖

(
r2
ε + e2it/

√
εE2

+ + e−2it/
√
εE2
−

+2E+E− + 2eit/
√
εE+rε + 2e−it/

√
εE−rε

)
Thus, as rε converges strongly to 0 in C([0, T ], Hs′−1

x‖
), there is no resonance effect and this

converges to 0 in the sense of distributions. Now we write:

∂2
x‖

∫
ρε(wε +Wε)

2dx⊥ = ∂2
x‖

∫
ρεw

2
εdx⊥ + ∂2

x‖

(∫
ρεdx⊥

)
W 2
ε + 2∂2

x‖

∫
ρεwεWεdx⊥.
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Since ∂2
x‖

∫
ρεw

2
εdx⊥ strongly converges in C([0, T ], Hs′−1

x‖
), the contribution of the first

term, that is eit/
√
ε∂2
x‖

∫
ρεw

2
εdx⊥, vanishes. For the second term, we first notice that∫

ρεdx⊥ is strongly convergent in C([0, T ], Hs′
x‖

). Then, we can check as before that there is

no resonance effect and the contribution of eit/
√
ε∂2
x‖

(∫
ρεdx⊥

)
W 2
ε vanishes. For the last

term, ρεwε strongly converges to ρv in C([0, T ], Hs′−1
x ); using once again the decomposition

of Wε, we obtain that the limit in the distributional sense of eit/
√
ε2∂2

x‖

∫
ρεwεWεdx⊥ is

2i
(∫
ρvdx⊥

)
∂x‖(∂x‖E−).

As a result, ∂x‖E± satisfy the transport equations:

∂t(∂x‖E±) +

(∫
ρvdx⊥

)
∂x‖(∂x‖E±) = 0.

There remains to provide some initial data for these equations. This is achieved thanks
to the strong convergences in Lemma 4.2 that hold in particular for t = 0. More precisely,
we have by Lemma 4.2:

E+,|t=0 =
1

2
lim
ε→0

[iWε,|t=0 +
√
εE(1)

ε ], E−,|t=0 =
1

2
lim
ε→0

[−iWε,|t=0 +
√
εE(1)

ε ].

By Lemma 4.1, (iii), we have:

lim
ε→0

Wε,|t=0 = lim
ε→0

∫
ρεvε dx⊥(0),

and by (iv) we have
lim
ε→0

√
εE(1)

ε = lim
ε→0
−
√
ε∂x‖Vε(0).

This yields the initial conditions (2.6) and (2.7).
The proof of the theorem is now complete.

5 Discussion on the sharpness of the results

5.1 On the analytic regularity

Let us recall that the multi-fluid system (2.2) is ill-posed in Sobolev spaces (see [4]), because
of the two-stream instabilities (remind that this is due to the coupling between the different
phases of the fluid).

For system (1.8), we expect the situation to be similar. Due to the dependence on x⊥
and the constraint

∫
ρdx⊥ = 1, system (1.8) is by nature a coupled multi-fluid system.

Nevertheless, one could maybe imagine that the dynamics in the x⊥ variable could yield
some mixing in x⊥ and x‖ (in the spirit of hypoellipticity results) and thus could perhaps
bring stability. Here we explain why this is not the case.

The idea is to consider for (1.8) shear flows like initial data. This will allow to exactly
recover the multi-fluid equations (2.2). Writing x⊥ = (x1, x2), we take:

E⊥0 = (0, ϕ(x1, x‖), 0),

and consequently since by definition:

ρ0 = divxE0 + 1,

21



we infer that ρ0 = ∇⊥ ∧ E⊥0 = −ϕ′(x1, x‖) + 1. We also assume that v0(x1, x‖) does not
depend on x2.

Then we observe that:

∇⊥.(E⊥0 ρ0) = 0,

∇⊥.(E⊥0 v0) = 0.

With such initial data, system (1.8) reduces to:
∂tρ+ ∂‖(v‖ρ) = 0

∂tv‖ + v‖∂‖(v‖) = −∂‖p(t, x‖)∫
ρdx1 = 1,

(5.1)

and we observe that there is no more dynamics in the x⊥ variable. This is nothing but
system (2.2) in dimension 1, with M = [0, 1[ and µ the Lebesgue measure.

Now, let us consider measure type of data in the x1 variable for ρ and v (this corresponds
to a “degenerate” version of the shear flows defined above). In particular if we choose:

ϕ =
1

2
δx1≤ 1

4
ρ0,1(x‖) +

1

2
δx1≤ 1

2
ρ0,2(x‖),

we get:

ρ0 =
1

2
δx1= 1

4
ρ0,1(x‖) +

1

2
δx2= 1

2
ρ0,2(x‖),

v0 =
1

2
δx1= 1

4
v0,1(x‖) +

1

2
δx1= 1

2
v0,2(x‖)

(5.2)

and we obtain the following system for α = 1, 2:
∂tρα + ∂‖(vαρα) = 0

∂tvα + vα∂‖(vα) = −∂‖p(t, x‖)
ρ1 + ρ2 = 1.

(5.3)

This particular system was given as an example by Brenier in [4] to illustrate ill-posedness
in Sobolev spaces of the multi-fluid equations. Indeed let us first denote q = ρ1v1. Using
the constraint ρ1 + ρ2 = 1, we easily obtain that

p‖ = −q2

(
1

ρ1
+

1

1− ρ1

)
.

We can then observe that the system:{
∂tρ1 + ∂‖q = 0

∂tq + ∂‖(
q2

ρ1
) = −ρ1∂‖p(t, x‖)

(5.4)

is elliptic in space-time, and consequently it is ill-posed in Sobolev spaces.
Actually this example is not completely satisfying, since it is singular in x1. Nevertheless

we can consider the convolution of this initial data with a standard mollifier, which yields
the same qualitative behaviour.
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5.2 On the analytic regularity in the perpendicular variable

We observe that if the initial datum (ρ(0), v(0)) does not depend on x‖, then the fluid
system (1.8) reduces to: 

∂tρ+∇⊥.(E⊥ρ) = 0
∂tv‖ +∇⊥.(E⊥v‖) = 0

E⊥ = ∇⊥∆−1
⊥
(
ρ−

∫
ρdx⊥

)∫
ρdx⊥ = 1.

(5.5)

Thus, ρ satisfies 2D incompressible Euler system, written in vorticity formulation. This
systems admits a unique global strong solution provided that ρ(0) ∈ Hs(T2) (with s > 1),
by a classical result of Kato [21] and even a unique global weak solution provided that
ρ(0) ∈ L∞(T2), by a classical result of Yudovic [29].

In the other hand, v‖ satisfied a transport equation with the force field E⊥. If we
only assume for instance that v0 is a positive Radon measure, then using the classical
log-Lipschitz estimate on E⊥ (we refer to [23, Chapter 8]), we get a unique global weak
solution v‖ by the method of characteristics.

One could think that it should be possible to build solutions to the final fluid system
(1.8) with similar “weak” regularity in the x⊥ variable (while keeping analyticity in the
x‖ variable). Actually this is not possible in general: this is related to the fact that E⊥

depends also on x‖ in general and this entails that we also need analytic regularity in the
x⊥ variable to get analytic regularity in the x‖ variable (see estimations such as (3.26)).

5.3 On the local in time existence

In [5], Brenier considers potential velocity fields, that are velocity fields of the form vΘ =
∇xΦΘ, for the multi-fluid system:

Θ = 1, ...,M M ∈ N∗
∂tρΘ + div(ρΘvΘ) = 0
∂tvΘ + vΘ.∇(vΘ) = −∇xp∑M

Θ=1 ρΘ = 1.

(5.6)

In this case the equation on the velocities becomes:

∂tΦΘ +
1

2
|∇xΦΘ|2 + p = 0. (5.7)

It is proved in [5] that any strong solution satisfying

inf
Θ,t,x

ρΘ(t, x) > 0

can not be global in time unless the initial energy vanishes:
M∑

Θ=1

∫
ρΘ,t=0|uΘ,t=0|2dx = 0. (5.8)

This striking result relies on a variational interpretation of these Euler equations. Using
the same particular initial data as in section 5.1, this indicates that for system (1.8) also,
there is no global strong solution, unless there is no dependence on x⊥ or x‖.

Indeed, we observe that if the initial datum (ρ(0), v(0)) does not depend on x⊥, the
fluid system (1.8) does not make sense anymore (as for incompressible Euler in dimension
1). When the initial datum (ρ(0), v(0)) does not depend on x‖, we have seen that we
recover 2D incompressible Euler and there is indeed global existence (of strong or weak
solutions).
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5.4 The relative entropy method applied to a toy model : failure of the
multi-current limit

5.4.1 The toy model

It seems very appealing to try to use the relative entropy method (which was introduced
by Brenier [4] for Vlasov type of systems) to study the limit ε → 0, as it would open the
way to the study of the limit for solutions to the initial system (1.1) with low regularity.
The only requirements would be that the initial data of (1.1) is closed in some sense (which
will be made precise later) to a Dirac mass in velocity, and that the two first moments
of the initial data are in a small neighborhood (say in L2 topology) of the smooth initial
data for the limit system (1.8). Nevertheless it is not possible to overcome the two-stream
instabilities in this framework. We intend here to show why.

The toy model we consider in this paragraph is the following:
∂tf

θ
ε + v.∇xfθε + Eε.∇vfθε = 0

Eε = −∇xVε
−ε∆xVε =

∫ ∫
fθε dvdµ− 1

fθε,t=0 = fθε,0,
∫ ∫

fθε dvdxdθ = 1.

(5.9)

with t > 0, x ∈ T3, v ∈ R3 and where θ lies in [0, 1] equipped with a probability measure
µ which is:

• either a sum of Dirac masses with total mass 1, such as:

µ =

N−1∑
i=0

1

N
δθ=i/N .

In this case, we model a plasma made of N phases (or N types of charged particles).

• or the Lebesgue measure, in which case we model a continuum of phases.

Actually, we could have considered more general probability measures but we restrict to
these cases for simplicity. This system can be seen as the kinetic counterpart of a simplified
version of (1.7), which focuses on the unstable feature of the system. Of course we could
have considered directly the fluid version, that is:

∂tρ
θ
ε +∇x.(ρθεuθε) = 0

∂tu
θ
ε + uθε .∇xuθε = Eε

Eε = −∇xVε
−ε∆xVε =

∫
ρθεdµ− 1

(5.10)

but the proofs are essentially the same and the study of system (5.9) has some interests of
its own.

One can observe that the energy associated to (5.9) is the following non-increasing
(formally conserved) functional:

Eε(t) =
1

2

∫ ∫
fθε |v|2dvdxdµ+

1

2
ε

∫
|∇xVε|2dx. (5.11)

We assume that there exists a constant K > 0 independent of ε, such as Eε(0) ≤ K. We
also assume that fθ0 ∈ L∞θ L1

x,v∩L∞θ L∞x,v, uniformly in ε. Then we can consider global weak
solutions (fθε , Vε) to (5.9), in the sense of Arsenev [1].That these solutions exist follows from
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a slight adaptation of the original proof in [1], which dealt with the usual Vlasov-Poison
equation. These solutions satisfy that uniformly in ε, fθε ∈ L∞t,θL1

x,v ∩L∞t,θL∞x,v. In addition,
for any ε and any t ≥ 0:

Eε(t) ≤ K. (5.12)

Let (ρθ, uθ) be the local strong solution, defined on [0, T ], to the system:
∂tρ

θ +∇x.(ρθuθ) = 0
∂tu

θ + uθ.∇xuθ = −∇xV∫
ρθdµ = 1.

(5.13)

with inital data (ρθ0, u
θ
0) (which we actually have to take with analytic regularity in general).

Observe here that the “incompressibility in average” constraint reads:

∇x.
∫
ρθuθdµ = 0. (5.14)

The case where uθ0 genuinely depends on θ corresponds to the setting for two-stream
instabilities [8]. In this case, as expected, we will not be able to conclude. On the contrary,
when uθ0 does not depend on θ, this precisely corresponds to the case where two-stream
instabilities are avoided, and in that particular case, the relative entropy method will yield
convergence: this is the result of Proposition 5.1.

5.4.2 The relative entropy method

Following the approach of Brenier [4] for the quasineutral limit of the Vlasov-Poisson
equation with a single phase, we consider the relative entropy (built as a modulation of
the energy Eε):

Hε(t) =
1

2

∫ ∫
fθε |v − uθ(t, x)|2dvdxdµ+

1

2
ε

∫
|∇xVε −∇xV |2dx. (5.15)

We assume that the system is well prepared in the sense that Hε(0)→ 0 when ε→ 0.
The goal is to find some stability inequality in order to show that we also have Hε(t)→ 0
for t ∈ [0, T ].

We have, since the energy is non-increasing:

d

dt
Hε(t) ≤

∫ ∫
∂tf

θ
ε

(
1

2
|uθ|2 − v.uθ

)
dvdxdµ+

∫ ∫
fθε ∂t

(
1

2
|uθ|2 − v.uθ

)
dvdxdµ

+
1

2
ε

∫
∂t|∇xV |2dx− ε

∫
∇xVε.∂t∇xV dx− ε

∫
∂t∇xVε.∇xV dx.

(5.16)

We clearly have ε
∫
∂t|∇xV |2dx = O(ε). Moreover, we get, by Cauchy-Schwarz inequal-

ity:

ε
∣∣∣ ∫ ∇xVε.∂t∇xV dx∣∣∣ ≤ √ε‖√ε∇xVε‖L∞t L2

x
‖∂t∇xV ‖L∞t L2

x
,

which is of order O(
√
ε) by the conservation of energy.
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For the last term of (5.16), we compute with successive integrations by parts:

−ε
∫
∂t∇xVε.∇xV dx = ε

∫
∂t∆xVεV dx

=−
∫
∂t

(∫
fθε dvdµ

)
V dx

=

∫
∇x.

(∫
fθε v dvdµ

)
V dx

=−
∫ (∫

fθε v dvdµ

)
.∇xV dx.

(5.17)

In this computation we have used the Poisson equation as well as the local conservation of
mass (obtained by integrating the Vlasov equation in (5.9) against v):

∂t

∫
fθε dv +∇x.

(∫
vfθε dv

)
= 0.

In the other hand we can compute:∫ ∫
∂tf

θ
ε

(
1

2
|uθ|2 − v.uθ

)
dvdxdµ+

∫ ∫
fθε ∂t

(
1

2
|uθ|2 − v.uθ

)
dvdxdµ

=−
∫ ∫

(v.∇xfθε + Eε.∇vfθε )

(
1

2
|uθ|2 − v.uθ

)
dvdxdµ+

∫ ∫
fθε (uθ − v).∂tu

θdvdxdµ

=−
∫ ∫

fθε v.((u
θ − v).∇xuθ)dvdxdµ−

∫
fθε Eε.u

θdvdxdµ+

∫ ∫
fθε (uθ − v).∂tu

θdvdxdµ

=

∫ ∫
fθε (uθ − v).((uθ − v).∇xuθ)dvdxdµ+

∫ ∫
fθε (uθ − v).(∂tu

θ + uθ.∇xuθ)dvdxdµ

−
∫
fθε Eε.u

θdvdxdµ.

(5.18)

All the trouble comes from the last term:∫
fθε Eε.u

θdvdxdµ.

When no assumption is made on uθ, it can be of order O(1/
√
ε). This wild term can be

interpreted as the appearance of the two-stream instabilities. Therefore we have to make an
additional assumption in order to avoid this instability. This is done by assuming that uθ

initially does not depend on θ (which yields that uθ does not depend on θ by uniqueness),
in which case we can write:

uθ = u

and consequently, we have

−
∫
fθε Eε.u dvdxdµ =

∫
(ε∆xVε − 1)Eε.udx. (5.19)

We first compute:

−
∫
ε

∫
∆xVε∇xVε.udx = −ε

∫
∇x : (∇xVε ⊗∇xVε)udx+ ε

∫
1

2
∇x|∇xVε|2udx

= ε

∫
D(u) : (∇xVε ⊗∇xVε)dx− ε

∫
1

2
|∇xVε|2 divx udx,
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with D(u) = 1
2

(
∂xiuj + ∂xjui

)
i,j
.

In addition, the incompressibility constraint (5.14) becomes ∇x.u = 0, and thus:∫
Eε.udx =

∫
Vε∇x.udx = 0.

Gathering all pieces together, we obtain:

Hε(t) ≤ Hε(0) +Rε(t) + C

∫ t

0
‖∇xu‖Hε(s)ds

+

∫ t

0

∫ ∫
fθε (u− v)(∂tu+ u.∇xu)dµdvdxds−

∫ t

0

∫ ∫
fθε v.∇xV dµdvdxds,

(5.20)

where C > 0 is a universal constant, Rε(t) → 0 as ε goes to 0. Furthermore, we remark
that: ∫ (∫

fθε dvdµ

)
u.∇xV dv =

∫
u.∇xV − ε

∫
∆xVεu.∇xV (5.21)

The first term is equal to 0 according to the incompressibility constraint, while the second
is of order O(

√
ε), by the energy inequality. We finally get the stability inequality:

Hε(t) ≤ Hε(0) + R̃ε(t) + C

∫ t

0
‖∇xu‖Hε(s)ds

+

∫ t

0

∫ ∫
fθε (u− v)(∂tu+ u.∇xu+∇xV )dµdvdxds,

(5.22)

where C > 0 is a universal constant, R̃ε(t) → 0 as ε goes to 0 and the last term is 0 by
definition of (u, V ).

As as result, by Gronwall’s inequality, we infer that Hε(t) → 0, uniformly locally in
time. To conclude, by a classical interpolation argument using the fact that fε|v|2 is
uniformly in L∞t L1

x,v,θ and that fε is uniformly in L∞t L1
t,x,v, we infer that ρθε :=

∫
fθε dv and

Jθε :=
∫
fθε vdv are uniformly bounded in L∞t (L1

θ,x). Thus, up to a subsequence, there exist
ρθ and Jθ (at least in L∞t (L1

θ,x)) such that ρθε weakly converges in the sense of measures to
ρθ (resp. Jθε to Jθ). Passing to the limit in the local conservation of charge, which reads:

∂tρ
θ
ε +∇x.Jθε = 0,

we obtain:
∂tρ

θ +∇x.Jθ = 0.

The goal is now to prove that Jθ = ρθu.
By a simple use of Cauchy-Schwarz inequality, we have:∫ ∫

|ρθεu− Jθε |2

ρθε
dxdµ ≤

∫ ∫
fθε |v − u|2dvdxdµ. (5.23)

Using a classical convexity argument due to Brenier [6], one can prove that the func-
tional (ρ, J) 7→

∫ |ρu−J |2
ρ dxdµ is lower semi-continuous with respect to the weak conver-

gence of measures. We finally obtain by passing to the limit that:

Jθ = ρθu.

By uniqueness of the solution to the limit system, provided that the whole sequence
(ρθε,0) weakly converges to ρθ0, we obtain the convergences without having to extract sub-
sequences.

Finally we have proved the result:
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Proposition 5.1. Let (fθε , Vε) be a global weak solution in the sense of Arsenev to (5.9).
Assume that for some functions (ρθ0, u0) in (L1

θ,x ×Hs
x), with s > 5/2, (we emphasize on

the fact that u0 does not depend on θ, in order to avoid two-stream instabilities) satisfying{ ∫
ρθ0dµ = 1,
∇x.u0 = 0,

(5.24)

and such that we initially have:

1

2

∫ ∫
fθε,t=0|v − u0(x)|2dvdxdµ+

1

2
ε

∫
|∇xVε,t=0 −∇xVt=0|2dx→ 0 (5.25)

and
∫
fθε dv ⇀ ρθ0 in the weak L1 sense.

Let (u, V ) is the (unique) local strong solution (defined on [0, T [) to the incompressible
Euler system: {

∂tu+ u.∇xu = −∇xV
∇x.u = 0,

(5.26)

with initial data u(t = 0) = u0. Then for all t ∈ [0, T [,

1

2

∫ ∫
fθε |v − u(t, x)|2dvdxdµ+

1

2
ε

∫
|∇xVε −∇xV |2dx→ 0, (5.27)

where (u, V ) is the local strong solution to the incompressible Euler system:{
∂tu+ u.∇xu = −∇xV
∇x.u = 0.

(5.28)

Moreover, ρθε :=
∫
fθε dv converges in the weak L1 sense to ρθ the unique solution to:

∂tρ
θ + u.∇xρθ = 0, (5.29)

with ρθ(t = 0) = ρθ0 and Jθε :=
∫
fθε vdv converges in the weak L1 sense to ρθu.

6 Conclusion

In this work, we have provided a first analysis of the mathematical properties of the three-
dimensional finite Larmor radius approximation (FLR), for electrons in a fixed background
of ions. We have shown that the limit is illposed in the sense that we have to restrict to
data with both particular profiles and analytic regularity. In particular, we have pointed
out that the analytic assumption is not only a mere technical assumption, but is necessary
if one choses to consider strong solutions. In addition, the results are only local-in-time.

On the other hand, we proved in [18] that the FLR approximation for ions with massless
electrons is by opposition very stable, in the sense that we can deal with initial data with
no prescribed profile and weak (that is in a Lebesgue space) regularity.

This rigorously justifies why physicists rather consider the equations on ions rather
than those on electrons, especially for numerical experiments (we refer for instance to
Grandgirard et al. [13]).
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7 Appendix : Formal derivation of the drift-fluid problem

Scaling of the Vlasov equation

Let us recall that our purpose is to describe the behaviour of a gas of electrons in a neu-
tralizing background of ions at thermodynamic equilibrium, submitted to a large magnetic
field. For simplicity, we consider a magnetic field with a fixed direction e‖ (also denoted
by ez) and a fixed large magnitude B̄.

Because of the strong magnetic field, the dynamics of particles in the parallel direction
e‖ is completely different to their dynamics in the orthogonal plane. We therefore consider
anisotropic characteristic spatial lengths in order to consider dimensionless quantities:

x̃⊥ =
x⊥
L⊥

, x̃⊥ =
x‖

L‖
,

t̃ =
t

τ
, ṽ =

v

vth
,

f(t, x⊥, x‖, v) = f̄ f̃(t̃, x̃⊥, x̃‖, ṽ) V (t, x⊥, x‖) = V̄ Ṽ (t̃, x̃⊥, x̃‖) E(t, x⊥, x‖) = ĒẼ(t̃, x̃⊥, x̃‖).

This yields:



∂t̃f̃ε + vthτ
L⊥

ṽ⊥.∇x̃⊥ f̃ε + vthτ
L‖

ṽ‖.∇x̃‖ f̃ε +
(
eĒτ
mvth

Ẽε + eB̄
m τ ṽ ∧ e‖

)
.∇ṽf̃ε = 0

Ē
V̄
Ẽε =

(
− 1
L⊥
∇x̃⊥ Ṽε,− 1

L‖
∇x̃‖ Ṽε

)
− ε0V̄
L2
⊥

∆x̃⊥ Ṽε −
ε0V̄
L2
‖

∆x̃‖ Ṽε = ef̄v3
th

(∫
f̃εdṽ − 1

)
f̃ε,|t̃=0 = f̃0,ε, f̄L2

⊥L‖v
3
th

∫
f̃0,εdṽdx̃ = 1.

(7.1)

In order to keep normalization, it is first natural to set f̄L2
⊥L‖v

3
th = 1.

We set now Ω = eB̄
m : this is the cyclotron frequency (also referred to as the gyrofre-

quency). We also consider the so-called electron Larmor radius (or electron gyroradius) rL
defined by:

rL =
vth
Ω

=
mvth
eB̄

(7.2)

This quantity can be physically understood as the typical radius of the helix around axis
e‖ described by the particles, due to the intense magnetic field.

We also introduce the so-called Debye length:

λ2
D =

ε0V̄

ef̄v3
th

,

which is interpreted as the typical length above which the plasma can be interpreted as
being neutral.

The Vlasov equation now reads:

∂t̃f̃ε +
rL
L⊥

Ωτ ṽ⊥.∇x̃⊥ f̃ε +
rL
L‖

Ωτ ṽ‖.∇x̃‖ f̃ε +

(
Ē

B̄vth
ΩτẼε + Ωτ ṽ ∧ e‖

)
.∇ṽf̃ε = 0.

The strong magnetic field ordering consists in:

Ωτ =
1

ε
,

Ē

B̄vth
= ε,
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with ε > 0 is a small parameter.
The spatial scaling we perform is the so-called finite Larmor radius scaling (see Frénod

and Sonnendrucker [10] for a reference in the mathematical literature): basically the idea is
to consider the typical perpendicular spatial length L⊥ with the same order as the so-called
electron Larmor radius. This allows to describe the turbulent behaviour of the plasma at
fine scales, see [22]. On the contrary, the parallel observation length L‖ is taken much
larger:

rL
L⊥

= 1,
rL
L‖

= ε. (7.3)

This is typically an anisotropic situation.
This particular scaling allows, at least in a formal sense, to observe more precise effects

in the orthogonal plane than with the isotropic scaling (studied for instance in [12]):

rL
L⊥

= ε,
rL
L‖

= ε.

In particular we wish to observe the so-called electric drift E⊥ (also referred to as the
E ×B drift) whose effect is of great concern in tokamak physics (see [17] for instance).

The quasineutral ordering we adopt is the following:

λD
L‖

=
√
ε. (7.4)

After straightforward calculations (we refer to [10] for details), we get the following
Vlasov-Poisson system in dimensionless form, for t ≥ 0, x = (x⊥, x‖) ∈ T2 × T, v =
(v⊥, v‖) ∈ R2 × R:

∂tfε + v⊥
ε .∇xfε + v‖.∇xfε + (Eε + v∧ez

ε ).∇vfε = 0

Eε = (−1
ε∇x⊥Vε,−∇x‖Vε)

−ε∆x‖Vε −
1
ε∆x⊥Vε =

∫
fεdv −

∫
fεdvdx

fε,t=0 = fε,0.

(7.5)

which yields, after setting V ε = 1
εVε (by a slight abuse of notation, we still denote Vε

instead of V ε), 
∂tfε + v⊥

ε .∇xfε + v‖.∇xfε + (Eε + v∧ez
ε ).∇vfε = 0

Eε = (−∇x⊥Vε,−ε∇x‖Vε)
−ε2∆x‖Vε −∆x⊥Vε =

∫
fεdv −

∫
fεdvdx

fε,t=0 = fε,0.

(7.6)

Remark 7.1. It seems physically relevant to consider scalings such as:

λD/L‖ ∼ εα, (7.7)

with α ≥ 1. However with such a scaling, the systems seem too degenerate with respect to
ε and we have not been able to handle this situation. The scaling we study is nevertheless
relevant for some extreme magnetic regimes in tokamaks .

Hydrodynamic equations

In order to isolate this quasineutral problem, thanks to the linearity of the Poisson equation,
we split the electric field into two parts:
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Eε = E1
ε + E2

ε ,
E1
ε = (−∇x⊥V 1

ε ,−ε∇x‖V 1
ε ),

−ε2∆x‖V
1
ε −∆x⊥V

1
ε =

∫
fεdv −

∫
fεdvdx⊥,

E2
ε = −∂x‖V 2

ε ,

−ε∆x‖V
2
ε =

∫
fεdvdx⊥ −

∫
fεdvdx.

(7.8)

In order to make the fast oscillations in time due to the singularly penalized operator
v⊥
ε .∇x disappear, we perform the same change of variables as in [11], to get the so-called
gyro-coordinates:

xg = x⊥ + v⊥, vg = v⊥. (7.9)

We easily compute the equation satisfied by the new distribution function gε(t, xg, vg, v‖) =
fε(t, x, v).

∂tgε + v‖∂x‖gε + E1
ε,‖(t, xg − v

⊥
g )∂v‖gε + E2

ε (t, xg,‖)∂v‖gε

+E1
ε,⊥(t, xg − v⊥g ).(∇vggε −∇⊥xggε) +

1

ε
v⊥g .∇vggε = 0.

Notice here that in the process, the so-called electric drift E⊥ appears since:

−E1
ε,⊥(t, xg − v⊥g ).∇⊥xggε = E1,⊥

ε (t, xg − v⊥g ).∇xggε.

The equation satisfied by the charge density ρε =
∫
gεdv states:

∂tρε + ∂x‖

∫
v‖gεdv +∇⊥xg .

∫
E1
ε,⊥(t, xg − v⊥g )gεdv = 0, (7.10)

One can observe that since E1
ε,⊥ is a gradient:

divvg E
1
ε,⊥(t, xg − v⊥g ) = 0.

Thus, integrating the equation satisfied by gε against (vg, v‖), we deduce that the one

satisfied by the current density Jε =
∫
gεvdv

(
=

(∫
gεv⊥dv∫
gεv‖dv

))
is the following:

∂tJε + ∂x‖

∫
v‖

(
vg
v‖

)
gεdv +∇⊥xg .

∫
E1
ε,⊥(t, xg − v⊥g )

(
vg
v‖

)
gεdv

=

∫ (
E1
ε,⊥(t, xg − v⊥g )

0

)
gεdv +

∫ (
0

E1
ε,‖(t, xg − v

⊥
g )

)
gεdv

+

(
0

E2
ε (t, xg,‖)ρε

)
+
J⊥ε
ε
. (7.11)

We now assume that we deal with special monokinetic data of the form:

gε(t, x, v) = ρε(t, x)δv‖=v‖,ε(t,x)δvg=0. (7.12)

This assumption is nothing but the classical “cold plasma” approximation together with
the assumption that the transverse particle velocities are isotropically distributed (which
is physically relevant, see [27]) : in other words, the average motion of particles in the
perpendicular plane is only due to the advection by the electric drift E⊥.
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For the sake of readability, we denote by now ∇xg = ∇⊥ and ∇x‖ = ∇‖. Note in
particular that with these monokinetic data, we have in particular J⊥ε = 0. Then we get
formally the hydrodynamic model:



∂tρε +∇⊥.(E⊥ε ρε) + ∂‖(v‖,ερε) = 0

∂t(ρεv‖,ε) +∇⊥.(E⊥ε ρεv‖,ε) + ∂‖(ρεv
2
‖,ε) = −ε∂‖φε(t, x)ρε − ∂‖Vε(t, x‖)ρε

E⊥ε = −∇⊥φε
−ε2∂2

‖φε −∆⊥φε = ρε −
∫
ρεdx⊥

−ε∂2
‖Vε =

∫
ρεdx⊥ − 1

(7.13)

One can use the first equation to simplify the second one (the systems are equivalent
provided that we work with regular solutions and that ρε > 0):

∂tρε +∇⊥.(E⊥ε ρε) + ∂‖(v‖,ερε) = 0

∂tv‖,ε +∇⊥.(E⊥ε v‖,ε) + v‖,ε∂‖(v‖,ε) = −ε∂‖φε(t, x)− ∂‖Vε(t, x‖)
E⊥ε = −∇⊥φε
−ε2∂2

‖φε −∆⊥φε = ρε −
∫
ρεdx⊥

−ε∂2
‖Vε =

∫
ρεdx⊥ − 1.

(7.14)

Remarks 7.1. 1. Notice here that we do not deal with the usual charge density and
current density, since these ones are taken within the gyro-coordinates.

2. We mention that we could have considered the more general case:

gε(t, x, v) =

∫
M
ρΘ
ε (t, x)δv‖=vΘ

‖,ε(t,x)ν(dΘ)δvg=0 (7.15)

where (M,Θ, ν) is a probability space which allows to model more realistic plasmas
than “cold plasmas” and covers many interesting physical data, like multi-sheet elec-
trons or water-bags data (we refer for instance to [2] and references therein). We will
not do so for the sake of readability but we could deal with it with exactly the same
analytic framework: the analogues of Theorems 2.1 and 2.2 identically hold. We get
in the end the system:

∂tρ
Θ +∇⊥.(E⊥ρΘ) + ∂‖(v

Θ
‖ ρ

Θ) = 0

∂tv
Θ
‖ +∇⊥.(E⊥vΘ

‖ ) + vΘ
‖ ∂‖(v

Θ
‖ ) = −∂‖p(t, x‖)

E⊥ = ∇⊥∆−1
⊥
(∫
ρΘdν −

∫
ρΘdx⊥dν

)∫
ρΘ(t, x)dx⊥dν = 1.

(7.16)

As before, the equations are coupled through x⊥ and here also through the new pa-
rameter Θ.

3. Actually, the choice:
gε(t, x, v) = ρε(t, x)δv=vε(t,x) (7.17)

leads to an ill-posed system. Indeed, we have to solve in this case equations of the
form v⊥ε = vε,⊥(t, x− v⊥ε ) where vε,⊥ is the unknown. We can not say if this relation
is invertible, even locally.
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