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Abstract. The purpose of this note is to extend the L1 averaging lemma of Golse
and Saint-Raymond [10] to the case of a kinetic transport equation with a force field
F (x) ∈ W 1,∞. To this end, we will prove a local in time mixing property for the
transport equation ∂tf + v.∇xf + F.∇vf = 0.

Introduction

Let d ∈ N∗ and 1 < p < +∞. We consider Rd equipped with the Lebesgue measure. Let
f(x, v) and g(x, v) be two measurable functions in Lp(Rd × Rd) satisfying the transport
equation:

(0.1) v.∇xf = g.

Although transport equations are of hyperbolic nature (and thus there is a priori no
regularizing effect), it was first observed for by Golse, Perthame and Sentis in [8] and then
by Golse, Lions, Perthame and Sentis [9] (see also Agoshkov [1] for related results obtained
independently) that the velocity average (or moment) ρ(x) =

∫
fΨ(v)dv with Ψ ∈ C∞c (Rd)

is smoother than f and g : more specifically it belongs to some Sobolev space W s,p(Rd)
with s > 0. These kinds of results are referred to as "velocity averaging lemma". The
analogous results in the time-dependent setting also hold, that is for the equation:

(0.2) ∂tf + v.∇xf = g.

Refined results with various generalizations (like derivatives in the right-hand side, func-
tions with different integrability in x and v...) were obtained in [7], [3], [14], [13]. There
exist many other interesting contributions. We refer to Jabin [12] which is a rather complete
review on the topic.

Velocity averaging lemmas are tools of tremendous importance in kinetic theory since
they provide some strong compactness which is very often necessary to study non-linear
terms (for instance when one considers an approximation scheme to build weak solutions, or
for the study of asymptotic regimes). There are numerous applications of these lemmas; two
emblematic results are the existence of renormalized solutions to the Boltzmann equation
[5] and the existence of global weak solutions to the Vlasov-Maxwell system [6]. Both are
due to DiPerna and Lions.

The limit case p = 1 is actually of great interest. In general, for a sequence (fn) uniformly
bounded in L1(dx⊗ dv) with v.∇xfn also uniformly bounded in L1(dx⊗ dv), the sequence
of velocity averages ρn =

∫
fnΨ(v)dv is not relatively compact in L1(dx) (we refer to [9]

for an explicit counter-example). This lack of compactness is due to the weak compactness
pathologies of L1. Indeed, as soon as we add some weak compactness to the sequence
(or equivalently some equiintegrability in x and v in view of the classical Dunford-Pettis
theorem), then we recover some strong compactness in L1 for the moments (see Proposition
3 of [9] or Proposition 3 below).

We recall precisely the notion of equiintegrability which is central in this paper.

Definition. (1) (Local equiintegrability in x and v)
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Let (fε) be a bounded family of L1
loc(dx⊗ dv). It is said locally equiintegrable in

x and v if and only if for any η > 0 and for any compact subset K ⊂ Rd × Rd,
there exists α > 0 such that for any measurable set A ⊂ Rd × Rd with |A| < α, we
have for any ε :

(0.3)
∫
A
1K(x, v)|fε(x, v)|dvdx ≤ η.

(2) (Local equiintegrability in v)
Let (fε) be a bounded family of L1

loc(dx⊗ dv). It is said locally equiintegrable in
v if and only if for any η > 0 and for any compact subset K ⊂ Rd × Rd, there
exists α > 0 such that for each family (Ax)x∈Rd of measurable sets of Rd satisfying
supx∈Rd |Ax| < α, we have for any ε :

(0.4)
∫ (∫

Ax

1K(x, v)|fε(x, v)|dv
)
dx ≤ η.

We observe that local equiintegrability in (x, v) always implies local equiintegrability in
v, whereas the converse is false in general.

The major improvement of the paper of Golse and Saint-Raymond [10] is to show that
actually, only equiintegrability in v is needed to obtain the L1 compactness for the moments.
This observation was one of the key arguments of their outstanding paper [11] which
establishes the convergence of renormalized solutions to the Boltzmann equation in the
sense of DiPerna-Lions to weak solutions to the Navier-Stokes equation in the sense of
Leray.

More precisely, the result they prove is Theorem 1 stated afterwards, with F = 0 (free
transport case). The aim of this paper is to show that the result also holds if one adds
some force field F (x) = (Fi(x))1≤i≤d with F ∈W 1,∞(Rd):

Theorem 1. Let (fε) be a family bounded in L1
loc(dx⊗ dv) locally equiintegrable in v and

such that v.∇xfε + F.∇vfε is bounded in L1
loc(dx⊗ dv). Then :

(1) (fε) is locally equiintegrable in both variables x and v.
(2) For all Ψ ∈ C1

c (Rd), the family ρε(x) =
∫
fε(x, v)Ψ(v)dv is relatively compact in

L1
loc(dv).

One key ingredient of the proof for F = 0 is the nice dispersion properties of the free
transport operator. We will show in Section 2 that an analogue also holds for small times
when F 6= 0:

Proposition 1. Let F (x) be a Lipschitz vector field. There exists a maximal time τ > 0
(depending only on ‖∇xF‖L∞) such that, if f is the solution to the transport equation:{

∂tf + v.∇xf + F.∇vf = 0,
f(0, ., .) = f0 ∈ Lp(dx⊗ dv),

Then:

(0.5) ∀|t| ≤ τ, ‖f(t)‖L∞x (L1
v) ≤

2

|t|d
‖f0‖L1

x(L∞v ).

Let us also mention that the main theorem generalizes to the time-dependent setting,
for transport equations of the form (0.2). The usual trick to deduce such a result from the
stationary case is to enlarge the phase space. Indeed we can consider x′ = (t, x) in Rd+1

endowed with the Lebesgue measure, and v′ = (t, v) in Rd+1 endowed with the measure
µ = δt=1 ⊗ Leb (where δ is the dirac measure). Then such a measure µ satisfies property
(2.1) of [9]. As a consequence, all the results of Section 1 will still hold.
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Nevertheless, we observe that our key local in time mixing estimate (0.5) seems to not
hold when Rd+1 is equipped with the new measure µ (the main problem being that the
only speed associated to the first component of v′ is 1). For this reason, we can not prove
that equiintegrability in v implies equiintegrability in t. One result (among other possible
variants) is the following:

Theorem 2. Let F (t, x) ∈ C0(R+,W 1,∞(Rd)). Let (fε) be a family bounded in L1
loc(dt ⊗

dx ⊗ dv) locally equiintegrable in v and such that ∂tfε + v.∇xfε + F.∇vfε is bounded in
L1
loc(dt⊗ dx⊗ dv). Then :
(1) (fε) is locally equiintegrable in the variables x and v (but not necessarily with respect

to t).
(2) For all Ψ ∈ C1

c (Rd), the family ρε(t, x) =
∫
fε(t, x, v)Ψ(v)dv is relatively compact

with respect to the x variable in L1
loc(dt⊗dx), that is, for any compact K ⊂ R+

t ×Rdx:

(0.6) lim
δ→0

sup
ε

sup
|x′|≤δ

‖(1Kρε)(t, x+ x′)− (1Kρε)(t, x)‖L1(dt⊗dx) = 0.

Another possibility is to assume that fε is bounded in L∞t,loc(L
1
x,v,loc), in which case we

will get equiintegrability in t, x and v and thus compactness for ρε in t and x. We refer to
[11], Lemma 3.6, for such a statement in the free transport case.

Remarks 0.1. (1) Since the result of Theorem 1 is essentially of local nature, we could
slightly weaken the assumption on F :

For any R > 0,

(0.7) ∃M(R),∀|x1|, |x2| ≤ R, |F (x1)− F (x2)| ≤M(R)|x1 − x2|.

In other words we can deal with F ∈W 1,∞
loc .

(2) With the same proof, we can treat the case of force fields F (x, v) ∈ W 1,∞
x,v,loc with

zero divergence in v :

divv F = 0.

Typically we may think of the Lorentz force v ∧B where B is a smooth magnetic
field.

(3) We can handle a family of force fields (Fε) depending on ε as soon as (Fε) is
uniformly bounded in W 1,∞(Rd).

The following of the paper is devoted to the proof of Theorem 1. In Section 1, we prove
that a family satisfying the assumptions of Theorem 1 and in addition locally equiintegrable
in x and v, has moments which are relatively strongly compact in L1. In Section 2, we inves-
tigate the local in time mixing properties of the transport equation ∂tf+v.∇xf+F.∇vf = 0.
Finally in the last section, thanks to the mixing properties we establish, we show by an
interpolation argument that equiintegrability in v provides some equiintegrability in x.

1. A first step towards L1 compactness

The first step is to show that under the assumptions of Theorem 1, point 1 implies point
2. Using classical averaging lemma in L2 ([6], [7]), we first prove the following L2 averaging
lemma.

Lemma 1. Let f, g ∈ L2(dx⊗ dv) satisfy the transport equation:

(1.1) v.∇xf + F.∇vf = g.

Then for all Ψ ∈ C1
c (Rd), ρ(x) =

∫
f(x, v)Ψ(v)dv ∈ H1/4

x . Moreover,

(1.2) ‖ρ‖
H

1/4
x
≤ C

(
‖F‖L∞x ‖f‖L2

x,v
+ ‖g‖L2

x,v

)
.
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(C is a constant depending only on Ψ.)

Proof. The standard idea is to consider −F.∇vf+g as a source. Then, since divv F (x) = 0,
we have :

−F.∇vf + g = −
d∑
i=1

∂

∂vi
(Fif) + g.

We conclude by applying the L2 averaging lemma of [6], Theorem 3. �

We recall now in Proposition 2 an elementary and classical representation result, ob-
tained by the method of characteristics.

Let b = (v, F ), Z = (X,V ). Since F ∈ W 1,∞, b satisfies the hypotheses of the global
Cauchy-Lipschitz theorem. We therefore consider the trajectories defined by:

(1.3)
{
Z ′(t;x0, v0) = b(Z(t;x0, v0))
Z(0;x0, v0) = (x0, v0).

For all time, the application (x0, v0) 7→ Z(t;x0, v0) = (X(t;x0, v0), V (t;x0, v0)) is well-
defined and is a C1 diffeomorphism. Moreover, since b does not depend explicitly on time,
it is also classical that Z(t) is a group. The inverse is thus given by (x, v) 7→ Z(−t;x, v).

Remark 1. Since div(b) = 0, Liouville’s theorem shows that the volumes in the phase
space are preserved (the jacobian determinant of Z is equal to 1).

Proposition 2. (1) The time-dependent Cauchy problem :

(1.4)
{
∂tf + v.∇xf + F.∇vf = 0,
f(0, ., .) = f0 ∈ Lp(dx⊗ dv)

has a unique solution (in the distributional sense) represented by

f(t, x, v) = f0(X(−t;x, v)), V (−t;x, v)) ∈ Lp(dx⊗ dv).

(2) For any λ > 0, the transport equation

(1.5) λf(x, v) + v.∇xf + F.∇vf = g ∈ Lp(dx⊗ dv)

has a unique solution (in the distributional sense) represented by:

Rλ : g(x, v) 7→ f(x, v) =

∫ +∞

0
e−λsg(X(−s;x, v), V (−s;x, v))ds ∈ Lp(dx⊗ dv).

In addition, Rλ is a linear continuous map on Lp with a norm equal to 1
λ .

Using Rellich’s compactness theorem, we straightforwardly have the following corollary:

Corollary 1. The linear continuous map Tλ,Ψ :

L2(dx⊗ dv)→ L2
loc(dx)

g 7→ ρ =

∫
Rλ(g)(., v)Ψ(v)dv

is compact for all Ψ ∈ C1
c (Rd) and all λ > 0.

Proof. Using Lemma 1 and Proposition 2, we have:

‖Tλ,Ψ(g)‖
H

1/4
x
≤ C (1 + ‖F‖L∞) ‖g‖L2

x,v
.

The conclusion follows. �

Using this compactness property, as in Proposition 3 of [9], we can show the next result:
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Proposition 3. Let K be a bounded subset of L1(dx ⊗ dv) equiintegrable in x and v (in
view of the Dunford-Pettis theorem, it means in other words that K is weakly compact in
L1), then Tλ,Ψ(K) is relatively strongly compact in L1

loc(dx).

Proof. We recall the proof of this result for the sake of completeness.
The proof is based on a real interpolation argument. We fix a parameter η > 0. For any

g ∈ K and any α > 0, we may write :

g = gα1 + gα2 ,

with

gα1 = 1{|g(x,v)|>α}g,

gα2 = 1{|g(x,v)|≤α}g.

Then, by linearity of Tλ,Ψ, we write u = Tλ,Ψ(g) = u1 + u2, with u1 = Tλ,Ψ(gα1 ) and
u2 = Tλ,Ψ(gα2 ).

Let K be a fixed compact set of Rdx.
We clearly have, since Tλ,Ψ is linear continuous on L1(K):

‖u1‖L1
x(K) ≤ C‖gα1 ‖1.

We notice that:

|{(x, v), |g(x, v)| > α}| ≤ 1

α
‖g‖L1 ≤

1

α
C.

Since K is equiintegrable, there exists α > 0 such that for any g ∈ K :∫
|g1{|g(x,v)|>α}|dxdv ≤

η

C
.

Consequently for α large enough, we have:

‖u1‖L1
x(K) ≤ η.

The parameter α being fixed, we clearly see that {gα2 , g ∈ K} is a bounded subset of
L1
x,v ∩ L∞x,v, and consequently of L2

x,v. Because of Corollary 1, {u2, u2 = Tλ,Ψ(gα2 ), g ∈ K}
is relatively compact in L2

loc(dx). In particular it is relatively compact in L1
loc(dx).

As a result, we have shown that for any η > 0, there exists Kη ⊂ L1
x(K) compact, such

that Tλ,Ψ(K) ⊂ Kη +B(0, η). So this family is precompact and consequently it is compact
since L1

x(K) is a Banach space.
�

We deduce the preliminary result (which means that the first point implies the second
in Theorem 1):

Theorem 3. Let (fε) a family of L1
loc(dx⊗ dv) locally equiintegrable in x and v such that

(v.∇xfε + F.∇vfε) is a bounded family of L1
loc(dx ⊗ dv). Then for all Ψ ∈ C1

c (Rd), the
family ρε(x) =

∫
fε(x, v)Ψ(v)dv is relatively compact in L1

loc(dx).

Proof. Let Ψ ∈ C1
c (Rd). Let R > 0 be a large number such that Supp Ψ ⊂ B(0, R);

we intend to show that (1B(0,R)(x)ρε(x)) is compact in L1(B(0, R)). First of all, we can
assume that the fε are compactly supported in the same compact set K ⊂ Rd × Rd, with
B(0, R) × B(0, R) ⊂ K̊. Indeed we can multiply the family by a smooth function χ such
that:

suppχ ⊂ K,
χ ≡ 1 on B(0, R)×B(0, R).
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We observe that :

v.∇x(χfε) = χ(v.∇xfε) + fε(v.∇xχ),

F.∇v(χfε) = χF.∇v(fε) + fε(F.∇vχ).

Thus the family (χfε) satisfies the same L1 boundedness properties as (fε). The equiin-
tegrability property is also clearly preserved. Furthermore, for any x in B(0, R), we have
: ∫

fε(x, v)Ψ(v)dv =

∫
fε(x, v)χ(v)Ψ(v)dv

Consequently we are now in the case of functions supported in the same compact set.
We have for all ε > 0, λ > 0, by linearity of the resolvent Rλ defined in Proposition 2 :∫
fε(x, v)Ψ(v)dv =

∫
Rλ(λfε + v.∇xfε + F.∇vfε)Ψ(v)dv

=λ

∫
(Rλfε)(x, v)Ψ(v)dv +

∫
(Rλ(v.∇xfε + F.∇vfε))(x, v)Ψ(v)dv.

Let η > 0. We take λ = sup
ε

‖(v.∇xfε + F.∇vfε)‖L1
x,v
‖Ψ‖L∞

η
.

Then we have by Proposition 2 :∥∥∥∥∫ (Rλ(v.∇xfε + F.∇vfε))(x, v)Ψ(v)dv

∥∥∥∥
L1
x

≤‖Rλ(v.∇xfε + F.∇vfε)‖L1
x,v
‖Ψ‖L∞v

≤ 1

λ
‖(v.∇xfε + F.∇vfε)‖L1

x,v
‖Ψ‖L∞v

≤η.

Moreover, since (fε) is bounded in L1(dx⊗dv) and equiintegrable in x and v, Proposition
3 implies that the family (

∫
Rλ(fε)Ψ(v)dv) is relatively compact in L1

x(B(0, R)). Finally
we can argue as for the end of the proof of Proposition 3: for all η > 0, there exists
Kη ⊂ L1

x(B(0, R)) compact, such that (ρε) ⊂ Kη + B(0, η). So this family is precompact
and consequently it is compact since L1(B(0, R)) is a Banach space.

�

2. Mixing properties of the operator v.∇x + F.∇v
2.1. Free transport case. In the case when F = 0, Bardos and Degond in [2] proved a
mixing result (also referred to as a dispersion result for large time asymptotics) which is a
key argument in the proof of Theorem 1 (with F = 0) by Golse and Saint-Raymond [10].
This kind of estimate was introduced for the study of classical solutions of the Vlasov-
Poisson equation in three dimensions and for small initial data.

Lemma 2. Let f be the solution to:

(2.1)
{
∂tf + v.∇xf = 0,
f(0, ., .) = f0.

Then for all t > 0:

(2.2) ‖f(t)‖L∞x (L1
v) ≤

1

|t|d
‖f0‖L1

x(L∞v ).

For further results and related questions (Strichartz estimates...), we refer to Castella
and Perthame [4] and Salort [15], [16], [17].

When f0 is the indicator function of a set with "small" measure with respect to x,
then the previous estimate (2.2) asserts that for t > 0, f(t) is for any fixed x the indicator
function of a set with a "small" measure in v (at least that we may estimate): this property
is crucial for the following. In (2.2), there is blow-up when t → 0, which is intuitive, but
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x

v

t = 0 t > 0

Figure 1. Mixing property for free transport

this does not matter since we have nevertheless a control of the left-hand side for any
positive time.

Actually, for our purpose, parameter t is an artificial time (it does not have the usual
physical meaning). It appears as an interpolation parameter in Lemma 4, and can be taken
rather small. This is the reason why local in time mixing is sufficient. We will consequently
look for local in time mixing properties. Anyway, the explicit study in Example 2 below
shows that the dispersion inequality is in general false for large times when F 6= 0.

Proof of Lemma 2. The proof of this result is based on the explicit solution to (2.1), which
is:

f(t, x, v) = f0(x− tv, v)

We now evaluate:

‖f(t)‖L∞x (L1
v) = sup

x

∫
f0(x− tv, v)dv

= sup
x

∫
f0(z,

x− z
t

)|t|−ddz

≤ |t|−d
∫
‖f0(z, .)‖∞dz

≤ |t|−d‖f0‖L1
x(L∞v ).

The key argument is the change of variables x− tv 7→ z, the jacobian of which is equal to
t−d. �

We intend to do the same in the more complicated case when f is the solution of a
transport equation with F 6= 0. Let us mention that in [2], Bardos and Degond actually
prove the dispersion result for non zero force fields but with a polynomial decay in time.
Here, this is not the case (the field F does not even depend on time t), but we will prove
that the result holds anyway for small times.
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2.2. Study of two examples. In the following examples, f is the explicit solution to the
transport equation (1.4) with an initial condition f0 and a force deriving from a potential.

Example 1
Force F = −∇xV , with V = −|x|2/2.
Let f be the solution to:

(2.3)
{
∂tf + v.∇xf + x.∇vf = 0,
f(0, ., .) = f0.

The effect of such a potential will be to make the particles escape faster to infinity. So we
expect to have results very similar to those of lemma 2.

After straightforward computations we get :

f(t, x, v) = f0

(
x

(
et + e−t

2

)
+ v

(
e−t − et

2

)
, x

(
e−t − et

2

)
+ v

(
et + e−t

2

))
,

which allows to show the same dispersion estimate with a factor et−e−t

2 instead of t.
For all t > 0, we have:

(2.4) ‖f(t)‖L∞x (L1
v) ≤

2d

(et − e−t)d
‖f0‖L1

x(L∞v ).

Example 2
(Harmonic potential) Force F = −∇xV , with V = |x|2/2.
Let f be the solution to:

(2.5)
{
∂tf + v.∇xf − x.∇vf = 0,
f(0, ., .) = f0.

With such a potential, particles are expected to be confined and consequently do not
drift to infinity. For this reason, it is hopeless to prove the analogue of Lemma 2 for large
times (here there is no dispersion). As mentioned before, it does not matter since we only
look for a result valid for small times. We expect that there is enough mixing in the phase
space to prove the result.

After straightforward computations we explicitly have :

f(t, x, v) = f0(x cos t− v sin t, v cos t+ x sin t).

We observe here that the solution f is periodic with respect to time. Thus, as expected,
it is not possible to prove any decay when t → +∞; nevertheless we can prove a mixing
estimate with a factor | sin t| instead of t.

For all t > 0:

(2.6) ‖f(t)‖L∞x (L1
v) ≤

1

| sin t|d
‖f0‖L1

x(L∞v ).

Of course, this estimate is useless when t = kπ, k ∈ N∗.

Remark 2. We notice that et−e−t

2 ∼0 t and sin(t) ∼0 t, which seems encouraging.

2.3. General case : F with Lipschitz regularity. The study of these two examples
suggests that at least for small times, the mixing estimate is still satisfied, maybe with a
corrector term which does not really matter.

One nice heuristic way to understand this is to see that since F is quite smooth, the
dynamics associated to the operator v.∇x + F.∇v is expected to be close to those of free
transport, at least for small times.

Let X(t;x, v) and V (t;x, v) be the diffeomorphisms introduced in the method of char-
acteristics in Section 1 and defined in (1.3).
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Using Taylor’s formula, we get by definition of X and V :

X(−t;x, v) = x− tv +

∫ t

0
(t− s)F (X(−s;x, v))ds.

We recall Rademacher’s theorem which asserts that W 1,∞ functions are almost every-
where derivable. Hence, using Lebesgue domination theorem, we get:

∂v[X(−t;x, v)] = −tId+

∫ t

0
(t− s)∇xF (X(−s;x, v))∂v[X(−s;x, v)]ds.(2.7)

We deduce the estimate :

‖∂v[X(−t;x, v)]‖∞ ≤ t+

∫ t

0
(t− s)‖∇xF‖∞‖∂v[X(−s;x, v))]‖∞ds.

Gronwall’s lemma implies then that:

(2.8) ‖∂v[X(−t;x, v)]‖∞ ≤ te
t2

2
‖∇xF‖∞ .

We can also take the determinant of identity (2.7) :

det(∂v[X(−t;x, v)]) =

(−t)d det

(
Id− 1

t

∫ t

0
(t− s)∇xF (X(−s;x, v))∂v[X(−s;x, v)]ds

)
.

(2.9)

The right-hand side is the determinant of a matrix of the form Id + A(t) where A is a
matrix whose L∞ norm is small for small times t (one can use estimate (2.8) to ensure that
‖A(t)‖∞ = o(t)). Consequently, in a neighborhood of 0, for any fixed x, ∂v[X(−t;x, v)]
is invertible. Furthermore the map v 7→ X(−t;x, v)) is injective for small positive times.
Indeed, let v 6= v′. We compare:

X(−t;x, v′)−X(−t;x, v) = t(v − v′) +

∫ t

0
(t− s)[F (X(−s;x, v′))− F (X(−s;x, v))]ds.

Consequently we have:

|X(−t;x, v′)−X(−t;x, v)| ≤ t|v− v′|+
∫ t

0
(t− s)‖∇xF‖L∞ |X(−s;x, v′)−X(−s;x, v)|ds.

Thus, by Gronwall inequality we obtain:

|X(−t;x, v′)−X(−t;x, v)| ≤ t|v − v′|e
t2

2
‖∇xF‖L∞ .

Finally we observe that:

|X(−t;x, v′)−X(−t;x, v)| ≥t|v − v′| −
∣∣∣∣∫ t

0
(t− s)[F (X(−s;x, v′))− F (X(−s;x, v))]ds

∣∣∣∣
≥t|v − v′| −

∫ t

0
(t− s)‖∇xF‖L∞ |X(−s;x, v′)−X(−s;x, v)|ds

≥|v − v′|
(
t−
∫ t

0
(t− s)se

s2

2
‖∇xF‖L∞‖∇xF‖L∞ds

)
.

Consequently, there is a maximal time τ0 > 0, depending only on ‖∇xF‖L∞ such that for
any |t| ≤ τ0, we have :

|X(−t;x, v′)−X(−t;x, v)| ≥ t

2
|v − v′|.

This proves our claim.
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Thus, by the local inversion theorem, this map is a C1 diffeomorphism on its image.
We have now the following elementary quantitative estimate :

Lemma 3. Let t 7→ A(t) be a continuous map defined on a neighborhood of 0, such that
‖A(t)‖∞ = o(t). Then for small times:

det(Id+A(t)) ≥ 1− d!‖A(t)‖∞.

We recall that d is the space dimension and d! = 1× 2× ...× d.

We apply this lemma to (2.9), which allows us to say that there exists a maximal time
τ > 0 such that for any |t| ≤ τ , we have :

(2.10) |det(∂v[X(−t;x, v)]|−1 ≤ 2|t|−d.

We have proved that v 7→ X(−t;x, v) is a C1 diffeomorphism such that the jacobian of
its inverse satisfies (2.10) in a neighborhood of t = 0. We can consequently conclude as in
the proof of Lemma 2 (by performing the change of variables X(−t;x, v) 7→ v).

As a result we have proved the proposition :

Proposition 4. Let F (x) be a Lipschitz vector field. There exists a maximal time τ > 0
(depending only on ‖∇xF‖L∞) such that, if f is the solution to the transport equation:

(2.11)
{
∂tf + v.∇xf + F.∇vf = 0,
f(0, ., .) = f0 ∈ Lp(dx⊗ dv).

Then:

(2.12) ∀|t| ≤ τ, ‖f(t)‖L∞x (L1
v) ≤

2

|t|d
‖f0‖L1

x(L∞v ).

Remark 3. If one writes down more explicit estimates, it can be easily shown that τ is
bounded from below by T defined as the only positive solution to the equation:

(2.13)
d!

3
‖∇xF‖∞T 2e‖∇xF‖∞ T2

2 = 1.

Remark 4. Of course, one can replace the factor 2 in the mixing estimate by any q > 1
(and the maximal time τ will depend also on q).

3. From local equiintegrability in velocity to local equiintegrability in
position and velocity

In this section, we finally proceed as in [10], with some slight modifications adapted to
our case. We start from the following Green’s formula :

Lemma 4. Let f ∈ L1(dx⊗dv) with compact support such that v.∇xf +F.∇vf ∈ L1(dx⊗
dv). Then for all Φ0 ∈ L∞(dx⊗ dv), we have for all t ∈ R∗+ :∫

f(x, v)Φ0(x, v)dxdv =

∫
f(x, v)Φ(t, x, v)dxdv

−
∫ t

0

∫
Φ(s, x, v)(v.∇xf + F.∇vf)dsdxdv,

(3.1)

where Φ is the solution to:

(3.2)
{
∂tΦ + v.∇xΦ + F.∇vΦ = 0
Φ|t=0 = Φ0.
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Proof. We have for all t > 0,
∫

Ω f(x, v)(∂t + v.∇x + F.∇v)Φ(s, x, v)dsdxdv = 0, where
Ω =]0, t[×Rd × Rd. We first have:∫

Ω
f(x, v)∂tΦ(s, x, v)dsdxdv =

∫ ∫
f(x, v)Φ(t, x, v)dxdv −

∫ ∫
f(x, v)Φ0(x, v)dxdv.

Finally, by Green’s formula we obtain:∫ t

0

∫
f(x, v)(v.∇x+F.∇v)Φ(s, x, v)dsdxdv

= −
∫ t

0

∫
Φ(s, x, v)(v.∇x + F.∇v)f(x, v)dsdxdv.

There is no contribution from the boundaries since f is compactly supported. �

Lemma 5. Let (fε) a bounded family of L1
loc(dx ⊗ dv) locally integrable in v such that

(v.∇xfε + F.∇vfε) is a bounded family of L1
loc(dx ⊗ dv). Then for all Ψ ∈ C1

c (Rd), such
that Ψ ≥ 0, the family ρε(x) =

∫
|fε(x, v)|Ψ(v)dv is locally equiintegrable.

Proof. Let K1 be a compact subset of Rd. We want to prove that (1K1ρε(x)) is equiinte-
grable. Without loss of generality, we can assume as previously that the fε are supported
in the same compact support K = K1×K2 and that Ψ is compactly supported in K2. Fur-
thermore, the formula∇|fε| = sign(fε)∇fε shows that the |fε| satisfy the same assumptions
of equiintegrability and L1 boundedness as the family (fε). For the sake of readability, we
will thus assume that fε are almost everywhere non-negative instead of considering |fε|.
Finally we may assume that ‖Ψ‖∞ = 1 (multiplying by a constant does not change the
equiintegrability property).

The idea of the proof is to show that thanks to the mixing properties established previ-
ously, the equiintegrability in v provides some equiintegrability in x.

Let η > 0. By definition of the local equiintegrability in v, we obtain a parameter α > 0
associated to K and η. We also consider parameters α′ > 0 and t ∈]0, τ [ (where τ is the
maximal time in Proposition 4) to be fixed ultimately. We mention that t will be chosen
only after α′ is fixed.

Let A a bounded mesurable subset included inK1 with |A| ≤ α′. We consider Φ0(x, v) =
1A(x) and Φ the solution of the transport equation (3.2) with Φ0 as initial data.

Observe now that we have ‖Φ0‖L1
x(L∞v ) = |A|. Moreover, since Φ0 takes its values in

{0, 1}, it is also the case for Φ (this is a plain consequence of the transport of the data).
We define for all s > 0 and for all x ∈ Rd, the set A(s)x = {v ∈ Rd,Φ(s, x, v) = 1}. At

this point of the proof, we make a crucial use of the mixing property stated in Proposition
4 :

sup
x
|A(t)x| = sup

x

∫
Φ(t, x, v)dv

= ‖Φ(t, ., .)‖L∞x (L1
v)

≤ 2|t|−d ‖Φ0‖L1
x(L∞v )︸ ︷︷ ︸

|A|≤α′

≤ α,

if we choose α′ satisfying α′ < 1
2 t
Dα.

Thanks to Lemma 4:∫
f(x, v)Ψ(v)Φ0(x, v)dxdv =

∫
f(x, v)Ψ(v)Φ(t, x, v)dxdv

−
∫ t

0

∫
Φ(s, x, v)(v.∇x + F.∇v)(fε(x, v)Ψ(v))dxdvds.
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In other words, the operator ∂t + v.∇x + F.∇v has transported the indicator function
and has transformed a subset small in x into a subset small in v.

By definition of ρε, we have:∫
f(x, v)Ψ(v)Φ0(x, v)dxdv =

∫
1A(x)ρε(x)dx.

By definition of A(t)x we also have:∫
f(x, v)Ψ(v)Φ(t, x, v)dxdv =

∫ (∫
A(t)x

fε(x, v)Ψ(v)dv

)
dx.

Thus, since (fε) are locally equiintegrable in v we may evaluate:∫ (∫
A(t)x

fε(x, v)Ψ(v)dv

)
dx ≤

∫ ∫
A(t)x

|fε|1K ‖Ψ‖∞︸ ︷︷ ︸
=1

dxdv

≤η.
Finally we have:∫

1A(x)ρε(x)dx =

∫ (∫
A(t)x

fε(x, v)Ψ(v)dv

)
dx

−
∫ t

0

∫
Φ(s, x, v)(v.∇x + F.∇v)(fε(x, v)Ψ(v))dsdxdv

≤η +

∫ t

0

∫
|Φ(s, x, v)||(v.∇x + F.∇v)(fε(x, v)Ψ(v))|dsdxdv

≤η + t

‖ΨΦ‖∞︸ ︷︷ ︸
≤1

‖v.∇xfε + F.∇vfε‖1 + ‖Φ‖∞︸ ︷︷ ︸
=1

‖F.∇vΨ(v)‖∞‖fε‖1


≤2η,

by taking t sufficiently small:

t <
η

supε ‖v.∇xfε + F.∇vfε‖1 + ‖F.∇vΨ(v)‖∞‖fε‖1
.

This finally proves that (ρε) is locally equiintegrable in x. �

Lemma 6. Let (gε)a bounded family of L1
loc(dx⊗ dv) locally equiintegrable in v. If for all

Ψ ∈ C1
c (Rd) such that Ψ ≥ 0, x 7→

∫
|gε(x, v)|Ψ(v)dv is locally equiintegrable (in x), then

(gε) is locally equiintegrable in x and v.

Proof. Let K be a compact subset of Rd × Rd. We want to prove that (1Kgε) is equiinte-
grable in x and v. As before, we can clearly assume that the gε are compactly supported
in K.

Let η > 0. By definition of the local equiintegrability in v for (gε), we obtain α1 > 0
associated to η and K.

Let Ψ ∈ C1
c (Rd) a smooth non-negative and compactly supported function such that

Ψ ≡ 1 on pv(K) (where pv(K) is the projection of K on Rdv). By assumption, there exists
α2 > 0 such that for any A ⊂ Rd measurable set satisfying |A| ≤ α2,∫

A

(∫
|gε|Ψdv

)
dx < η.

Let B a measurable subset of Rd×Rd such that |B| < inf(α2
1, α

2
2). We define for all x ∈ Rd,

Bx = {v ∈ Rd, (x, v) ∈ B}.
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We consider now E = {x ∈ Rd, |Bx| ≤ |B|1/2} : this is the subset of x for which
there exist few v such that (x, v) ∈ B. Consequently for this subset, we can use the local
equiintegrability in v.

Concerning B\E, on the contrary, we can not use this property, but thanks to Cheby-
chev’s inequality we show that this subset is of small measure, which allows us to use this
time the local equiintegrability in x of

∫
|gε(x, v)|Ψ(v)dv :

|Ec| = |{x ∈ Rd, |Bx| > |B|1/2}|

≤ |B|
|B|1/2

≤ α2.

Hence we have :∫
1B|gε|dxdv ≤

∫
E

(∫
Bx

|gε|dv
)
dx+

∫
Ec

(∫
|gε|dv

)
dx

≤ η +

∫
Ec

(∫
|gε|Ψ(v)dv

)
dx

≤ 2η.

This shows the expected result. �

We are now able to conclude the proof of Theorem 1.

End of the proof of Theorem 1. If we successively apply Lemmas 5 and 6, we deduce that
the family (fε) is locally equiintegrable in x and v.

Finally we have shown in Section 1 that the first point implies the second.
�
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