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Abstract. Following Frénod and Sonnendrücker ([12]), we consider
the finite Larmor radius regime for a plasma submitted to a large mag-
netic field and take into account both the quasineutrality and the local
thermodynamic equilibrium of the electrons. We then rigorously es-
tablish the asymptotic gyrokinetic limit of the rescaled and modified
Vlasov-Poisson system in a three-dimensional setting with the help of
an averaging lemma.
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1. Introduction and main results

1.1. Physical motivation. We are interested in the behaviour of a plasma
(id est a gas made of ions with individual charge Ze and mass mi and elec-
trons with individual charge −e and mass me, with mi >> me) which is
submitted to a large external magnetic field. It is “well-known” that such
a field induces fast small oscillations for the particles and consequently in-
troduces a new small time scale which is very restrictive and inconvenient
from the numerical point of view. The simulation of such plasmas appears
to be primordial since the model can be applied to tokamak plasmas from
magnetic confinement fusion (like for the ITER project).

1.1.1. Heuristic study. Let us give some heuristic formal arguments to inves-
tigate the behaviour of the plasma: if we consider the motion of one particle
(of charge q > 0, massm, position x and velocity v) submitted to an external
constant field B, the fundamental principle of mechanics gives that:

(1.1)
dx

dt
= v,

dv

dt
=

q

m
(v ∧B).

Straightforward calculations show first of all that the parallel velocity, de-
noted by v‖ (that is to say the component of the velocity in the direction of
the magnetic field) is conserved and thanks to the conservation of the kinetic
energy, so is the norm of the perpendicular velocity v⊥ (the component of
the velocity in the perpendicular plane). Actually, we can see that the par-
ticle moves on a helix whose axis is the direction of the magnetic field. The
rotation period (around the axis) is the inverse of the cyclotron frequency
Ω:

(1.2) Ω =
|q||B|
m

,
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and the radius is the so-called Larmor radius:

(1.3) rL =
|v⊥|
Ω

.

In the case where the magnetic field is very strong, Ω tends to infinity
whereas rL tends to zero. More precisely, if we take |B| ∼ 1

ε (with ε → 0)
we have: {

Ω ∼ 1
ε ,

rL ∼ ε.

The approximation which consists in considering rL = 0 is the classical
guiding center approximation ([17]). This means that each particle is as-
similated to its “guiding center” (in other words its “instantaneous rotation
center”), which is equivalent to neglect the very fast rotation of the particle
around the axis.

If one also applies some external constant electric field E, a similar com-
putation shows that there appears:

(1) an acceleration E.B
|B| in the direction of B. If we consider E ∼ 1, then:

(1.4)
E.B

|B|
∼ 1

(2) a drift E∧B
|B|2 in the orthogonal plane. We have:

(1.5)
E ∧B
|B|2

∼ ε.

This drift, usually called the electric drift is problematic as regards to the
issue of plasma confinement. It is negligible compared to the acceleration
in the direction of B, but in the time scale for plasma fusion which is ex-
pected to be very long, one can not neglect this small drift, since it creates
a displacement of order εt (t represents the time).

At last, note also that if the fields are not constant, various other drifts
may appear, whose order in ε is higher than those of the electric drift.

Actually, the fields considered are neither constant, nor external, but self-
induced by the plasma itself. The effects we would like to describe are due
to the non-linear interaction between the particles and the electromagnetic
field.

1.1.2. The mathematical model. In all the sequel, we assume that the mag-
netic field is external and constant and we suppose that the speed of particles
is small compared to the speed of light, so that we can use the electrostatic
approximation which consists in reducing the Maxwell equations to the Pois-
son equation. Finally, we decide to opt for a kinetic description for the ions:
in other words, the time and space scales considered here are such that ions
are not at a thermodynamic equilibrium and their density is governed by a
kinetic equation.
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The basic model usually considered for the ions is the following Vlasov-
Poisson system: 

∂tf + v.∇xf + (E + v ∧B).∇vf = 0
E = −∇xV
−∆xV =

∫
fdv

ft=0 = f0.

where f(t, x, v) is the density of ions, with t ∈ R+, x ∈ Rd or Rd/Zd, v ∈
Rd (usually d = 2 or 3), meaning that f(t, x, v)dxdv gives the number of
ions in the infinitesimal volume [x, x+ dx]× [v, v + dv] at time t (note that
in this model, electrons are for the moment neglected).

1.1.3. The gyrokinetic approximation. It is important from a numerical point
of view to establish the asymptotic equation when |B| tends to infinity.
Indeed, we expect the asymptotic equation to be “easier” to handle: only one
time and space scale, perhaps less variables in the phase space to deal with...
The derivation of such equations is usually referred to in the mathematic
literature as “gyrokinetic approximation”.

Rigorous justifications of these derivations with various time and space
observation scales have only appeared at the end of the nineties. We refer
for instance to the works of Brenier ([5]), Frénod and Sonnendrücker ([11]-
[12]), Frénod, Raviart and Sonnendrücker ([10]), Golse and Saint-Raymond
([15]-[16]), Saint-Raymond ([21]-[22]).

The classical “guiding center approximation” corresponds to the following
scaling for the Vlasov-Poisson system (from now on and until the end of the
paper, B is a constant vector, say for instance B = 1

εez):

(1.6)


∂tfε + v.∇xfε + (Eε + v∧ez

ε ).∇vfε = 0
Eε = −∇xVε
−∆xVε =

∫
fεdv

fε,t=0 = f0.

The articles [11] and [15] show that when ε → 0, this leads to a one-
dimensional kinetic equation in the direction of B:

(1.7)


∂tf + v‖.∇xf + E‖.∇vf = 0
E = −∇xV
−∆xV =

∫
fdv

ft=0 = f0.

Notice that the electric drift does not appear; this was expected since we
have seen in the formal analysis that this drift was of higher order in ε than
the other effects. This shows in particular that this approximation is not
sufficient for the numerical simulation of tokamaks. In order to make this
drift appear, there exists to our knowledge two main possibilities:

(1) one consists in restricting to a 2D problem in the plane orthogonal
to B ([15]),

(2) the other consists in rescaling the orthogonal scales in order to get
both transport and electric drift at the same order ([12]).
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This work directly follows the articles [12] and [10] where the authors
considered the “finite Larmor radius approximation”. This means that the
spatial observation scale in the plane orthogonal to B is chosen smaller than
the one in the parallel direction, more precisely with the same order as the
Larmor radius rL, so that one can expect the electric drift to appear in the
asymptotic equation.

In some sense, having such a scaling allows the electric field to signifi-
cantly vary across a Larmor radius, which is not the case for instance in
(1.6). Moreover, in this situation, the positions of the particles are no longer
assimilated to the position of their “guiding center” and we will have to per-
form an average over one fast oscillation period (the so-called gyroaverage)
in order to get a sort of averaged number density.

1.2. Scaling and existing results. The system we are going to study
is based on the “finite Larmor radius scaling” and takes into account the
quasineutrality of the plasma.

1.2.1. The (refined) mathematical model. We refer to [12] for a complete
discussion on the scaling. Let us recall briefly and quite crudely how it
works.

Let L‖ be the characteristic length in the direction of the magnetic field
and L⊥ be the characteristic length in the perpendicular plane. We consider
that L‖ ∼ 1 and L⊥ ∼ ε and define the dimensionless variables x′‖ = x‖

L‖
and

x′⊥ = x⊥
L⊥

. In the same fashion we also define the dimensionless variables t′

and v′ with characteristic time and velocities with the same order as L‖ and
introduce the new number density f ′ defined by f̄f ′(t′, x′, v′) = f(t, x, v)
(and we define likewise the new electric field and potential ĒE′(t′, x′, v′) =
E(t, x, v) and V̄ V ′(t′, x′, v′) = V (t, x, v)). We consider the scaling f̄ , Ē ∼ 1
and V̄ ∼ ε. At last, we introduce the Debye length of the plasma λD,
which appears in the Poisson equation. In order to take into account the
quasineutrality of the plasma, we take from now on λD ∼

√
ε.

The Poisson equation states in this scaling:

−ε∆x′‖
V ′ε −

1
ε

∆x′⊥
V ′ε =

1
ε

(
niε − neε

)
,(1.8)

where niε =
∫
f ′εdv

′ is the density of ions and neε the density of electrons.
The density distribution of ions is normalized so that

∫
f ′0dv

′dx′ = 1.
The main difference between Frénod and Sonnendrücker’s model and ours

lies in the following. Instead of considering a fixed background of ions,
and since me

mi
<< 1, we make the usual assumption that the (adiabatic)

electrons are instantaneously at a local thermodynamic equilibrium, so that
their density follows a Boltzmann-Maxwell distribution:

(1.9) neε(x, t) = exp
(
eV ′ε
kBTe

)
,

where kB is the Boltzmann constant, −e the charge and Te the temperature
of the electrons. We consider that e

kBTe
∼ 1.
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We make the assumption that we are not far from a fixed background of
electrons, so that we can linearize this expression:

(1.10) neε(x, t) = 1 + V ′ε .

We are obviously aware that this assumption is not really satisfactory from
the mathematical point of view; nevertheless it is commonly used in plasma
physics. The problem of a fixed background of electrons, i.e. neε = 1, brings
actually more interesting formal results; this point will be discussed in the
last section.

The Poisson equation can now be written:

(1.11) V ′ε − ε2∆x′‖
V ′ε −∆x′⊥

V ′ε =
∫
fεdv

′ −
∫
f0dv

′dx′.

The dimensionless system (1.6) becomes (for the sake of simplicity, we
forget the primes):

(1.12)


∂tfε + v⊥

ε .∇xfε + v‖.∇xfε + (Eε + v∧B
ε ).∇vfε = 0

Eε = (−∇x⊥Vε,−ε∇x‖Vε)
Vε − ε2∆x‖Vε −∆x⊥Vε =

∫
fεdv −

∫
f0dvdx

fε,t=0 = fε,0,

with the notation ∆x‖ = ∂2
x‖

and ∆x⊥ = ∆−∆x‖ ,
the problem being posed for (x⊥, x‖, v) ∈ T2 × T × R3 (with T = R/Z

equipped with the restriction of the Lebesgue measure to [0, 1[).

1.2.2. State of the art about the Finite Larmor Radius Approximation. Us-
ing homogenization arguments, Frénod and Sonnendrücker established the
convergence in some weak sense of sequences of solutions (fε)ε≥0 of similar
systems, in two cases, namely in some pseudo 2D case (assuming that noth-
ing depends on x‖ and v‖) and in a 3D case when the electric field is external.
The main tool used to establish the convergence is the “2-scale convergence”
introduced by Nguetseng [20] and Allaire [2] that we will recall later on.

(1) The 3D case:
Assume that we deal with an external electric field Eε = E ∈

C1(R× R3):{
∂tfε + v‖.∇xfε + v⊥

ε .∇xfε +
(
E + v∧ez

ε

)
.∇vfε = 0

ft=0 = f0.

Frénod and Sonnendrücker proved the following theorem:

Theorem 1.1. For each ε, let fε be the unique solution of the scaled
Vlasov equation in L∞t (L1

x,v ∩ L2
x,v). Then the following convergence

holds as ε tends to 0:

(1.13) fε ⇀ f weak-* L∞t (L2
x,v)

where f ∈ L∞t (L2
x,v) is the unique solution to:

∂tf + v‖.∇xf +
1

2π

(∫ 2π

0
R(τ)E(t, x+R(−τ)v)dτ

)
.∇xf

+
1

2π

(∫ 2π

0
R(τ)E(t, x+R(−τ)v)dτ

)
.∇vf = 0,
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f|t=0 =
1

2π

(∫ 2π

0
f0(x+R(τ)v,R(τ)v)dτ

)
,

denoting by R and R the linear operators defined by:

R(τ) =

 cos τ sin τ 0
− sin τ cos τ 0

0 0 1

 ,R(τ) = (R(π/2)−R(π/2 + τ)) .

(2) The pseudo 2D case:
The Vlasov-Poisson system considered in this case is the following

2D system:

∂tfε +
v

ε
.∇xfε +

(
Eε +

v⊥

ε

)
.∇vfε = 0(1.14)

fε|t=0 = f0(1.15)
Eε = −∇Vε,−∆xVε = ρε,(1.16)

ρε =
∫
fεdv.(1.17)

If v = (vx, vy), v⊥ is defined by (vy,−vx).
We recall that there exist global weak solutions of Vlasov-Poisson

systems in the sense of Arsenev ([3]).
Assuming here that f0 ≥ 0, f0 ∈ L1

x,v ∩ L
p
x,v (for some p > 2) and

that the initial energy is bounded, Frénod and Sonnendrücker proved
the following theorem (we voluntarily write an unprecise meta-version
of the result)

Theorem 1.2. For each ε, let (fε, Eε) be a solution in the sense of
Arsenev to (1.14)-(1.17).

Then, up to a subsequence, fε weakly converges to a function f
Moreover, there exists a function G such that :

(1.18) f =
∫ 2π

0
G(t, x+R(τ)v,R(τ)v)dτ,

and G satisfies :

∂tG+
1

2π

(∫ 2π

0
R(τ)E(t, τ, x+R(−τ)v)dτ

)
.∇xG

+
1

2π

(∫ 2π

0
R(τ)E(t, τ, x+R(−τ)v)dτ

)
.∇vG = 0,

G|t=0 = f0,

E = −∇Φ, −∆Φ =
∫
G(t, x+R(τ)v,R(τ)v)dv,

denoting by R and R the linear operators defined by :

R(τ) =
[

cos τ sin τ
− sin τ cos τ

]
,R(τ) = (R(π/2)−R(π/2 + τ)) .
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In this case, we have to introduce an additional variable, the “fast-
time” variable τ which comes from the fact that we need to precisely
describe the oscillations in order to study the limit in non-linear
terms.

Note that the authors actually developped a generic framework that allows
them to deal with different scalings and to give a precise approximation at
any order. We do not wish to do so in our study.

1.3. A bit of homogenization theory and some useful definitions.
Let us now precisely state the “2-scale” convergence tools used in this paper.

Definition. Let X be a separable Banach space, X ′ be its topological dual
space and (., .) the duality bracket between X ′ and X. For all α > 0, denote
by Cα(R, X) (respectively Lq

′
α (R;X ′)) the space of α-periodic continuous (re-

spectively Lq′) functions on R with values in X. Let q ∈ [1;∞[.
Given a sequence (uε) of functions belonging to the space Lq′(0, t;X ′) and

a function U0(t, θ) ∈ Lq′(0, T ;Lq
′
α (R;X ′)) we say that

uε 2-scale converges to U0

if for any function Ψ ∈ Lq(0, T ; Cα(R, X)) we have:

(1.19) lim
ε→0

∫ T

0

(
uε(t),Ψ

(
t,
t

ε

))
dt =

1
α

∫ T

0

∫ α

0

(
U0(t, τ),Ψ(t, τ)

)
dτdt.

Theorem 1.3. Given a sequence (uε) bounded in Lq
′
(0, t;X ′), there exists

for all α > 0 a function U0
α ∈ Lq

′
(0, T ;Lq

′
α (R;X ′)) such that up to a subse-

quence,
uε 2-scale converges to U0

α.

The profile U0
α is called the α-periodic two scale limit of uε and the link

between U0
α and the weak-* limit u of uε is given by:

(1.20)
1
α

∫ α

0
U0dτ = u.

We also introduce some notations:

Notations. We define for all p ∈ [1;∞] the space Lpx,v:=Lpx(Td, (Lpv(Rd))).
In the same fashion, we define the spaces Lpt,x, L

p
t,x,v...

Let Lp2π,τ be the space of 2π-periodic functions of τ which are in Lpτ .
Let Lpx,loc be the space of functions f such that for all infinitely differ-

entiable cut-off functions ϕ ∈ C∞c , ϕf belongs to Lpx. We will say that a
sequence (fε) is uniformly bounded in Lpx,loc if for each compact set K, the
sequence of the restrictions to K is uniformly bounded in Lpx with respect to
ε (but this bound can depend on K).

We will also use the same notations for Sobolev spaces W s,p (s ∈ R).

1.4. Statement of the result. In this paper we prove that the 2-scale con-
vergence established in the previous 2D case is also true in our 3D framework.
The difficulty comes from the fact that there is no uniform elliptic regularity
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for the electric field because of the factor ε2 in front of ∆x‖ in the Poisson
equation:

Vε − ε2∆x‖Vε −∆x⊥Vε =
∫
fεdv −

∫
fεdvdx

In particular there is no a priori regularity on x‖ and therefore no strong
compactness. Nevertheless, we actually prove that due to the particular
form of the asymptotic equation, the moments of the solution with respect
to v‖ are more regular in x‖ than the solution itself. We can then easily pass
to the weak limit.

The reason why we have opted for this strange Poisson equation instead
of the usual one will appear at the end of the next section and especially in
the last one. Roughly speaking it allows us to “kill” the plasma waves which
appear in the parallel direction due to the quasineutrality.

Notice that this result is in the same spirit as the proof of the weak
stability of the Vlasov-Maxwell system by DiPerna and Lions ([8]), where
the authors have regularity on moments, by opposition to the proof of the
weak stability of the Vlasov-Poisson system by Arsenev ([3]), where the
author has compactness on the electric field. Actually our result is a kind
of a hybrid one, since we get on one hand regularity with respect to x⊥ by
elliptic regularity and in the other hand regularity with respect to x‖ by
averaging.

We assume here that the initial data (fε,0)ε>0 satisfy the following condi-
tions:

• fε,0 ≥ 0.
• (fε,0)ε>0 is uniformly bounded with respect to ε in L1

x,v ∩ L
p
x,v (for

some p > 3) and for each ε,
∫
fε,0dxdv = 1.

• The initial energy is uniformly bounded with respect to ε:(∫
fε,0|v|2dvdx+ ε

∫
V 2
ε,0dx+ ε

∫
|∇x⊥Vε,0|

2dx+ ε3

∫
|∇x‖Vε,0|

2dx

)
≤ C.

Theorem 1.4. For each ε, let (fε, Eε) in L∞t (L1
x,v ∩ L

p
x,v) × L∞t (L2

x) be
a global weak solution in the sense of Arsenev to (1.12). Then up to a
subsequence we have the following convergence as ε tends to 0:

fε,0 weakly-* converges to f0 ∈ Lpx,v(1.21)

fε 2-scale converges to F ∈ L∞t (L∞2π,τ (L1
x,v ∩ Lpx,v))(1.22)

Eε 2-scale converges to E ∈ L∞t (L∞2π,τ (L3/2
x‖

(W
1, 3

2
x⊥ ))).(1.23)

Moreover, there exists a function G ∈ L∞t (L1
x,v ∩ L

p
x,v) such that:

(1.24) F (t, τ, x, v) = G(t, x+R(τ)v,R(τ)v),

and (G, E) is solution to:

∂tG+ v‖.∇xG+
1

2π

(∫ 2π

0
R(τ)E(t, τ, x+R(−τ)v)dτ

)
.∇xG

+
1

2π

(∫ 2π

0
R(τ)E(t, τ, x+R(−τ)v)dτ

)
.∇vG = 0,



THE THREE-DIMENSIONAL FINITE LARMOR RADIUS APPROXIMATION 9

G|t=0 = f0,

E = (−∇⊥V, 0), V −∆⊥V =
∫
G(t, x+R(τ)v,R(τ)v)dv −

∫
f0dvdx,

denoting by R and R the linear operators defined by:

R(τ) =

cos τ − sin τ 0
sin τ cos τ 0

0 0 1

 ,R(τ) = (R(π/2)−R(π/2 + τ)) .

As it has been said, for the proof of this theorem, we will first prove
a proposition which gives the regularity of moments in v‖ of the solution.
For this, we use an averaging lemma. The beginning of the proof is very
similar to the proof in the 2D case, but we will give it again for the sake of
completeness.

Remarks. (1) The assumption on the initial energy may, at first sight,
look a bit restrictive but in the “usual” Vlasov-Poisson scaling, it only
means that the inital electric potential and field are bounded in L2.

(2) The constant q = 3 will come quite naturally from Lemma 2.3 and
Proposition 3.1.

(3) This theorem implies that for a given non-negative initial dataG|t=0 =
G0 in L1

x,v ∩ L
p
x,v (with p > 3) and satisfying the energy bound,

the asymptotic system admits at least one global weak solution G ∈
L∞t (L1

x,v∩L
p
x,v). With the additional assumptions on the inital data:

G0 ∈W 1,1
x,v ,

‖(1 + |v|4)G0‖L∞x,v <∞,

‖(1 + |v|4)DG0‖L∞x,v <∞.

we are actually able to prove the uniqueness of the solution, using the
same ideas than Degond in [7] (and also used afterwards by Saint-
Raymond in a gyrokinetic context ([21])). Hence, it means that if the
whole sequence (fε,0) weak -* converges to some f0 satisfying these
estimates, then by uniqueness of the solution, there is convergence
for the whole sequence (fε) (without extracting any subsequence).

2. A priori uniform estimates for the scaled Vlasov-Poisson
system

2.1. Conservation of Lp norms and energy for the scaled system. In
this section we give a priori estimates which are very classical for the Vlasov-
Poisson system (used for example in [11], [12], [15]). In order to recall how
one can get them, we will give some formal computations. If one wants to
have rigorous proofs, one should deal with smooth and compactly supported
functions, namely with a sequence (fnε )n≥0 of solutions of some regularized
Vlasov-Poisson equations then pass to the limit (that is the way one can
clasically build a global weak solution in the sense of Arsenev ([3])).

First, as usual for such Vlasov equations, Lp norms are conserved (we
work here at a fixed ε):
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Lemma 2.1. For all 1 ≤ p ≤ ∞,

(2.1) ∀t ≥ 0, ‖f(t)‖Lpx,v ≤ ‖f(0)‖Lpx,v .

Moreover, f0 ≥ 0 if and only if ∀t ≥ 0, f(t) ≥ 0 (referred to as the maximum
principle)

That precisely means that if f0 ∈ Lpx,v, then f ∈ L∞t (Lpx,v).
Let us now compute the energy for the scaled system:

Lemma 2.2. We have the estimate:
(2.2)

Eε(t) =
(∫

fε|v|2dvdx+ ε

∫
V 2
ε dx+ ε

∫
|∇x⊥Vε|

2dx+ ε3

∫
|∇x‖Vε|

2dx

)
≤ Eε(0).

In particular if there exists C > 0 independent of ε such that Eε(0) ≤ C,
then:

(2.3)
∫
fε|v|2dvdx ≤ C.

Formal proof. We multiply the scaled Vlasov equation by |v|2 and integrate
with respect to x and v.∫
∂tfε|v|2dvdx+

∫
Eε.∇vfε|v|2dvdx =

d

dt

(∫
fε|v|2dvdx

)
− 2

∫
Eε(x).vfεdvdx = 0.

We then integrate the Vlasov equation with respect to v. We get the so
called conservation of charge:

(2.4)
d

dt

(∫
fdv

)
+∇x‖ .

(∫
fv‖dv

)
+
∇x⊥
ε
.

(∫
fv⊥dv

)
= 0.

Therefore, we have:∫
Eε(x).vfεdvdx = −

∫
(∇x⊥Vε, ε∇x‖Vε).vfεdvdx

=
∫
Vε

(
∇x⊥ .(fεv⊥) + ε∇x‖ .(fεv‖)

)
dvdx

= −ε
∫
Vε∂tfεdvdx.

Finally, using the Poisson equation, we get:

−ε
∫
Vε∂tfεdvdx = −ε

∫
Vε∂t

(
Vε − ε2∆x‖Vε −∆x⊥Vε

)
dx

= −ε
(∫

Vε∂tVεdx+
∫
∇x⊥Vε∂t∇x⊥Vεdx+ ε2

∫
∇x‖∂tVε∇x‖Vεdx

)
= −ε1

2
d

dt

(∫
V 2
ε dx+

∫
|∇x⊥Vε|

2dx+ ε2

∫
|∇x‖Vε|

2dx

)
.

Thus it comes:

(2.5)
d

dt

(∫
fε|v|2dvdx+ ε

∫
V 2
ε dx+ ε

∫
|∇x⊥Vε|

2dx+ ε3

∫
|∇x‖Vε|

2dx

)
= 0.

�
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2.2. Regularity of the electric field. Let us recall a classical lemma ob-
tained by a standard real interpolation argument:

Lemma 2.3. Let f(x, v) be a mesurable positive function on R3×R3. Then:

(2.6)
∫ (∫

f(x, v)dv
)3/2

dx ≤ C‖f‖3/4
L3
x,v

(∫
|v|2fdxdv

)3/4

.

Proof. For any R > 0, we can write the following decomposition:∫
fεdv =

∫
|v|≤R

fdv +
∫
|v|>R

fdv

≤ CR2‖f‖L3
v

+
1
R2

∫
|v|2fdv.

Then we can take R such that R2‖f‖L3
v

= 1
R2

∫
|v|2fdv so that we get:

(2.7)
∫
fdv ≤ C

(∫
f3dv

)1/6(∫
|v|2fdv

)1/2

.

We then raise the quantities to the power 3/2, integrate with respect to x
and use Hölder’s inequality which gives the estimate.

�

By conservation of the L3 norm and the uniform bound on the intial
energy, Lemmas 2.2 and 2.3 entail that:

(2.8) ρε ∈ L∞t (L3/2
x ),

and the norm is bounded uniformly with respect to ε.
We now use the Poisson equation to compute the regularity of the electric

field. Let us recall that:

Eε =
(
−ε∇x‖Vε,−∇x⊥Vε

)
Vε − ε2∆x‖Vε −∆x⊥Vε = ρε −

∫
ρ0dx.

Lemma 2.4. With the above notations and assumptions:
Eε is uniformly bounded with respect to ε in L∞t (L3/2

x‖ (W 1,3/2
x⊥ )).

Proof. Let ε > 0 and t > 0 be fixed. For the sake of simplicity we write V
instead of Vε and E instead of Eε.

For any function f(x‖, x⊥), define the rescaled function f̃(z, x⊥) by

f̃
(x‖
ε
, x⊥

)
= ε

2
3 f(x‖, x⊥),

so that:

(2.9) ‖f̃ (z, x⊥) ‖
L

3/2
z

= ‖f(x‖, x⊥)‖
L

3/2
x‖
.

The Poisson equation becomes:

Ṽ −∆zṼ −∆x⊥ Ṽ = ρ̃− ε
2
3

∫
ρ0dx
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and the scaled electric field is given by:

Ẽ =
(
−∇zṼ ,−∇x⊥ Ṽ

)
.

Since ρε(t, ., .) and Vε are uniformly bounded in L
3/2
x , standard results

of elliptic regularity on the torus T2 × 1
εT show that there exists C > 0

independent of ε such that:

‖Ṽ ‖
W

2,3/2
z,x⊥

≤ C
∥∥∥∥ρ̃− ε 2

3

∫
ρ0dx

∥∥∥∥
L

3/2
z,x⊥

.

Remark. Notice here that due to the dilatation of order 1
ε in the parallel

direction, being periodic in this direction does not make things easier.

Thanks to (2.9) we get:

‖Ṽ ‖
W

2,3/2
z,x⊥

≤ C
∥∥∥∥ρ− ∫ ρ0dx

∥∥∥∥
L∞t (L

3/2
x )

≤ C0.

with C0 independent of ε.
Consequently, we have:

‖Ẽ‖
L

3/2
z (W

1,3/2
x⊥ )

≤ ‖Ẽ‖
W

1,3/2
z,x⊥

≤ C0.

Finally from (2.9) we get

‖Eε‖L∞t (L
3/2
x‖ (W

1,3/2
x⊥ ))

≤ C0.

�

We can see as expected that the regularity of the electric field with respect
to the x‖ variable is not sufficient to get some strong compactness.

Remarks. (1) We can write the identity:

(2.10) −∆x⊥Vε = −∆x⊥(Id− ε2∆x‖ −∆x⊥)−1

(
ρε −

∫
ρεdx

)
,

so that, thanks to elliptic estimates on the torus T2, Vε ∈ L3/2
x‖ (W 2,3/2

x⊥ ).

Consequently, ∂x‖Vε is bounded in L3/2
x⊥ (W−1,3/2

x‖ ). This implies that
Eε,‖ = −ε∂x‖Vε tends to zero in the sense of distributions.

(2) A typical function ϕε such that ϕε is bounded in Lp and 1
εϕε is

bounded in W−1,p is the oscillating function cos(1
εx). This indicates

that Eε,‖ oscillates with a frequency of order 1
ε in the parallel direc-

tion.
(3) If we work with the usual Poisson equation

−ε2∆x‖Vε −∆x⊥Vε = ρε −
∫
ρεdx

we only get homogeneous estimates for Vε and we have not been able
to deal with such anisotropic estimates in the following of the paper
(namely in the estimates of Proposition 3.1). Roughly speaking, if V
is a solution of the Poisson equation −∆V = ρ with ρ ∈ L3/2(R3), we
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can only say that V ∈ Ẇ 2,3/2(R3) (the homogeneous Sobolev space)
and not W 2,3/2.

(4) This difficulty seems to be not only a technical one, but appears
to be linked to the existence of plasma waves (with frequence and
magnitude of order 1√

ε
) in the parallel direction which prevents us

from passing directly to the limit ε→ 0 (see [19] and last section).

3. Proof of Theorem 1.4

Proof. The first two steps are identical to the one given in [12]. For the sake
of completeness we recall here the main arguments and refer to [12] for the
details.

Step 1: Deriving the constraint equation. First of all, since (fε) is
bounded in L∞t (L1

x,v ∩ L
p
x,v), Theorem 1.3 shows that for all α > 0:

fε 2-scale converges to Fα ∈ L∞(0, T ;L∞α (R;Lpx,v)).

Let Ψ(t, τ, x, v) be an α-periodic oscillating test function in τ and define:

Ψε ≡ Ψ(t,
t

ε
, x, v)

We start by writing the weak formulation of the scaled Vlasov equation
against Ψε. Since

∇x‖ .v‖ = ∇x⊥ .v⊥ = divv
(
Eε +

v ∧ ez
ε

)
= 0,

we get the following equation:∫
fε

(
(∂tΨ)ε +

1
ε

(∂τΨ)ε + v‖.(∇xΨ)ε +
v⊥
ε
.(∇xΨ)ε +

(
Eε +

v ∧ ez
ε

)
.(∇vΨ)ε

)
dtdxdv

= −
∫
f0Ψ(0, 0, x, v)dxdv.

Multiply then by ε and pass up to a subsequence to the (2-scale) limit.
We get the so called constraint equation for the α-periodic profile Fα:

(3.1) ∂τFα + v⊥.∇xFα + v ∧ ez.∇vFα = 0,

which means that Fα is constant along the characteristics:
dV

dτ
= V ∧ ez,(3.2)

dX

dτ
= V⊥.(3.3)

A straightforward calculation therefore shows that there exists F 0
α ∈ L∞(0, T, Lpx,v)

such that:

(3.4) Fα(t, τ, x, v) = F 0
α(t, x+R(τ)v,R(τ)v),

with:

R(τ) =

 cos τ sin τ 0
− sin τ cos τ 0

0 0 1

 ,R(τ) = (R(π/2)−R(π/2 + τ)) ,
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i.e. R(τ) =

 sin τ cos τ − 1 0
1− cos τ sin τ 0

0 0 0

.
Since R and R are 2π-periodic, we will consider the 2π profile: indeed if α

and 2π were incommensurable, Fα could not depend on τ and consequently
we would have no information on the oscillations.

Step 2: Filtering the essential oscillation. We now look for the equa-
tion satisfied by F 0

2π := G; we introduce the filtered function gε:

(3.5) gε(t, x, v) = fε(t, x+R(−t/ε)v,R(−t/ε)v),

(meaning that we have removed the oscillations).
We easily compute the equation satisfied by gε:

∂tgε + v‖.∇xgε +R(t/ε)Eε(t, x+R(−t/ε)v).∇xgε(3.6)
+R(t/ε)Eε(t, x+R(−t/ε)v).∇vgε = 0.

Remark. Note here that gε 2-scale converges to G, and since it does not
depend on τ , it also weakly converges to G.

Step 3: Getting some regularity on moments. From now on, the goal
is to get some compactness for the moments of gε with respect to v‖. The
main tool we have in mind is the following averaging lemma proved by Bézard
in [6], which is a refined version of the fundamental result of DiPerna, Lions
and Meyer ([9]):

Theorem 3.1. Let 1 < p ≤ 2. Let f, g ∈ Lp(dt ⊗ dx ⊗ dv) be solutions of
the following transport equation

(3.7) ∂tf + v.∇xf = (I −∆t,x)τ/2(I −∆v)m/2g,

with m ∈ R+, τ ∈ [0, 1[. Then ∀Ψ ∈ C∞c (Rd), ρΨ(t, x) =
∫
f(t, x, v)Ψ(v)dv ∈

W s,p
t,x (R× Rd) where

(3.8) s =
1− τ

(1 +m)p′
.

Moreover,

(3.9) ‖ρΨ‖W s,p
t,x (R×Rd) ≤ C

(
‖f‖Lp(dt⊗dx⊗dv) + ‖g‖Lp(dt⊗dx⊗dv)

)
(C is a positive constant independent of f and g)

Averaging lemmas are an important feature of transport equations: since
the transport equation (3.7) is hyperbolic, one can obviously not expect the
solution f to be more regular than the right hand side or the inital data.
Nevertheless, if one considers the averaged quantity ρΨ, one can actually
notice a gain of regularity. This phenomenon was first observed indepen-
dently by Golse, Perthame and Sentis ([14]) and Agoshkov ([1]) then was
formulated in a precise way for the first time by Golse, Lions, Perthame
and Sentis (see [13]); it is referred to as “velocity averaging”. There exists
many refined versions of these results and numerous interesting applications
in kinetic theory, but we shall not dwell on that. We simply point out that
this tool has been successfully applied to Vlasov equations, for instance to
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prove the existence of global weak solutions to the Vlasov-Maxwell system
as it has been done by DiPerna and Lions ([8]).

These results have been proved for functions with values in R. Here, for
our purpose, we need a new version of Lp averaging lemma for functions with
values in some Sobolev space W λ,p(Rk) (k ∈ N∗). We prove the following
result, which is sufficient in our case (probably an analogous of Bézard’s
optimal result is also true):

Lemma 3.1. Let 1 < p < +∞ and λ ∈ R. Let f, g ∈ Lpt,x,v(W
λ,p
y ) be

solutions of the following transport equation

(3.10) ∂tf + v.∇xf = (I −∆v)m/2g

withm ∈ R+. Then ∀Ψ ∈ C∞c (Rd), ρΨ(t, x) =
∫
f(t, x, v)Ψ(v)dv ∈W s,p

t,x (W λ,p
y )

for any s such that

(3.11) s ≤ s2 =
1

2(1 +m)
for p = 2

and

(3.12) s < sp =
1

(1 +m)p′
for p 6= 2

Moreover,

(3.13) ‖ρΨ‖W s,p
t,x (Wλ,p

y )
≤ C

(
‖f‖

Lpt,x,v(Wλ,p
y )

+ ‖g‖
Lpt,x,v(Wλ,p

y )

)
(C is a positive constant independent of f and g)

Sketch of proof. We prove the result in the stationary case only:

(3.14) v.∇xf = (I −∆v)m/2g

By standard arguments (see [13]) the general case then follows.
The following estimate is obvious for q = 1 or q = +∞ (and actually we

can not expect any smoothing effect) :

(3.15) ‖ρΨ‖Lqx(Wλ,q
y )
≤ C

(
‖f‖

Lqx,v(Wλ,q
y )

+ ‖g‖
Lqx,v(Wλ,q

y )

)
.

For p = 2, we prove the result as in Golse-Lions-Perthame-Sentis [13]. We
denote by ξ (resp. η) the Fourier variable associated to x (resp. y).

The only point is to notice (using Fubini’s inequality):

‖ρΨ‖2Hs
x(Hλ

y ) =
∫

(1 + |ξ|2)s/2
∫

(1 + |η|2)λ/2
(∫
Fξ,ηfΨ(v)dv

)2

dηdξ

The proof is then identical and we get for s = 1
2(1+m) :

(3.16) ‖ρΨ‖Hs
x(Hλ

y ) ≤ C
(
‖f‖L2

x,v(Hλ
y ) + ‖g‖L2

x,v(Hλ
y )

)
.

Finally the general case 1 < p < +∞ is obtained by complex interpolation
[4].

�

Equipped with this tool, we can now prove that moments in v‖ are more
regular with respect to t and x‖ than the solution itself.
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Proposition 3.1. For each ε > 0, let gε be a function in L1
x,v ∩ L

p
x,v (with

p > 3) bounded uniformly with respect to ε and satisfying:

∂tgε + v‖.∇xgε +R(t/ε)Eε(t, x+R(−t/ε)v).∇xgε
+R(t/ε)Eε(t, x+R(−t/ε)v).∇vgε = 0,

with Eε the electric field uniformly bounded in L∞t (L3/2
x ).

Let Ψ ∈ D(R). Define

ηε(t, x, v⊥) =
∫
gε(t, x, v)Ψ(v‖)dv‖.

Then,

(3.17) ηε is uniformly bounded in W s,γ
t,x‖,loc

(W−1,γ
x⊥,v⊥,loc),

for γ ∈]1; 2[ defined by 1
γ = 2

3 + 1
p and some s ∈]0; 1[ (depending on γ).

Proof. • The first step is to localize the equation. Let K be the carte-
sian product of compact sets:

K = [0, T ]×Kx‖ ×Kx⊥ ×Kv‖ ×Kv⊥ .

We now consider some positive smooth function Φ(t, x‖, x⊥, v‖, v⊥)
which is C∞c and which satisfies the condition:

Φ ≡ 0 outside K.(3.18)

Noticing that:

divx (R(t/ε)Eε(t, x+R(−t/ε)v)) + divv (R(t/ε)Eε(t, x+R(−t/ε)v)) = 0.

The equation satisfied by gεΦ is the following one:

∂t(gεΦ) + v‖.∇x(gεΦ) = −∇x.(R(t/ε)Eε(t, x+R(−t/ε)v)gεΦ)︸ ︷︷ ︸
(1)

−∇v.(R(t/ε)Eε(t, x+R(−t/ε)v)gεΦ)︸ ︷︷ ︸
(2)

−∂t(Φ)gε − v‖.∇x(Φ)gε

+R(t/ε)Eε(t, x+R(−t/ε)v).∇x(Φ)gε +R(t/ε)Eε(t, x+R(−t/ε)v).∇v(Φ)gε.

The idea is now to consider this equation as a kinetic equation
with respect to the variables (t, x‖, v‖) and with values in an abstract
Banach space (which will be W−1,γ

x⊥,v⊥). We then only study the first
two terms of the right-hand side (noticing that the other terms have
more regularity than these ones).

From now on, for the sake of simplicity and readability, we will
write Lp and W s,p norms without always specifying that they are
taken on the compact support of Φ.
• Estimate on the first term (1) Since Eε does not depend on v, we
have:

Eε ∈ L∞t (L3/2
x‖

(L∞v (L3/2
x⊥

))).

In particular if we restrict to compact supports:

Eε ∈ L3/2
t,x,v.

The second point is that the differential operator applied in (1) in-
volves only derivatives with respect to the x⊥ variable and not in the
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parallel direction: this remark is fundamental for using the averag-
ing lemma 3.1 (indeed, the case of a full derivative in x‖ can not be
handled).

Hölder’s inequality simply implies that:

(3.19)
‖R(t/ε)Eε(t, x+R(−t/ε)v)gεΦ‖Lγx⊥,v⊥ ≤ ‖Eε(t, x+R(−t/ε)v)Φ‖

L
3/2
x⊥,v⊥

‖gε‖Lpx⊥,v⊥ ,

where 1
γ = 2

3 + 1
p . Hence:

(3.20)
‖∇x.(R(t/ε)Eε(t, x+R(−t/ε)v)gεΦ)‖

W−1,γ
x⊥,v⊥

≤ ‖Eε(t, x+R(−t/ε)v)Φ‖
L

3/2
x⊥,v⊥

‖gε‖Lpx⊥,v⊥ .

Notice that the change of variables (x, v) 7→ (x + R(s)v, v) has
unit Jacobian for all s ∈ R, so that:

(3.21) ‖Eε(t, x+R(−t/ε)v)Φ‖
L

3/2
x⊥,v⊥

= ‖Eε(t, x)‖
L

3/2
x⊥,v⊥

.

So finally we have, after integrating in t, x‖, v‖ and thanks to
Hölder’s inequality:

‖∇x. (R(t/ε)Eε(t, x+R(−t/ε)v)gεΦ) ‖
Lγt,x‖,v‖

(W−1,γ
x⊥,v⊥ )

≤ C‖Eε(t, x)‖
L

3/2
t,x‖,v‖

(L
3/2
x⊥,v⊥ )

‖gε‖Lpt,x‖,v‖ (Lpx⊥,v⊥ ),

and C is a constant independent of ε.

Remark. The regularity of (1) with respect to v⊥ is not optimal
(since it involves no derivative in v⊥ for gε). Nevertheless we are
interested in the regularity of the whole right hand side, and we will
see that the term (2) has this regularity in v⊥.

• Estimate on the second term (2)
By the same method one gets:

‖∇v. (R(t/ε)Eε(t, x+R(−t/ε)v)gεΦ) ‖
Lγt,x‖

(W−1,γ
v‖ (W−1,γ

x⊥,v⊥ ))

≤ C‖Eε(t, x)‖
L

3/2
t,x‖

(L
3/2
x⊥,v)
‖gεΦ‖Lpt,x‖ (Lpx⊥,v).

Finally we see that the right hand side is uniformly bounded in:

Lγt,x‖,loc(W
−1,γ
v‖,loc(W

−1,γ
x⊥,v⊥,loc)).

• Regularity of the moments By lemma 3.1 , for all Ψ ∈ C∞c , the mo-
ment:

ηε(t, x, v⊥) =
∫
gε(t, x, v)Ψ(v‖)dv‖

is then uniformly bounded in the space W s,γ
t,x‖,loc(W

−1,γ
x⊥,v⊥,loc) for any

s > 0 with s < 1
2γ′ .

�
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We can now prove that the sequence of moments ηε is compact in a space
of distributions which is the dual of some space where the sequence (Eε) is
uniformly bounded.

Corollary 3.1. There exists θ ∈]0, 1[ and η ∈W sθ,3
t,x‖,loc

(W−θ,3x⊥,v⊥,loc) such that
for all ξ > 0, up to a subsequence:

(3.22) ηε → η strongly in L3
t,loc(L

3
x‖,loc(W

−θ−ξ,3
x⊥,v⊥,loc)).

Proof. By assumption on the initial data, there exists q > 3 such that f0 ∈
Lqx,v; thanks to the a priori Lq estimate, we get gε ∈ L∞t (Lqx,v). Define γ by:

1
γ

=
2
3

+
1
q

The previous lemma shows that for some s > 0:

ηε ∈W s,γ
t,x‖loc(W

−1,γ
x⊥,v⊥,loc) uniformly in ε.

Since gε ∈ Lqt,loc(L
q
x,v) and Ψ has compact support, we get by Hölder’s

inequality:
ηε ∈ Lqt,loc(L

q
x‖

(Lqx⊥,v⊥)).

Since 1
γ >

2
3 >

1
3 and 1

q <
1
3 , there exists θ ∈]0, 1[ such that

1
3

=
1− θ
q

+
θ

γ
.

By interpolation ([4]) we deduce that:

ηε ∈W sθ,3
t,x‖loc(W

−θ,3
x⊥,v⊥,loc)).

This implies that:

ηε ∈W sθ,3
t,loc(L

3
x‖

(W−θ,3x⊥,v⊥,loc)) uniformly in ε.

ηε ∈ L3
t,loc(W

sθ,3
x‖,loc(W

−θ,3
x⊥,v⊥,loc)) uniformly in ε.

We then use the following refined interpolation result proved by Simon in
[23], which is, roughly speaking, an anisotropic adaptation of the classical
Riesz-Fréchet-Kolmogorov criterion for compactness in Lp:
Theorem 3.2. Let 1 ≤ p ≤ ∞ and s > 0. Let T > 0 and X,B, Y be three
Banach Spaces such that X ⊂ B ⊂ Y and with X compactly embedded in B.
Let F be a bounded set of Lpt ([0, T ], X)∩W s,p

t ([0, T ], Y ). Then F is relatively
compact in Lpt ([0, T ], B).

This entails, thanks to Sobolev’s embeddings, that the sequence (ηε) is
strongly relatively compact in L3

t,loc(L
3
x‖,loc(W

−θ−ξ,3
x⊥,v⊥,loc)), for all ξ > 0.

�

From now on, we consider ξ such that θ+ξ < 1, which is of course possible
since θ < 1.
Remark. Following the remark in Step 2 and by uniqueness of the limit in
the sense of distributions, we get:

η =
∫
GΨ(v‖)dv‖.
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Step 4: Passing to the weak limit. We will first need a technical lemma
which is obtained directly from the 2-scale convergence of Eε.

Lemma 3.2. Up to a subsequence,

• R(t/ε)Eε(t, x+R(−t/ε)v) weakly converges to 1
2π

∫ 2π
0 R(τ)E(t, τ, x+

R(−τ)v)dτ ∈ L∞t (L∞2π,τ (L3/2
x‖ (W 1,3/2

x⊥ )).
• R(t/ε)Eε(t, x+R(−t/ε)v) weakly converges to 1

2π

∫ 2π
0 R(τ)E(t, τ, x+

R(−τ)v)dτ ∈ L∞t (L∞2π,τ (L3/2
x‖ (W 1,3/2

x⊥ )).

Proof. Eε is uniformly bounded in L∞t (L3/2
x‖ (W 1,3/2

x⊥ )), so there exists E ∈
L∞t (L3/2

x‖ (W 1,3/2
x⊥ ) such that Eε 2 scale converge to E .

We take Ψ(t, τ, x) a 2π-periodic w.r.t. τ test function and use the 2 scale
convergence of Eε:

∫
R(t/ε)Eε(t, x+R(−t/ε)v).Ψ(t, t/ε, x)dtdx

=
∫
Eε(t, x).tR(t/ε)Ψ(t, t/ε, x−R(−t/ε)v)dtdx

→ 1
2π

∫ ∫ 2π

0
E(t, τ, x).tR(τ)Ψ(t, τ, x−R(−τ)v)dtdτdx

=
1

2π

∫ ∫ 2π

0
E(t, τ, x+R(−τ)v).tR(τ)Ψ(t, τ, x)dtdτdx.

The proof is the same for R(t/ε)Eε(t, x+R(−t/ε)v).
�

Now, we can write the weak formulation of the kinetic equation (3.6)
against a smooth test function of the form Φ(t, x, v⊥)Ψ(v‖) with compact
support. If we can pass to the limit for such test functions, then by density
it will be also the case for all test functions.

Noticing that divx v‖ = 0 and that

divx (R(t/ε)Eε(t, x+R(−t/ε)v)) + divv (R(t/ε)Eε(t, x+R(−t/ε)v)) = 0,

we get:

∫ (
∂t(Φ(t, x, v⊥)Ψ(v‖)) + v‖.∇x(ΦΨ) +R(t/ε)Eε(t, x+R(−t/ε)v).∇x(ΦΨ)

+R(t/ε)Eε(t, x+R(−t/ε)v).∇v(ΦΨ)
)
gεdtdx⊥dx‖dv⊥dv‖

= −
∫
gε,0Φ(0, x, v⊥)Ψ(v‖)dxdv.

We can easily take weak limits in the linear part ∂tgε + v‖.∇xgε.



20 DANIEL HAN-KWAN

Consider now the “non linear” term:∫
R(t/ε)Eε(t, x+R(−t/ε)v).∇xΦ(t, x, v⊥)gεΨ(v‖)dtdx⊥dx‖dv⊥dv‖ =∫

R(t/ε)Eε(t, x+R(−t/ε)v).∇xΦ(t, x, v⊥)
(∫

gεΨ(v‖)dv‖

)
dtdx⊥dx‖dv⊥.

The convergence of this term can be established by the strong/weak con-
vergence principle. Nevertheless, we have to carefully use this technique to
get the result and we will explicitly evaluate the difference:∣∣∣ ∫ R(t/ε)Eε(t, x+R(−t/ε)v).∇xΦ(t, x, v⊥)ηεdtdx⊥dx‖dv⊥

−
∫

1
2π

∫ 2π

0
R(τ)E(t, τ, x+R(−τ)v)dτ.∇xΦηdtdxdv⊥

∣∣∣
≤
∣∣∣ ∫ (R(t/ε)Eε(t, x+R(−t/ε)v)− 1

2π

∫ 2π

0
R(τ)E(t, τ, x+R(−τ)v)dτ

)
.∇xΦηdtdxdv⊥

∣∣∣
+
∣∣∣ ∫ R(t/ε)Eε(t, x+R(−t/ε)v).∇xΦ(t, x, v⊥) (ηε − η) dtdx⊥dx‖dv⊥

∣∣∣.
The first term of the right hand side converges to zero because of the

2-scale convergence of Eε (Lemma 3.2). We can control the second term by:

(3.23) C‖Eε.∇xΦ‖
L

3/2
t (L

3/2
x‖ (W

θ+ξ,3/2
x⊥,v⊥ ))

‖ηε − η‖L3
t (L

3
x‖

(W−θ−ξ,3x⊥,v⊥ ))
.

(these norms are actually taken on the compact support of Φ but we do not
write it for the sake of simplicity)

Using the fact that Eε is uniformly bounded in L3/2
t,loc(L

3/2
x‖ (W θ+ξ,3/2

x⊥ )) (this
is an easy consequence of Lemma 2.4) and Corollary 3.1,

‖ηε − η‖L3
t ([0,T ],L3

x‖
(Kx‖ ,W

−θ−ξ,3
x⊥,v⊥ (Kx⊥×Kv⊥ )))

→ 0,

we can deduce that∣∣∣∣∫ R(t/ε)Eε(t, x+R(−t/ε)v).∇xΦ(t, x, v⊥) (ηε − η) dtdx⊥dx‖dv⊥

∣∣∣∣→ 0.

The proof is of course the same for the other non-linear term:

R(t/ε)Eε(t, x+R(−t/ε)v).∇vgε
To conclude let us compute the asymptotic equation satisfied by the 2-

scale limit of Vε denoted by V . We take Ψ(t, τ, x) a 2π-periodic w.r.t. τ test
function. We write the weak formulation of the Poisson equation:

∫
Vε∇x‖Ψ(t, t/ε, x)dtdx+

ε2

∫
∇x‖Vε∇x‖Ψ(t, t/ε, x)dtdx+

∫
∇x⊥Vε∇x⊥Ψ(t, t/ε, x)dtdx

=
∫
fε(t, x, v)Ψ(t, t/ε, x)dtdvdx−

∫ (∫
f0dvdx

)
Ψ(t, t/ε, x)dtdvdx.

We then pass to the 2 scale limit:
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1
2π

∫ ∫ 2π

0
V (t, τ, x)∇x⊥Ψ(t, τ, x)dτdtdx+ 0

+
1

2π

∫ ∫ 2π

0
∇x⊥V (t, τ, x)∇x⊥Ψ(t, τ, x)dτdtdx =

1
2π

∫ ∫ 2π

0
F (t, τ, x, v)Ψ(t, τ, x)dtdvdx

− 1
2π

∫ ∫ 2π

0

(∫
f0dvdx

)
Ψ(t, τ, x)dτdvdx

=
1

2π

∫ ∫ 2π

0
G(t, τ, x+R(τ)v,R(τ)v)Ψ(t, τ, x)dτdvdx

− 1
2π

∫ ∫ 2π

0

(∫
f0dvdx

)
Ψ(t, τ, x)dτdvdx,

from which we get the “Poisson” equation given in Theorem 1.4:

V −∆⊥V =
∫
G(t, x+R(τ)v,R(τ)v)dv −

∫
f0dvdx.

Moreover since Eε,⊥ = −∇x⊥Vε and thanks to Remark 1 following Lemma
2.4, we easily get if we pass to the two-scale limit:

E = (−∇x⊥V, 0).

�

4. Concluding comments

4.1. Comments on the result. Finally we can see as in [12] (namely by
performing the change of variables x = xc − v⊥ and looking at the new
equations in the so-called gyro-variables (t, xc, v)) that the drift involving
the electric field in the asymptotic “kinetic” equation corresponds to the
electric drift that we mentioned in the introduction and which was expected
to appear. We also notice that the Poisson equation we get in the asymptotic
system is the same than the one used in the numerical simulations of tokamak
plasmas (see for example the GYSELA code in [18]). Nevertheless, physicists
do not get it in the same formal way: they claim that it only expresses the
quasineutrality of the plasma (there is no “real” Poisson equation involved)
and the perpendicular laplacian happens to appear due from the so-called
“polarization drift” ([18], see also [24] for a physical reference on the subject).
It would be interesting to justify such a computation from a mathematical
point of view.

At last, we wish to point out a really unpleasant feature of our model,
which is that there is no parallel dynamics.

4.2. An alternative model. Let us give some comments on the gyrokinetic
approximation of the system (4.2) which consists in considering a population
of electrons in a fixed background of ions:

(4.1) niε =
∫
f0dxdv.

Actually, quite surprisingly, this model engenders more interesting physi-
cal properties: in this case the parallel component of the electric field does
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not vanish but appears as a pressure in the end (which may bring difficulties
both in the study of the asymptotic system and in numerical simulations).

(4.2)


∂tfε + v⊥

ε .∇xfε + v‖.∇xfε + (Eε + v∧B
ε ).∇vfε = 0

Eε = (−∇x⊥Vε,−ε∇x‖Vε)
−ε2∆x‖Vε −∆x⊥Vε =

∫
fεdv −

∫
f0dvdx

fε,t=0 = fε,0.

With the same computations as the present paper, we get:

fε 2-scale converges to F,(4.3)
Eε 2-scale converges to E .(4.4)

In a formal sense, there exists a function G such that:

(4.5) F (t, τ, x, v) = G(t, x+R(τ)v,R(τ)v)

and (G, E) is solution to:

∂tG+ v‖.∇xG+
1

2π

(∫ 2π

0
R(τ)E(t, τ, x+R(−τ)v)dτ

)
.∇xG

+
1

2π

(∫ 2π

0
R(τ)E(t, τ, x+R(−τ)v)dτ

)
.∇vG = 0,

G|t=0 = f0,

E = (−∇⊥V, E‖), −∆⊥V =
∫
G(t, x+R(τ)v,R(τ)v)dv −

∫
f0dvdx,

still denoting by R and R the linear operators defined by:

R(τ) =

cos τ − sin τ 0
sin τ cos τ 0

0 0 1

 ,R(τ) = (R(−π/2)−R(−π/2 + τ)) .

The parallel component E‖ has to be seen as a pressure (or the Lagrange
multiplier) associated to the “incompressibility” constraint

∫
T2

∫
G(t, x +

R(τ)v,R(τ)v)dvdx⊥ =
∫
f0dvdx

Let us just give a few words on the difficulties that arise with this model.
The Poisson equation can be restated as:

(4.6) −ε2∆x‖Vε−∆x⊥Vε =
∫
fεdv−

∫
fεdvdx⊥+

∫
fεdvdx⊥−

∫
f0dvdx,

so that thanks to the linearity of the Poisson equation we can study sepa-
rately two equations. The first one states:

(4.7) −ε2∆x‖V
1
ε −∆x⊥V

1
ε =

∫
fεdv −

∫
fεdvdx⊥.

For this part of the electric potential we get the same estimates as in lemma
2.4. Indeed,

∫ (∫
fεdv −

∫
fεdvdx⊥

)
dx⊥ = 0 so that we can use elliptic

estimates on the torus T2
x⊥

. Consequently this electric potential does not
give birth to any parallel dynamics, like in Theorem 1.4.
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The second one is:

(4.8) −ε2∆x‖V
2
ε =

∫
fεdvdx⊥ −

∫
f0dvdx︸ ︷︷ ︸

only depends on x‖

.

This equation, associated to the one giving the electric fieldE2
ε,‖ = −ε∂x‖V 2

‖ ,
is similar to the one studied by Grenier in [19], coupled to a Vlasov equation
describing a quasineutral plasma. In this case it was shown that there exist
plasma waves with both temporal and spatial oscillations with frequency 1√

ε

and magnitude of order 1√
ε
. Because of these waves, it is much more diffi-

cult to pass to the limit in order to get a kinetic equation. Grenier managed
to prove the convergence only for distribution functions with special form
and got in the end a Euler-like system with an electric field interpreted as a
Lagrange multiplier. Hence, in our case, this part of the electric field may
engender an non-zero E‖.

For these reasons, it seems much harder to expect to prove a rigorous
result similar to Theorem 1.4 with such a model.

4.3. Prospects. A way to pass to the limit in this latest case would be to
use a relative entropy method like in the papers of Brenier ([5]) and Golse
and Saint-Raymond ([16]). This will be the object of a forthcoming work.

Another interesting issue would be to consider a “true” Boltzmann-Maxwell
distribution for the electrons (not linearized like in this paper) and perform
an asymptotic analysis, maybe also with a relative entropy method.
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