CONTROL OF WATER WAVES

T. ALAZARD, P. BALDI, D. HAN-KWAN

ABSTRACT. We prove local exact controllability in arbitrary short time of the
two-dimensional incompressible Euler equation with free surface, in the case with
surface tension. This proves that one can generate arbitrary small amplitude
periodic gravity-capillary water waves by blowing on a localized portion of the
free surface of a liquid.
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1. INTRODUCTION

Water waves are disturbances of the free surface of a liquid. They are, in general,
produced by the immersion of a solid body, the oscillation of a solid portion of
the boundary or by impulsive pressures applied on the free surface. The question
we address in this paper is the following: which waves can be generated from the
rest position by a localized pressure distribution applied on the free surface. This
question is strictly related to the generation of waves in a pneumatic wave maker
(see [47, §21], [16]). Our main result asserts that, in arbitrarily small time, one can
generate any small amplitude, two-dimensional, gravity-capillary water waves. This
is a result from control theory. More precisely, this article is devoted to the study of
the local exact controllability of the incompressible Euler equation with free surface.

There are many known control results for linear or nonlinear equations (see the
book of Coron [17]), including equations describing water waves in some asymp-
totic regimes, like Benjamin-Ono ([36, 33]), KdV ([44, 34]) or nonlinear Schrédinger
equation ([20]). In this paper, instead, we consider the full model, that is the in-
compressible Euler equation with free surface. Two key properties of this equation
are that it is quasi-linear (instead of semi-linear as Benjamin-Ono, KdV or NLS)
and secondly it is not a partial differential equation but instead a pseudo-differential
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carried out in the frame of Programme STAR, financially supported by UniNA and Compagnia di
San Paolo; it was partially supported by the European Research Council under FP7, and PRIN
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equation, involving the Dirichlet-Neumann operator which is nonlocal and also de-
pends nonlinearly on the unknown. As we explain later in this introduction, this
requires to introduce new tools to prove the controllability.

To our knowledge, this is the first control result for a quasi-linear wave equation
relying on propagation of energy. In particular, using dispersive properties of gravity-
capillary water waves (namely the infinite speed of propagation), we prove that, for
any control domain, one can control the equation in arbitrarily small time intervals.

1.1. Main result. We consider the dynamics of an incompressible fluid moving

under the force of gravitation and surface tension. At time ¢, the fluid domain Q(¢)

has a rigid bottom and a free surface described by the equation y = n(t, ), so that
Qt) = { (x,y) € R —b<y< n(t, x) },

for some positive constant b (our result also holds in infinite depth, for b = 00). The
Eulerian velocity field v is assumed to be irrotational. It follows that v = V, ,¢ for
some time-dependent potential ¢ satisfying

1
Dayd =0, b+ 5[Vaydl' + gy =P, Oydly=—sb=0, (1.1)

where g > 0 is the gravity acceleration, —P is the pressure (we prefer to change the
sign for notational convenience), Vg = (8z,9,) and A,y = 02 + 0;. The water
waves equations are given by two boundary conditions on the free surface: firstly

omn =1+ (3177)2 an§b|y=77

where ,, is the outward normal derivative, so \/1 + (9;1)% On¢ = Iy — (0x1)02¢.
Secondly, the balance of forces across the free surface reads

P|y=77 = ’QH(U) + Pext(ta 1')

where K is a positive constant, Pey is an external source term and H(n) is the
curvature:

9z ) 9zn
H(n) = 0, = L .
g ( L+ @an)? /) (14 (9am)?)*2
Following Zakharov [50] and Craig and Sulem [19], it is equivalent to work with

the trace of ¢ at the free boundary

/(/)(t7 w) = (Zs(t? x? n(t7 x))’
and introduce the Dirichlet-Neumann operator G(n) that relates ¢ to the normal
derivative 0,¢ of the potential by

(GY)(t,z) =1+ (9zm)? 8n¢‘y:77(t,x)'
Hereafter the surface tension coefficient k is taken to be 1. Then (n,v) solves
(see [19]) the system

81577 = G(77)¢7
2
1 1 (G + (9am)(0a))) (1.2)
o —(9,4)% — = =H Pyt
t¢ +gn+ 2( xﬂ)) 2 1+ (8:1377)2 (77) + Fext
This system is augmented with initial data
Nlt=0 = Nin,  Ylt=0 = Yin. (1.3)
We consider the case when 1 and v are 2w-periodic in the space variable x and
we set T := R/(27Z). Recall that the mean value of 7 is conserved in time and

can be taken to be 0 without loss of generality. We thus introduce the Sobolev
spaces H§(T) of functions with mean value 0. Our main result asserts that, given
any control domain w and any arbitrary control time 7" > 0, the equation (1.2) is
controllable in time T for small enough data.
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Theorem 1.1. There exists o > 0 such that the following result holds. Let T > 0
and consider a non-empty open subset w C T. There exists a positive constant My
small enough such that, for any two pairs of functions (Nin,Vin), (Nfinal, ¥ final) in
1
Hg+2 (T) x H°(T) satisfying
1inll oy + Wil e < Mo Nnginatll yory + 1 pinatll o < Mo,
there exists Py in C°([0,T]; HO(T)), supported in [0,T] x w, that is
supp P.,(t,) Cw, Vte[0,T],
such that the Cauchy problem (1.2)-(1.3) has a unique solution

1
ot+3

(n,v) € C°([0,T]; Hy 2(T) x H(T)),
and the solution (n, ) satisfies (n|i=1, V|t=1) = Nfinal, ¥ final)-

Remark 1.2. i) This result holds for any 7" > 0 and not only for 7" large enough.
Compared to the Cauchy problem, for the control problem it is more difficult to
work on short time intervals than on large time intervals.

i1) This result holds also in the infinite depth case (it suffices to replace tanh(b |¢|)
by 1 in the proof). In finite depth, the non-cavitation assumption n(t,z) > —b holds
automatically for small enough solutions.

1.2. Strategy of the proof. We conclude this introduction by explaining the strat-
egy of the proof and the difficulties one has to cope with.

Remarks about the linearized equation. We use in an essential way the fact that
the water waves equation is a dispersive equation. This is used to obtain a control
result which holds on arbitrarily small time intervals. To explain this as well as to
introduce the control problem, we begin with the analysis of the linearized equation
around the null solution. Recall that G(0) is the Fourier multiplier |D,|tanh(b|Dy]).
Removing quadratic and higher order terms in the equation, System (1.2) becomes

81577 = G(0)¢7
O + gn — 020 = Pexs.

Introduce the Fourier multiplier (of order 3/2)
1
L:=((g—92)G(0))=.

The operator G(0)~! is well-defined on periodic functions with mean value zero.
Then u = v — iLG(0) ™! satisfies the dispersive equation

atu + 1Lu = Pext'

To our knowledge, the first control result for this linear equation is due to Reid who
proved in [45] a control result with a distributed control. He proved that one can steer
any initial data to zero in finite time using a control of the form P..:(¢,x) = g(x)U(t)
(g is given and U is unknown). His proof is based on the characterization of Riesz
basis and a variant of Ingham’s inequality (see the inequality (1.12) stated at the end
of this introduction). In this paper we are interested in localized control, satisfying
Popi(t,x) = 1y, Peye(t,x) where w C T is a given open subset. However, using the
same Ingham’s inequality (1.12) and the HUM method, one obtains a variant of
Reid’s control result where the control is localized. We also refer the reader to
the articles by Miller [41] and Lissy [37] for other control results about dispersive
equations involving a fractional Laplacian.
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Step 1: Reduction to a dispersive equation. The proof of Theorem 1.1 relies on differ-
ent tools and different previous results. Firstly, Theorem 1.1 is related to the study
of the Cauchy problem. The literature on the subject goes back to the pioneering
works of Nalimov [43], Yosihara [49] and Craig [18]. There are many results and
we quote only some of them starting with the well-posedness of the Cauchy prob-
lem without smallness assumption, which was first proved by Wu [48] and Beyer—
Giinther [12] for the case with surface tension. For some recent results about gravity-
capillary waves, we refer to Christianson-Hur—Staffilani [15], Germain-Masmoudi-
Shatah [21], Iguchi [24], Ifrim—Tataru [23], Ionescu—Pusateri [25, 26], Mesognon [38]
and Ming-Rousset—Tvzetkov [42].

Our study is based on the analysis of the Eulerian formulation of the water waves
equations by means of microlocal analysis. In this direction it is influenced by
Lannes [30] as well as [5, 2]. More precisely, we use a paradifferential approach
in order to paralinearize the water waves equations and then to symmetrize the
obtained equations. We refer the reader to the appendix for the definition of parad-
ifferential operators 7.

It is proved in [2] that one can reduce the water waves equations to a single
dispersive wave equation that is similar to the linearized equation. Namely, it is
proved in this reference that there are symbols p = p(t, z,€) and g = q(t, z,§) with
p of order 0 in £ and ¢ of order 1/2, such that v = Ty + iT,n satisfies an equation
of the form

P(uu= Py with  P(u) := 0, + Ty (s +iL? (T L? -),

where L2 = ((g — 8%)(?(0))%, Ty (y) and T, ,) are paraproducts. Here V,c depend
on the unknown w with V(0) = 0 and ¢(0) = 1, and hence P(0) = 0; + iL is
the linearized operator around the null solution. We have oversimplified the result
(neglecting remainder terms and simplifying the dependence of V, ¢ on u) and we
refer to Proposition 2.5 for the full statement.

We complement the analysis of [2] in two directions. Firstly, using elementary
arguments (Neumann series and the implicit function theorem), we prove that one
can invert the mapping (7,%) — wu. Secondly, we prove that, up to modifying the
sub-principal symbols of p and ¢, one can further require that

/ Imu(t,z) dt = 0. (1.4)
T

Step 2: Quasi-linear scheme. Since the water waves system (1.2) is quasi-linear, one
cannot deduce the controllability of the nonlinear equation from the one of P(0).
Instead of using a fixed point argument, we use a quasi-linear scheme and seek P.,;
as the limit of real-valued functions P,, determined by means of approximate control
problems. To guarantee that P.,; will be real-valued we seek P, as the real part of
some function. To insure that supp P, C w we seek P, under the form

P, = xu Re fr.

Hereafter, we fix w, a non-empty open subset of T, and a C°° cut-off function x,,
supported on w, such that x,(z) =1 for all z in some open interval w; C w.

The approximate control problems are defined by induction as follows: we choose
fn+1 by requiring that the unique solution w41 of the Cauchy problem

P(un)un—f—l = Xw Re fn—i—l; un—i—l’t:(] = Uin
satisfies u(T") = ufinq. Our goal is to prove that

e this scheme is well-defined (that is one has to prove a controllability result
for P(uy));
e the sequences (f,) and (u,) are bounded in C°([0, T]; H°(T));
4



e the series Y (fni1 — fn) and > (ups1 — uy) converge in CO([0, T7; Hafg(T)).

It follows that (f,) and (u,) are Cauchy sequences in C°([0, T); H"_%(T)) (and in
fact, by interpolation, in C°([0,T]; H?' (T)) for any ¢’ < o).

To use the quasi-linear scheme, we need to study a sequence of linear approximate
control problems. The key point is to study the control problem for the linear
operator P(u) for some given function u. Our goal is to prove the following result.

Proposition 1.3. Let T > 0. There ezists so such that, if ||ullcoo 1p,p0y @5 small
enough, depending on T, then the following properties hold.
i) (Controllability) For all o > sy and all

Uin, Ufina € H(T) := {w € H°(T); Im/ w(zx)dr = ()} ,
T

there exists f satisfying || fllcoo,r;mey) < K (0 T)([[winll go + [[winatll o) such that
the unique solution u to

Plu)u=xwRef ; uj=o= in,
satisfies u(T) = Ufinal-
ii) (Stability) Consider another state w' with |[u'|| co (o 1p; %) small enough and
denote by [’ the control associated to u'. Then

17 =7 ooy, < K00+ W) = oy

Remark 1.4. i) We oversimplified the assumptions and refer the reader to Section 9
for the full statement.

i1) Notice that the smallness assumption on w involves only some H*®-norm, while
the result holds for all initial data in H? with o > sg. This is possible because we
consider a paradifferential equation. This plays a key role in the analysis to overcome
losses of derivatives with respect to the coefficients.

Step 3: Reduction to a regularized problem. We next reduce the analysis by proving
that it is sufficient

e to consider a classical equation instead of a paradifferential equation;
e to prove a L’-result instead of a Sobolev-result.

This is obtained by commuting P(u) with some well-chosen elliptic operator Ay, ¢ of

order s with 3
S=0 — 5

and depending on a small parameter h (the reason to introduce h is explained below).
In particular Ay ¢ is chosen so that the operator

P(u) := Ay s Pw)A; ]
satisfies B
P(u) = P(u) + R(u) (1.5)
where R(u) is a remainder term of order 0. For instance, if s = 3m with m € N| set
Aps=1+ WL3  where £ = L%(TCL% )

With this choice one has [Ap s, £] = 0 so (1.5) holds with R(u) = [Ah,&TV(g)]A];_lg'
It follows from symbolic calculus that [[R(w)|zz2) < [[V ][0 uniformly in h.
Moreover, since V(u) and ¢(u) are continuous in time with values in H%(T) with

sp large, one can replace paraproducts by usual products, up to remainder terms in
C%([0,T]; £L(L?)). We have

P(u) = 0, + V(w)d, + L2 (c(u)L? - ) + Ro(u)
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where
Ro(u) == R(u) + (Tywy — V()8 +iL% (T — c(w)) L7 -).

The remainder Ra(u) belongs to C°([0,T]; £(L?)) uniformly in h. On the other
hand,

H[Ah,s’Xw}Ai:,iuﬁ(L% = O(h)a (16)

which is the reason to introduce the parameter h. The key point is that one can
reduce the proof of Proposition 1.3 to the proof of the following result.

Proposition 1.5. Let T > 0. There ezists so such that, if [[ullcoo 1),p0 @5 small
enough, then the following properties hold.
i) (Controllability) For all vy, € L?*(T) there exists f with 1fllcoqomnzy <

K(T) ||vin|| 2 such that the unique solution v to P(u)v = o Re, V=0 = Vin
is such that v(T') is an imaginary constant:

deR/VreT, o(T,z)=7ib.

i1) (Regularity) Moreover || f|| < K(T) ||Um||H%

co(o, Ty E) =
i) (Stability) Consider another state u" with |[u'|co (o 1,15 small enough and
denote by [’ the control associated to u'. Then

< K'(T) Jviall, 3 Ju

Hf - f/HCO([O,T];LQ) o @/HCO([O,T};Hso) :

Let us explain how to deduce Proposition 1.3 from the latter proposition. Consider
Ui, Ufina, in HO(T) and seek f € C°([0,77]; H°(T)) such that

P(H)u = Xw Re f, U(O) = Uin = u(T) = Ufinal-

Since the equation is reversible in time, one can exchange initial and final states
and hence it is sufficient to consider the case where wuf;,q = 0. Now, to deduce
this result from Proposition 1.5, the main difficulty is that the conjugation with
Ap s introduces a nonlocal term: indeed, AE;(Xw f) is not compactly supported in
general. This is a possible source of difficulty since we seek a localized control term.
We overcome this problem by considering the control problem for ﬁ(g) associated
to some well-chosen initial data v;,. Proposition 1.5 asserts that for all v, € H 3 (T)

there is f € C°([0, T); H%(T)) such that
P(wv, = xwRe f, im0 = vin = v1(T,z) =ib, beR.
Define Kv;, = v2(0) where vy is the solution to
ﬁ(@)'l}g = [A;LS, Xw]A;é Ref, valt=r = 0.

Using (1.6) one can prove that the E(H%)—norm of K is O(h) and hence I + K is
invertible for h small. So, v;, can be so chosen that v, + Kviy, = Ap su;n. Then,

setting f := A}:;}? and u := A;i(vl + v2), one checks that
Pu)u = x,Ref, u(0)=wup, u(T,z)=1b, beR.

It remains to prove that (7" is not only an imaginary constant, but it is 0. This
follows from the property (1.4). Indeed, P can be so defined that if P(u)u is a
real-valued function, then 4 [Imu(t,z)dx = 0. Since [;Imu(0,z)dz = 0 by
assumption, one deduces that [; Imu(T,z)dz =0 and hence u(T) = 0.
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Step 4: Reduction to a constant coefficient equation. The controllability of ﬁ(g)
will be deduced from the classical HUM method. A key step in the HUM method
consists in proving that some bilinear mapping is coercive. To determine the appro-
priate bilinear mapping, we follow an idea introduced in [1] and conjugate P(u) to
a constant coeflicient operator modulo a remainder term of order 0.

To do so, we use a change of variables and a pseudo-differential change of un-
knowns to find an operator M (u) such that

M (uw)P(w)M(u) ™" = 0y +iL + R(w),

where [|R(w)||zr2) S llull g+ (and hence R(u) is a small perturbation of order 0).
To find M (u), we begin by considering three changes of variables of the form

(14 0,k(t, 2))2 h(t,x + s(t, ), h(a(t),z), h(t,z— b)), (1.7)

to replace P(u) with
Q(u) = 0y + Wi, +iL + Rs, (1.8)

where W = W (t, x) satisfies [ W (t,x)dz = 0, Wl oo,y 00—y S Ml oo 1y;m0)
where d > 0 is a universal constant, and Rg is of order zero. This is not trivial
since the equation is nonlocal and also because this exhibits a cancellation of a term
of order 1/2. Indeed, in general the conjugation of L3 (c(g)L% . ) and a change of
variables generates also a term of order 3/2 — 1. This term disappears here since
we consider transformations which preserve the L?(dz) scalar product. Then we use
Egorov theorem to estimate the remainder terms (see Remark 5.2 and also [8], [9]).

We next seek an operator A such that ¢ [A, | D, |% ] +W 9, A is a zero order operator.
This leads to consider a pseudo-differential operator A = Op(a) for some symbol
a = a(x,€) in the Hérmander class ng with p = 3, namely a = exp(i|§]%6(t,x))
for some function § depending on W (see Proposition 5.8 for a complete statement
that also includes a zero order amplitude). Here we follow [1]. To keep the paper
self-contained (and since some modifications are needed), we recall the strategy of
the proof in Section 5.

Concerning the latter transformation, let us compare the equation P(u)u = 0
with the Benjamin-Ono equation:

yw + wdpw + HI*w = 0, (1.9)

where H is the Hilbert transform. The control problem for this equation has been
studied through elaborate techniques (see for instance the recent paper [33]) that
are specific to this equation and cannot be applied to the water waves equations’.
On the opposite, let us discuss one difference which appears when applying to (1.9)
the strategy previously described. Given a function W = W (¢, z) with zero mean in
x, let us seek an operator B such that the leading order term in [B , ’Hag] +Wo,B
vanishes. This requires (see [7]) to introduce a classical pseudo-differential operator
B = Op(b) with b € S?,o- Then the key difference between the two cases could be
explained as follows: For r large enough,

e the mapping W + B is Lipschitz from H" into £(L?);
e the mapping W + A is only continuous from H”" into L£(L?) (indeed, if
|W || ;» = O(6) then we merely have ||A — IHE(LQ-H’%) = 0(9)).

This is another reason for which one cannot use a fixed point argument based on a
contraction estimate to deduce the existence of the control.

LThis can be seen at the level of the Cauchy problem: for the Euler equation with free surface,
the well-posedness of the Cauchy problem in the energy space is entirely open.
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Step 5: Observability. Then, we establish an observability inequality. That is, we
prove in Proposition 7.1 that there exists € > 0 such that for any initial data vg
1

whose mean value (vo) = 5= [ vo(z) dz satisfies

1
[Re(vo)| = 5 [(vo)| —ellvoll 2, (1.10)

the solution v of
O+ 1Lv =0, v(0)=uwvy

satisfies
T
/ / |Re(Av)(t,z)|* dadt > K/ o (z))? d. (1.11)
0 w T

To prove this inequality with the real-part in the left-hand side allows to prove the
existence of a real-valued control function; a similar property is proved for systems
of wave equations by Burq and Lebeau in [14].

The observability inequality is deduced using a variant of Ingham’s inequality
(see Section 6). Recall that Ingham’s inequality is an inequality for the L?-norm of
a sum of oscillatory functions which generalizes Parseval’s inequality (it applies to
pseudo-periodic functions and not only to periodic functions; see for instance [29]).
For example, one such result asserts that for any T° > 0 there exist two positive
constants C; = C1(T) and Cy = C2(T) such that

T 1

3 2

DI A S
0

ne”Z nez

2

dt < Cy>  fwy|? (1.12)

nez

for all sequences (w,) in £2(C). The fact that this result holds for any T > 0 (and
not only for T large enough) is a consequence of a general result due to Kahane on
lacunary series (see [28]).

Note that, since the original problem is quasi-linear, we are forced to prove an
Ingham type inequality for sums of oscillatory functions whose phases differ from
the phase of the linearized equation. For our purposes, we need to consider phases
that do not depend linearly on ¢, of the form

1

sign(n) [€(n) 3t + B(t, 2)lnl3],  £(n) i= ((g+ |nf?) |n] tanh(b]n]) ),

where x plays the role of a parameter. Though it is a sub-principal term, to take
into account the perturbation 3(t, a:)\n\% requires some care since e*? to)lnlt? _q g
not small. In particular we need to prove upper bounds for expressions in which we
allow some amplitude depending on time (and whose derivatives in time of order k

can grow as |n|*/?).

Step 6: HUM method. Inverting A, we deduce from (1.11) an observability result for
the adjoint operator Q(u)* (Q(u) is as given by (1.8)). Then the controllability will
be deduced from the classical HUM method (we refer to Section 8 for a version that
makes it possible to consider a real-valued control). The idea is that the observability
property implies that some bilinear form is coercive and hence the existence of
the control follows from the Riesz’s theorem and a duality argument. A possible
difficulty is that the control P.,; is acting only on the equation for . To explain
this, consider the case where (9finai, ¥ fina) = (0,0). Since the HUM method is
based on orthogonality arguments, the fact that the control is not acting on both
equations means for our problem that the final state is orthogonal to a co-dimension
1 space. The fact that this final state can be chosen to be 0 will be obtained by
choosing this co-dimension 1 space in an appropriate way, introducing an auxiliary
function M = M (z) which is chosen later on.
8



Consider any real function M = M (z) with M — 1 small enough, and introduce
L%, .= {(p € L*(T;C); Im/ M (z)p(z) dx = 0} :
T

Notice that L?M is an R-Hilbert space. Also, for any vg € L3, the condition (1.10)
holds. Then, using a variant of the HUM method in this space, one deduces that
for all v;,, € L? (not necessarily in L%,) there is f € C°([0,T]; L?) such that, if

Qu)w = dw + Woyw + iLw + Rsw = x, Re f,  w(0) = wip,
then w(T,z) = ibM (x) for some constant b € R. Now
Qw) = 2(w) " Pu)®(w),
where ®(u) is the composition of the transformations in (1.6). Since ®(u) and
®(u)~! are local operators, one easily deduce a controllability result for P(u) from
the one proved for Q(u). Now, choosing M = ®(u(7,-))(1) where 1 is the constant

function 1, we deduce from w(T, z) = ibM (z) that u(T, z) is an imaginary constant,
as asserted in statement i) of Proposition 1.3. Concerning M, notice that M # 1

because of the factor (1 + d,k(t, :z:))% multiplying h(t, z + k(t, x)) in (1.7).

Step 7: Convergence of the scheme. Let us discuss the proof of the convergence of the
sequence of approximate controls (f,,) to the desired control P,,;. This part requires
to prove new stability estimates in order to prove that (f,) and (u,) are Cauchy
sequences. This is where we need statement i) in Proposition 1.3, to estimate the
difference of two controls associated with different coefficients. To prove this stability
estimate we shall introduce an auxiliary control problem which, loosely speaking,
interpolates the two control problems. Since the original nonlinear problem is quasi-
linear, there is a loss of derivative (this reflects the fact that the flow map is expected
to be merely continuous and not Lipschitz on Sobolev spaces). We overcome this
loss by proving and using a regularity property of the control, see statement i)
in Proposition 1.5. This regularity result is proved by adapting an argument used
by Dehman-Lebeau [20] and Laurent [32]. We also need to study how the control
depends on 1" or on the function M.

1.3. Outline of the paper. In Section 2 we recall how to use paradifferential
analysis to symmetrize the water waves equations. As mentioned above, the control
problem for the water waves equations is studied by means of a nonlinear scheme.
This requires to solve a linear control problem at each step. We introduce in Section 3
this linear equation and state the main result we want to prove for it. In Section 4, we
commute the equations with a well-chosen elliptic operator to obtain a regularized
problem. Once this step is achieved, we further transform in Section 5 the equations
by means of a change of variables and by conjugating the equation with some pseudo-
differential operator. Ingham’s type inequalities are proved in Section 6 and then
used in Section 7 to deduce an observability result which in turn is used in Section 8
to obtain a controllability result. In Section 8 we also study the way in which the
control depends on the coefficients, which requires to introduce several auxiliary
control problems. Eventually, in Sections 9 and 10 we use the previous control
results for linear equations to deduce our main result Theorem 1.1 by means of a
quasi-linear scheme.

To keep the paper self-contained, we add an appendix which contains two sections
about paradifferential calculus and Sobolev energy estimates for classical or parad-
ifferential evolution equations. The appendix also contains the analysis of various
changes of variables which are used to conjugate the equations to a simpler form.
Acknowledgements. We would like to thank the referee for the careful reading of
our manuscript.
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2. SYMMETRIZATION OF THE WATER WAVES EQUATIONS

Consider the system

om = G(n),

) (2.1
;(G(n)lﬁi((aaxz))ga g (1) + Pext(t, ). |

In this section, following [2, 5] we recall how to use paradifferential analysis to rewrite
the above system as a wave type equation for some new unknown w. This analysis is
performed in §2.2. In §2.1 and §2.3, we complement the analysis in [2, 5] by proving
that all the coefficients can be expressed in terms of u only.

We refer the reader to the appendix for the definitions and the main results of
paradifferential calculus.

Ous + g0+ 5 (0)?

2.1. Properties of the Dirichlet-Neumann operator. We begin by recalling
that, if 7 is in W1H*°(T) and v is in H%(T), then G(n)vy is well-defined and belongs
to Hfé(T). Moreover, if (n,1) belongs to H%(T) x H*(T) for some s > 3/2, then
G(n)v belongs to H5~1(T) together with the estimate (see [31, Theo. 3.15])

Gl s < CClmlls ) 191 - (2.2)

Following [5, 2], the analysis is based on the so-called good unknown of Alinhac
defined in the next lemma and denoted by w as the notation for the control domain
(both notations will not be used simultaneously). For comments and explanations
about the reasons why this unknown plays a crucial role, we refer to [5, §3] and [4,
pages 8-9].

Lemma 2.1. Let s > 3/2 and (n,v) in H5(T) x H5(T), the functions

_ G)Y + (9:1)(9:¢) B
wmy ==Y — Ty
belong, respectively, to H¥~(T), H~Y(T), H%(T) and satisfy
1B v + IVl gor + Il s < CCU0ll s ) 1l (2:4)

Proof. The estimate for B(n)y and V (n)y follow (2.2), by applying the usual non-
linear estimates in Sobolev spaces, see (A.18) and (A.16). The Sobolev embedding
then implies that B(n)y belongs to L>°(T). As a paraproduct with an L*°-function
acts on any Sobolev space (see (A.10)), we deduce that

wre S Bl oo 10z < C lnll o) 191 s 11l s - (2.5)
This immediately implies the estimate for w(n)y in (2.4). O

| T3]

Consider a Banach space X and an operator A whose operator norm is strictly
smaller than 1. Then it is well-known that I — A is invertible. Now write w(n)
under the form (I — A)y with Ay = Tg(;)yn. By applying the previous argument,
it follows from (2.5) that we have the following result.

Lemma 2.2. Let s > 3/2. There exists €9 > 0 such that the following property
holds. If ||n|| s < €0, then there exists a linear operator ¥(n) such that:

i) for any v in H%(T),
Y(nw(n)y = 4
i1) if w in H%(T) then ¥ (n)w belongs to H*(T) and
1wl s < CCnllgs ) Nl s (2.6)
10



Notation 2.3. Hereafter, we often simply write B, V,w instead of B(n)y, V(n)y,
w(n)y. It follows from the above lemma that, if 7 is small enough in H5(T), then B
and V' can be express in terms of n and w:

B=Bm¥nw, V=Vn¥nw.
We also record the following corollary of the analysis in [5, 2].

Proposition 2.4. Let s > sy with sy fized large enough. There exists 6 € (0, 1] such
that

Gy = G(0)w — 0:(Tvn) + F(n)d (2.7)
where F(n)y satisfies
IEP vy < Cnllgzs) Il 5es 1] grs (2.8)
Proof. We prove that F'(n)iy satisfies the following two estimates:
IF Y ser < CCImllgs ) 190 (2.9)
IE )l sz < CCIMllgs ) Il s 19011 s - (2.10)

The estimate (2.8) then follows by interpolation in Sobolev spaces.
Let us prove (2.9). In [5, 2] it is proved that, for any N, when s is large enough,

Gy = |De|w = 0x(Tyn) + F(n)v where [|Fm)d|| o < C(lInllg) 190] s Now
notice that (2.7) holds with F(n)y = (|Ds| — G(0))w + F(n)i. Since G(0) =
|Dy|tanh(b|Dyl|), the difference |D,| — G(0) is a smoothing operator. So using
the estimate (2.4) for w, we find that ||F(n)y|| s+~ is bounded by the right-hand
side of (2.9). Taking N =1 gives the desired result.

We now prove (2.10). As for (2.5), using the paraproduct rule (A.10) and (2.4),
one has

lw =l g + 102 (Tvm) || go-s S Bl oo + 1Vl o) Inll gz < CCllnll g ) Nonll s 19011 s

hence it is sufficient to prove that ||G(n)y — G(0)v| ys—2 is bounded by the rhs
of (2.10). This in turn will be deduced from an estimate of ||¢'(7)| s—2 where
o(1) = G(tn)y. Set B = B(tn)y and V; = V(). It follows from the com-
putation of the shape derivative of the Dirichlet-Neumann operator (see [30]) that
' (1) = —=G(m1)(B7n) — 0, (Vrn). Now the estimate (2.4) implies that ||¢/(7)]| gs—2 <
C (Nl = ) 101l ggs [|#]] =~ Integrating in 7 we complete the proof. O

2.2. Symmetrization. As already mentioned, the linearized equations are
dm = G(0)y,
{ O + gn — 05 = Pex,
where G(0) = |D,| tanh(b|D;|). Introducing the Fourier multiplier (of order 3/2)
L= ((g- )G(0)*,
with symbol

1

() = ((g+[EAE©)?  where A(€) := [¢] tanh(b]¢]) (2.11)

(so that L = ¢(D,)), and considering u = ¥ — iLG(0)~'n, one obtains the equation
O+ iLu = Peyy.

The following proposition contains a similar diagonalization of System (2.1).
11



Proposition 2.5. Let 0,00 be such that o > og with og large enough. Consider a
solution (n,1) of (2.1) on the time interval [0,T] with 0 < T < +o0, such that

1
ot+3

(n,9) € C°([0,T]; Hy " *(T) x H’(T)).
Introduce a function ¢ = c¢(x) and two symbols p = p(x,&), ¢ = q(x,&), such that

c:= (14 0:m)") 1,

1 5 Ocl 1 2 { 2, 4 (2.12)
pr=c 3+ BZ.X(%(;) ), 30z, q=x(§) (Cd)\(é)) + (3103)%&5()5)),
where €, \ are as in (2.11), x € C™ satisfies x(§) = 1 for [§] > 2/3 and x(§) =0
for || < 1/2. Then

u = Tyw —i1yn
satisfies
B + Ty Opu + iL7 (T,L2u) + R(n,¢) = TyPons, (2.13)

for some remainder R(n,v) = R1(n)Y + Re(n)n with
1R )l e < C (Il oy ) 10l iy 19617

HOtS
0

(2.14)
1R2(mu)all o < C (Ml oy ) Imllory 2l pory

for some 0 € (0,1] given by Proposition 2.4.

Remark 2.6. Compared to a similar result proved in [2], there are two differences.
We here obtain a super-linear remainder term (see (2.14)), and secondly we prove
here that ¢ can be so chosen that T, = 9,1 for some symbol Q); namely,

()
A(§)ig
This will be used to obtain that [T,ndxz = 0. Since it is not a trivial task to obtain

these additional properties, we shall recall the strategy of the proof from [2] and
give a detailed analysis of the required modifications.

T, =0, Tg with Q := X(f)cg

(2.15)

Proof. The first step consists in paralinearizing the equation. We use in particular
the paralinearization of the Dirichlet-Neumann operator (see (2.7)). Then, by using
the paralinearization formula for products (replacing products ab by T,b + Tpa +
R(a,b)), it follows from direct computations (see [2]) that

{@wwmnm—G©w=ﬂ7 (2.16)
Ow + Ty Oyw + Ton — H(n) = F? 4 Poy,
where a denotes the Taylor coefficient, which is
a=g+0,B+V0,B,
and F! and F? are given by (see (A.12) for the definition of R(a, b))
F' = F(n)y,
F? = (TyTy,y — Tva,n)B + (Tva,s — Ty Ty, B)n
+ %R(B, B) — %R(V, V) + Ty R(B, 0:m) — R(B, V0un).
On the other hand, the paralinearization estimate A.14 applied with « = o —1/2
implies that

0xm

W =T,.0.n+ J?a ri= (1 + (39577)2)*%,

12



where f € L>°(0,T; H2"7%) is such that
VAU oot < CCmloey) il

for some non-decreasing function C. Hence, directly from (2.16), we obtain that

{ Om + Tv0yn — GO)w = f,

2

HOTE

atw + TVaxw +gn — 6x(Tram77) = f2 + Pextv

where _
fl 3=F1—Tazv77, f2 5:F2+8:cf+Tg—a77-
Then introduce ¢ := T,n and 0 := Tpw. It is found that
¢ + Ty 0uC — TyG(O)w = [, 217
8t9 + TV&’JCQ + Tp(gﬁ - 3x(Tr3x77)) = fz + TpPext7 .

where
le = qul + Tatqn + [TV8w7 Tq]’%
f2 = Tpf2 + Tatpw + [Tvax, Tp]w.

Assuming that ¢ and p are as in the statement of the proposition, it easily follows
from (2.8) and the paradifferential rules (A.4), (A.10) and (A.7) (applied with p =1
to bound the operator norm of the commutators [Ty 0;, T,] and [Ty 0, Tp]) that

(7R P o 71y 17PNy

It remains to compute T, G(0)w and Ty, (gn—09x(1+0,n)). More precisely, it remains
to establish that

7,600 — LETLE Ty o < C 10l oy ) 101 oy 10l (2.18)

1 1 0
HTp(QU - 8x(Tr8x77)) — L2T.L> anHd < C( ||77||H0+% ) ”77”H0+% ||77”Ho+% :
(We prove below these estimates with # = 1.) Then the estimates (2.14) follow from
(2.4) which gives a bound for ||w|| ;- in terms of ||| ;..
To prove (2.18), it is convenient to introduce the following notation: Given two

operators, the notation A ~ B means that, for any p € R there is a constant
C(HHHHH% ) such that

1A = BYull g < C (Il oy ) Il oy el -

In words, A ~ B means that A equals B modulo a remainder which is of order 0
and quadratic.

For instance consider real numbers m,m’ with m + m/ = 2 and two operators
A= Ta(m)+a(m_1) and B = Tb(’"/)-i—b(’"lfl) where
a™ery, omYerpt p)ery, pm'-b eyt

(see Definition A.2) with (see (A.1))
Mz (B)) + M) < O (]
Mg (@) + M (@t Y) < ¢ (||

By using (A.6) applied with p = 2 and (A.7) applied with p = 1, we obtain that

HaJr% )7

oty ) HnHHU+?} .

Toom Tyem'y ~ Tomipn’) 4 1acatmg,pm’ s Tam Ty 1) ~ Tyomypm'-1),
Tyom=2Tymty ~ Tym-1ypom) Tatm— Ty -1y ~ 0,
SO
AB ~ Ty m) ) 11 9¢a(m) 3, b0m") 4 alm)pm' 1) 4 qlm—1)pm) (2.19)

13



Using the previous notation, to prove (2.18) we have to prove that
T,G(0) ~ L2T,L2x(D,)T,

L, (2.20)
Ty (g1 — 05(T,05+)) X(Dy) ~ L2T.L2 x(Dy)T,.

Notice that x(D,)n = n and Léx(Dx)u = L2y for any periodic function u. This is
why we can introduce the cut-off function x in the calculations. This cut-off function
is used to handle symbols which are not smooth at £ = 0.

We remark that, by definition of paradifferential operators, we have

T,G(0) = Tyre)s 91 — 0u(Tr027) = Ty rez— (0, (i)

Study of the first identity in (2.20). It follows from symbolic calculus (see (A.6))
that

LIT.Lix(Dy) ~ Ty with = xel + 2 (9evV/) Vid,e. (2.21)
1

Now we seek ¢ under the form ¢ = ¢(1/2) + ¢(=1/2) where ¢(1/?) is of order 1/2in ¢
(more precisely, g € F;/Q) and ¢(~1/?) is of order —1/2 (in F1_1/2). Similarly, we seek
p=p0 4+ pb with p € I'Y and p=D e Ffl.
Also, it follows from (2.19) that L2T.L2x(D,)T, ~ Ty T, ~ Ty, with
_ 1
o1 =90 + xelp' ™Y + —xc(0c0)0ap"”

(the contribution of (9¢x)d,p® is in the remainder term). The first identity in
(2.20) will be satisfied if

6(5) -1 Xaﬁg(f) 1 0 -1 g(f)
(1/2) ._ (0) 2\ (=1/2) _ AZER\S) |~ (0) 0) (=1) 2SS/
q = xcp NE) q = A [2(3 c)p"”) + cOyp }ercp NE)

Study of the second identity in (2.20). As above, it follows from symbolic calculus
that L2T,L2x(Dy)T, ~ ToTy ~ Tp, with (see (2.19))

1 _
02 = 70"? + —xc(0:0)0q" P + xetg TP,
With ¢(*/2) and ¢(-1/? as given above, we compute that

O 1? 0(6)2
2 = X{c@q(lﬂ) + = X Ogt™ (cp(O)a c+ec pr( )> +X62p(_1) (£) }

i AE) A()
Moreover, by definition of (&) one has
8552 5(5)2 2
= f order 0.
NG =3&+ry, NG &+ o, r1,79 are of order 0

Notice that the contribution of the term 71 (cp(®d,c + c29,p'?) to T,,, and the one
of roc?p(~Y) can be handled as remainder terms and hence

LET.L2x(D,)T, ~ Ts,
with
P2 = X{qu(l/Q) + 37X€<cp(0)6$c + c28xp(0)) + Xczp(*1)§2},
On the other hand,

To(91 = 0u(T:02))X (D) ~ T (4o 0,0106))
14



By definition of ¢, £, ¢/, recall that r = ¢? and 2 = (g + £2)A(€) and hence
p(g+ & — (8u7)(i€)) = pc*& + gp — p(9r) (i€)

2 L(8)?
A€)
e

Since ¢(/2) := ycp® (5)) we deduce that

= pc — gpc® + gp — p(0x7) (3€).

p(g -+ 1€ = (0m)(i€))x = ela™? +x{p V(g + ) + gp(1 - &) — ip(@ur)¢ }.

Since 1—¢? and 9,7 depend at least linearly on 7 and since p and p(~1¢ are symbols of
order 0, it follows from the estimate (A.4) for the operator norm of a paradifferential
operator that

Ty —cyull e < O oy ) 1% oy ol e
1Ty @,metll g < C UM ows ) 101 ey Tl -

Similarly, assuming that p(~Y is a symbol of order —1 depending linearly on n (as
this will be true, see (2.12)), we have

1T vezgtll g < CCM oy ) Il oy Tl
Therefore,
Ty (g1 — 05(T,02+)) X(Dyg) ~ T'q(1/2) 1y p(~1)c2€2 —xpl©) (8,1 (i€)-
1
3,

Now since r = ¢2, with p(¥) = ¢~ 3, we have

—p(o)(axr)(if) +- §(cp Oyc + 20,p° )>

as can be verified by a direct calculation, so the second identity in (2.20) holds.
It remains to compute g. We have

_ Sy E) [ LOLO L o 0, g 0] o - HE)
‘ X{p R TGR I IR A(a}'

Observe that . .
- (0) o - = .—%
[2 (0zc)p"” + cOxp } 5¢ 30,c.

We now seek p(—1 such that
YA, 10:0(8) _1
(-1) _ 1t
c = Q- ¢ 30,c
YSRGS
for some constant « to be determined. We thus set
(1) . X(&) Ocl(§) _s
P = at ¢ 30,c
i L(8)

Then (replacing x? by ¥, to the price of adding a smoothing operator in the remain-

der), we have
24 23489 -1
q:= X{c3 )\((2 —I—% i(g) [(a—l— é)c 3810} }

Since
X(©)E060 = Sxt +7(€)
with 7(€) is a smooth symbol of order 1/2, we have
2 ¢4 Ol

15
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where 7’ is of order —3/2. Then, choosing « such that o+ 1/6 = 4/9, we find that

(O |y 2y HE)
e T O

2
q = C3
where 7 is such that

1Tl g < CCIlloiy ) Il ooy Tl

In particular, the contribution of 7 can be handled as a remainder term and the
same results hold when ¢ is replaced by the same expression without 7, thereby
obtaining (2.12). This completes the proof of (2.20) and hence the proof of the
proposition. ]

2.3. Invertibility of the change of unknowns. We thus obtained an equation
of the form

O+ Ty Qg+ iL% (TeL2u) + R(n, ) = Ty Pest,

where the coefficients V' and ¢ depend on the original unknowns (7, ). We conclude
this section by proving that V' and ¢ can be expressed in terms of v only. We have
already seen in Lemma 2.2 that these coefficients can be expressed in terms of 7
and w. So it remains only to express (n,w) in terms of w.

In this paragraph, the time is seen as a parameter and we skip it.

Notation 2.7. Introduce the space H?(T;C) of complex-valued functions u satis-
fying
/ Imu(x)dx = 0.
T

Recall (see (A.4)) that a paradifferential operator with symbol in I'{j" is bounded

from any Sobolev space H#(T) to H*~™(T). Recall also that w € H?(T) whenever
1

(n,v) € Hg+2(T) x H?(T). Since, as already mentioned, T,;n = Tg,n where x is

as defined after (2.12) and since gx € F(l)/Q, we deduce that u belongs to H?(T).
Moreover, it follows from (2.15) that T,w — iTyn belongs to H?(T;C).

1 .
We now introduce the mapping U : Hg+2 (T) x H°(T) — H°(T;C) so that
U(n, ¢) == Tpw — iTyn.
The following result shows that this nonlinear mapping can be inverted.

Lemma 2.8. Let g > 5/2. There exists €9 > 0 and K such that the following
properties holds. If ||n|| goo < €0, then there exists

- oot
Y: Ho(T;C) — HJ" 2(T) x H(T),
such that Y (u) = (n,v) with u = U(n,v). Moreover, for any o > 5/2,
10l oy < 2llullgo s 19llge < 21wl o - (2.22)

Proof. Set w = U(n,v) := Tpw — iTyn. Then Tyn = —Imwu and Tpw = Rew, where
q and p depend on 1. The only difficulty is to express 7 in terms of Im u. Once this
will be granted, to invert the equation Tjw = Reu, we use the fact that 7}, is a small

bounded perturbation of the identity so that 7}, is invertible, indeed (recalling that
M} (a) is defined by (A.1))

1Ty = Il pggzey S ME@ = 1) < C (Il oy ) Iy -

Now to solve the equation T;n = —Imu, we use the Banach fixed point theo-
rem. Denote by @ the Fourier multiplier with symbol Q(&) := x(&)4(&)/A (&) =
16



X))\ g+ &2//A(). The reason to introduce this symbol is that, with ¢ as given
by (2.12) one has

1/2
My (a(2,) = Q) < Cllnl o) Il o - (2.23)
which is obtained by considering separately the principal and sub-principal terms in
1
the definition of ¢. Then seek 7 in Hg+2 (T) such that ®(n) = n with

®(n) := —(g — 82)72G(0)2 (T, — Q)n + Im w).

It is easily verified that if ®(n) = 7 then T;n = — Imu and also that ® maps HS+
into itself. To see that ® is a contraction, we use (2.23) to obtain

1@(n) = @m2)lory S [[(Ter = Q) m — )| o + 1(Tar — Ta) m2l

1/2
<My (= Q) | — mall
< C(M)M ||m = o] ey

1
2

(T)

1/2
ok T My (g1 — o) 703 et

where M := ||| +||m2 ||H0+% . If M is small enough, then ® is a contraction. [

HOH3

3. THE LINEAR EQUATION

As mentioned in the introduction, we shall study the control problem for the
water waves equations by means of a nonlinear scheme. This requires to solve a
linear control problem at each step. We introduce in this section the linear equation
we are going to study until section 10, emphasize one key property of this equation
and state the main result we want to prove.

We have seen in the previous section that one can express V = V(7)) in terms of
u only. To simplify notations, we write V' = V(u), and similarly we write ¢ = c(u).
Also, one can write the remainder R(7,1) under the form R(u)u where, for any wu,
the mapping u — R(u)u is linear.

We have proved that, for o large enough and a solution (7, 1) of (2.1) on the time
interval [0, T, satisfying

(n,9) € CO([0,T); H 2 (T) x HO(T)),

the new unknown wu satisfies u € C°([0, T]; H?(T; C)) (where H?(T;C) is defined in
Notation 2.7) and

Byt + Ty () D+ i L2 (Tyy L2u) + R(uw)u = Ty P
We now fix u € C([0,T]; H°(T;C)) and then set
V=V, c=cuw), R=R(w), p=pu) (3.1)
and consider the linear operator
P =0, +Tyd, +iL?(T.L? -) + R,

Except for the second condition in Assumption 3.1 below, we shall not use the way
in which the coefficients depend on u« and hence we shall state all the assumptions
on V, ¢, p, R forgetting their dependence on u through (3.1).

Assumption 3.1. i) Consider two real-valued functions V, c in C°([0,T]; H*(T))

for some sy large enough, with ¢ bounded from below by 1/2. The symbol p is

5 x(&)0:L(€)
18 0(%)

that the W 3°°-norm of ¢ — 1 is small enough.
17
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i1) If Pu is a real-valued function then

d
/Imu(t,x)dxzo.
dt o

Fix an open domain w C T and denote by x, a C* cut-off function such that
Xw(z) =1 for z € w. We want to study the following control problem: given an
initial data v;, find f such that the unique solution to

Pv="TyxuRef, vj—o="vin (3.2)

satisfies v,y = 0. The fact that the Cauchy problem for (3.2) admits a unique
solution is proved in the appendix, see Proposition B.1.
Our main goal until Section 10 will be to prove the following control result.

Proposition 3.2. There exists sy large enough such that, for all T € (0,1] and all
s > sg, if Assumption 3.1 holds then there exist two positive constants 6 = 6(T, s)

and K = K(T,s) such that, if
||V||CO([0,T];HS0) +lle- 1||C°([07T];HSO) < g’
HafVHco([o,T];m) + H(?fCHco([o,T];m) <6 (1<k<3), (3.3)
1Bl oo, 112 (m5)) < 9

then for any initial data vy, € H3(T;C) there exists f € CO([0,T); H3(T)) such that:
(1) the unique solution v to Pv =TyxwRe f,  vji—g = vin satisfies v(T) = 0;
(2) 1 Fllcoo,ryiarsy < K Nvinll s

Remark 3.3. Notice that the smallness assumption on V' and ¢ involves only some
H?°-norm, while the result holds for initial data in H® with s > s3. We shall use this
property with sy = s — 2 in the analysis of the quasi-linear scheme. This is possible
only because we consider a paradifferential equation.

We conclude this section by proving that the second condition in Assumption 3.1
holds when V, ¢, p, R are given by (3.1).

Lemma 3.4. Consider u € C°([0,T); H*(T;C)) with sy large enough and assume
that V,c,p, R are given by (3.1). If Pu is a real-valued function, then

jt/TImu(t, z)dz = 0.
Proof. Set ( = —Imw. It follows from (2.17) that ¢ satisfies
0i¢ + Ty 0:¢ — T,G(0)w = f,
Ft=Ty(F() = To,vn) + Tougn + [Tv0s, Tyln,
where F'(n)1 is given by (2.7). One can write this equation under the form

OiC + T4 (02(Tvm)) — T,G(0)w = TyF ()t + Ty, qn. (3.4)

Notice that T,G(0)w and T, F(n)1) are well-defined since G/(O)\w(O) =0= ﬁn)\qp(O)
(this follows from the definition (2.7) and the fact that the mean values of G(n)y,
G(0)w and 9,(Tyn) are all 0). Using (2.15), one obtains that [ T,uder = 0 =
J1 Ta,qv da for any function v. So integrating (3.4) we obtain the desired result. [
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4. REDUCTION TO A REGULARIZED EQUATION

In this section, we reduce the proof of Proposition 3.2 to that of a simpler result.
We shall prove that:

e it is enough to consider a classical equation instead of a paradifferential
equation (this observation will be used below to simplify the computation of
a change of variable);

e it is enough to prove an L?-result instead of a result in higher order Sobolev
spaces (this plays a crucial role).

As explained in the introduction, the idea is to commute the equation with an
elliptic semi-classical operator Aj s of order s. To choose this elliptic operator,
the key point is to prove that Aj ¢ can be so chosen that it satisfies the following
commutator estimates:

e PIAT e = OO,
H[Ah,s,xw}/\ﬁéuc(m) = O(h),

which is the reason to introduce the small parameter h. Some care is required to do
so, and we introduce

Aps=1T+hT 5 L5 (4.1)

Lemma 4.1. i) Assume that the L{S,-norm of ¢ — 1 is small enough. Then Ap s is
invertible from H® to L? and its muérse 1s denoted by A,:i

i1) Moreover, for any real number s’ € [0,s], hS/Agé s uniformly bounded from
L? to H¥: there is K > 0 such that for any h € (0,1] and any w in L*(T),

‘hs'Af;i“HHsf < K |lull - (4.2)

Proof. Set r = 2s/3. Statement i) is obtained writing Ay as (I + B)(I + h°L")
where B is a bounded operator from L? into itself. To do so, write
Aps=1+nTrL" =1+ h’L" + h*Ter L7,

to obtain the desired result with B := kST _1L"(I + h*L")~!. We now claim
that B is a bounded operator on L?, with operator norm O(||c —1||;). This
follows easily from (A.10) (which implies that T,.r_; is of order 0 with opera-
tor norm O(||c — 1||;~)) and, on the other hand, from the fact that the operator
hsL" (I + hSLr)_1 is bounded from L? into itself uniformly in h (as can be verified

using the Fourier transform).
Now for [lc — 1| small enough, one has [|B| 2y < 1/2 and one can invert

(I + B) to obtain

A L=T+nrL7)y NI+ B)™ (4.3)
and statement i) follows from the fact that %' (I + hSL")~! is uniformly bounded
in L(L? H¥) for 0 < ¢ <s. O

The key property is that one has good estimates for the commutators of Ay, 4 and
the various operators appearing in the equation.

Lemma 4.2. Assume that the W3*-norm of ¢ — 1 is small enough. Then there is
K > 0 such that for any h € (0,1] and any u in L*(T), there holds

| s T 0] A7 |, < K VIl 2 (1.4)
| At ] Az kel 2 < KRl e el 2 (45)
[ Anss L2 (TeL2)] Ap | o < K [lull 2 (4.6)
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Proof. Write
[Ans, Ty 0z A L = [Tiepyosrs, TvOs | RO L,

to obtain

| [ Tv0u] A7 Sl o < K| [Tipern T)

L(Hs,L?) HhSA}:;HL(LQ,HS) ”uHL2 .

It follows from (4.2) that [|[A"A, (| -2 ey
hand, the commutator estimate (A.9) implies that

I [T(cf)2s/3’TVal‘] Hz:(Hs,m) S K[Viwree
where K depends on Hc||W 300 (which by assumption can be bounded by 2).

is uniformly bounded in h. On the other

To estimate the second commutator, we begin by establishing that
[ TA ks Ty ] A sull 2 < KB Il s Nl - (4.7)
To see this write
[Anss T ] A s = B[ Tegyosrss T, ] 15T AG L
Then we notice that, as above,

‘ [T(c£)2s/3, wa]

and we use that, thanks to (4.2), h571A; ! is uniformly bounded from L? to H5~L.

Now it remains to estimate [Aps, (xw — T,,)]. It follows from Proposition A.8
(applied with (7, u,v) = (s + 1,0, s)) that
"

HhST(ce)zs/3 (X = Ty )Nyl SH° H(XW = Ty )y 5u
S B Ixall o (1855l 2 S B2 IDxeoll s el 2

‘L(HS*HLz) = Kl

L2

and similarly
H (X = T )P T epy2er3 M\,
By combining these two estimates, we find that
| [Bnss O = TJATR]| |, < KB sl Nl (48)

By combining (4.7) and (4.8) we deduce (4.5).
We now prove the last property (4.6). Write that L2 (TCL% ) =T +Ty+ R where
Ris of order 0 and p = i ~'V0(9:V/1)(dyc). Since Ap s = I+ 1T, p)2s/3, by definition,

[Ans L%(TCL%-)]A}:é can be written as the sum (I) + (I1) + (I11) with
(I) = [T(d)25/3 N Tc@] ]’LSA}:;7 (II) = [T(d)gs/g N Tp] hsAf_L;,
(I11) := [T py2e/5, R]P°A, L.

|, < KB Il el

Since hsAgi belongs to £(L?, H®) uniformly in h, we need only estimate

T icera Teelll gare oy 1 Teetyzorns Tolll ps 12y
The second term is estimated by means of (A.6) applied with p = 1/2. To estimate
the first term we notice that the Poisson bracket of the symbols vanishes:
1
{072, et} = = ((0e(ct)*/*)Da(cl) — (Da(cl)*™/*)0E (b)) = 0.
Since ”CHW%’OO < 2 by assumption, it follows from (A.6) applied with p = 3/2 that

H [T(d)25/37T0€] HL(HS,LQ) 5 L

This completes the proof. ]
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Next we conjugate P with Ay, . Introduce
ﬁh = Ah,sPA};i-

Then

P, =0,+Tyd, +iL2(T,L2)+ R,  where

. 1 1 _

R = ApoRAL L+ [Ans, 0 Ay L+ (M, TvOu] AL+ i[Ap s, L2 (T.L7) AL L

Lemma 4.3. Assume that the W2 -norm of ¢ — 1 is small enough. There holds
[R w2 < K(IIV I + 106l oo + R 1R gggsy ) Nl 2+ (4.9)

for some constant K independent of h.

Remark 4.4. The constant h™® is harmless since at the end of this section, A will
be fixed depending only on T

Proof. We have

1A SRl 2irzy < I sl caresno 1R 2 oarss e | An sl czesrry < KRN RN siares ey
since HAhvSHL(HS;L2) S 1and HAI;;HMLQ;HS) Sh

On the other hand, [Ah’s, L%(TCL%-)}A,:i and [Ah,s,Tvﬁx]A};ﬁ are estimated by

means of Lemma 4.2 and [Ah7s, 8t] A,:i is estimated by similar arguments. O

We further transform the equation by replacing Ty d, and L> (TCL% -) by V9, and
L%(CL%~) modulo remainder terms. Namely, write P}, as
Pyi= 0+ VO, +il2(cL?-) + R} (4.10)
where ¢ stands for the multiplication operator by ¢ and
Rbu = Ru+ Tydpu — Voyu+i(L2T.Lu — L3 (cL2u)).
Lemma 4.5. Let sy > 2 and assume that the W2 _norm of c—1 is small enough.
There holds
RSl 2 < K (Vo + e = Ulgso + 10ecll gy + 2" [ Rll pasy ) Null 2 (411)
for some constant K independent of h.

Proof. We have already estimated R?, and the right-hand side of (4.9) is less than
the one of (4.11) provided that sy > 3/2. To estimate Ty 0,u — VOyu, we apply
Proposition A.8 with (7, i,v) = (sp, —1,0) (and sy > 3/2) to obtain

[T 0pu — VOpull 2 S IV o 10zull -1 < [V || oo ull 2 -

The estimate for £ — L2 (cL% ) = L2 (T. — CI)L% +) follows in the same way,
assuming that sy > 2. O

We are now ready to give the main reduction. Our goal in this section is to prove
that one can deduce Proposition 3.2 from the following proposition.

Proposition 4.6. Consider an operator of the form
P:=0,+Vd, +iL?(cL? -) + Ry. (4.12)

Let T € (0,1] and consider an open subset w C T. There exist an integer sy large
enough and two positive constants § = 0(T) and K = K(T') such that, if

||V||CO([0,T];HSO) + e - 1||CO([O,T];H50) <9,

197V ]| o |oF <5  (1<k<3), (4.13)

a1 T | CHCO([O,T];Hl)

1Rzl coo,r:222)) < 05
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then for any initial data vy, € L*(T) there exists f € C°([0,T]; L?(T)) such that:
(1) the unique solution v to Pv = x, Re f, Vjy=0 = Vin 18 such that v(T) is an
1maginary constant:
beR/VeeT, o, z)=ibd
(2) Ifllcoo,r;02) < K llvinl| -
Remark 4.7. Notice that the final state v(T") is not 0 but an imaginary constant.

This result will be proved later. In the end of this section, we assume that
Proposition 4.6 is true and prove Proposition 3.2.

Proof of Proposition 3.2 given Proposition 4.6. Proposition 4.6 holds for any P of
the form (4.12). In particular, in view of (4.10), it holds for P replaced by P, :=
Ah7SPA,:é. Let us mention that i will be fixed at the end of the proof by asking
that K'(T)h < 1/4 where K'(T) depends only on 7.

The idea is to apply control property for ﬁh associated with an unknown initial
data to be determined.

We shall prove that Proposition 4.6 implies that Proposition 3.2 holds with the
conclusion 1 replaced by v(7) € iR. Then one deduces that v(T') = 0 by using
condition i) in Assumption 3.1 and the fact that [ vi,(x)dz = 0.

Assume that & < h§ where & appears in the statement of Proposition 3.2 and §
is as given by Proposition 4.6. Then one has h=s§ < 6. Therefore, if the smallness
condition (3.3) holds, then Lemma 4.5 implies that HRQLHCU([O,T];L(LQ)) is small, and
hence the smallness assumption (4.13) holds. This explains why one may apply the
conclusion of Proposition 4.6 under the assumption of Proposition 3.2.

The assumption that Proposition 4.6 holds implies that for any y € L?(T) there

is f € C°([0,T); L*(T)) satisfying

HfHCO([o,T};B) < K(T)[lyll 2 » (4.14)

and such that the unique solution u; to
Pyuy = xuRe f,  uili=o = v,

is such that u; (T, z) = b for some b € R and all x € T.
Now introduce ug which is the unique solution of the Cauchy problem (with data
at time T),

ﬁhw = (Ah,sTprA;é — Xw) Re]?, ug(T) = 0.
Again, the fact that the above Cauchy problem has a unique solution follows from
Proposition B.1. One can then define the linear operator K by

Ky = u2(0). (4.15)
The reason to introduce uy and the operator I is that the function u defined by
U = uq + ug satisfies

ﬁhu = Aps (TprA;é Re f), u(T) = 1ib, U= =Yy + Ky.
Now, assume that I + K is invertible with (I + K)~! € £(L?). Then y can be so
chosen that y + Ky = Aj svin. Using that Aj b = b and hence Agib = b for any
constant b, it follows that, with f := A;if and v := A,:éu,
Pv=Tyx,Ref, o(T)=1ib, v(0)= v,

where P is the original operator, so that ]3h = Ah,SPA,:i. Moreover, it follows from

the conclusion 2 of Proposition 4.6 that Hﬂ‘ o
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deduce that || f||co(o 7y, sy < K (R) [y|| gr=- The fact that the last constant depends on
h is not a problem since h is fixed, depending on T'. Now to see that Proposition 3.2
holds, it remains to check that v(T') = 0. As already mentioned, the fact that
v(T) = 0 follows from the fact that v(T) = ib as well as condition i7) in Assumption
3.1 and the fact that fT Vin(x) dx = 0.

Thus it remains only to prove that I + K is a bijection from L? into itself. To see
this, it is sufficient to prove that K is a bounded operator whose operator norm in
L(L?) is strictly smaller than 1. In this direction, we first use the energy estimate
(B.3) for the operator Pj:

T
@l < e (luallpe + [ 1Pl a).
for some constant C' depending only on

Y o+ et 1]

5o = sup { HV(t/)’
t'e|
Since uz(T') = 0, this implies that,

w0 1 B2 22y }-

T ~
HU2HCO([0,T};L2) < eCT/O H (AhysTprAi:é - Xw)f(t/)Hm '
To estimate the term (Ah7STprA,:é - Xw)fwe write it as
[Ans Xeol A o F + Mns(Tp — DxwAp -
It follows from (4.5) that
H [Ah,sv Xw]Af_LéfHLZ < Kh HXWHHsJFl HfHL2

It remains to estimate Ah,s(Tp_I)XwA}:if- To do so, we write Ap, g = I+hsTC(2s)/3L%
to split this term as

s 25 NF
(Tp = DXl of + Toenss L5 (T — Dxw(h*A, ) f-
For the first term we have (using (A.4) and (4.2) with s’ = 0)

1T = X Fl 2 S M8 = 1) vl || 7] o
For the second term write (using (A.4), (A.17) and (4.2) with s’ = s)

T, e L5 (T — Dxw(h°A; hs Dl S —I)Xw(hsf\ﬁé)ﬂ\m
S HTp—luc(Hs) [l s |27 f_z,i
S MS(0 = 1) lIxwllgs || F]] 2
It is found that
[Ans(Tp = Dxey 1 2 S (le = Ulpso + 100l g ) el |11 12 S 017 -

This yields .
Iozllnqoiay S (h+De [ 17
In view of (4.14), we conclude that
luslleogo ez < K'(T)(h+0) lyll 2

for some constant K’(T). Then chose h,d such that K'(T)h < 1/4, K'(T)é < 1/4.
We conclude that

1
vt e [0,T],  lluz(®liz2 < 5 yllz2- (4.16)
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By applying this inequality with ¢ = 0, one obtains ||Ky||,» < 3 [|y[|;2 which proves
that I + K is invertible in £(L?). This completes the proof of Proposition 3.2. [

5. FURTHER REDUCTIONS

Recall that until now we have reduced the study of the control problem in Sobolev
spaces for P := 0, + Tvc'? —|— zL2T L3 + R to the one of the control problem in L?
for P =9, 4+ Vo, + 2L2(cL2 ) + Ro.

5.1. Change of variables. The goal of this subsection is to reduce the analysis to

an equation where L%(CL%') is replaced with an operator with constant coefficient.
To do so, we use three change of variables, which preserves the L?(dx) scalar product.
This allows us to conjugate P to an operator of the form

0y +Wo, +iL+ R
where R is of order 0 and furthermore W = W (¢, z) satisfies [ W (t,z)dx = 0.

Proposition 5.1. There exist universal constants 69 € (0,1), r > 2, C > 0 such
that the following properties hold. Assume that c,V, Ry satisfy

e = 1| coqo,rp;n00) < 00,  No <1, (5.1)
where
No = lle = Uleogo. oy, + 1V leoqo,m;my + 19l coqo,m;mry + 1R2llcoqo,mcn2))-
Then there exist a constant T7 > 0 and a bounded, invertible linear map
©: C%([0, T); L*(T)) — C°([0, Ta]; L*(T))
with bounded inverse ®~1 such that
Pu = m@_l(ﬁg(fbu)),
where m = m(t) is a function of time only, defined for t € [0,T], and
Py =0, + W0, +iL + Rs.

The function W = W (t,x) is defined for t € [0,T1], it satisfies [ W (t,x)dx = 0,
and

W llcoqomgzzy < C(le = LV)lleoqorymz) + 10cllooqoryay)-  (5:2)
The operator Rz maps C°([0,T}]; L?(T)) into itself, with
I Rsllcogo,msc(z2)) < CNo. (5.3)

The constant T1 and the function m satisfy

1
‘7 - 1‘ +[m = 1l coqo,rp) < Clle = lcoqo, 11,50y

The map ® is the composition of three local transformations ® = 90;17,/); Wy, where
(L1h)(t,2) = (1+ 8ufr(t2)) 2 h(t x + fi(t,x),

(¢;1h)(t> ) h(w ( )7$)¢ (QD*_lh)(tvaj) = h(t,.ﬁb - p(t))a

where B1, 1, p are as given by (C.2), (C.33), (C.34) and (C.36) in Appendiz §C.

(5.4)

Proof. This proposition is proved in Appendix §C. O
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Remark 5.2. i) The proof is based on computations similar to the ones used in [1].
However, the analysis in [1] used some special properties of the Hilbert transform
which cannot be applied in the present setting. Instead, we shall rely on Egorov
theorem. Moreover, adapting an argument used in [8] and, with Egorov analysis, in
[9], in this paper it is convenient to introduce a change of variables which preserves
the skew-symmetric structure of the operator iL%(cL%-). This allows us to prove
that some operator of order 1/2 vanishes, which plays an essential role below. This
in turn forces us to revisit the analysis of changes of variables, which explains why
the proof is done in details in §C.

i1) In sharp contrast with other transformations that will be performed below,
notice that a change of variable is a local transformation, thereby transforming a
localized control in another localized control (this is used below to prove Lemma 9.2).

In addition to Proposition 5.1, higher regularity and stability estimates are given
in Proposition C.2.

5.2. Conjugation. To study the control problem for the new equation
Oy + W, +iL + R3

we will use the HUM method. A key point is then to prove an observability inequality
for solutions of the dual equation, which reads

(=0 — 0z(W+) —iL + R3)w = 0.

This equation can be written under the form Pw = 0 with

Pw := 0w + Wow + iLw + Rayw,
where

Ryw := —R3w + (0, W)w. (5.5)

The observability inequality will be proved later. As a preparation, in this section,
we prove that P is conjugated to a simpler operator where 0;w + W0, w is replaced
by ;. To do so, we use the analysis in [1]. For the sake of completeness, we recall
the strategy and the main steps of the proof.

We often use below the following notation: given a function f with zero mean,
0,1 f is the zero-mean primitive of f, defined by

o7 =S Ticun f@) =Y fet
j#0 v J#0
We seek an operator A such that
(Bt + W, +iL+ R4)A = A(&t +iL + R5)

where Ry is a remainder term of order 0. By definition
Ry = A‘l([at,A] +R4A+W8xA+i[L,A]>. (5.6)

Seeking A as a pseudo-differential operator, and trying to cancel the leading order
terms (that is W0, A 4 i [L, A]), it is natural to introduce A as follows. Let

1
o(t,x, &) = Ex + B(t, 2)[¢]2,
for some function 3 to be determined. Consider also an amplitude ¢(¢,z,§) to be
determined. Then define the operator A(t) by setting

Au(t,z) =) dig(t) q(t, z, §)e' ™), (5.7)
£

for periodic functions u, where i (t) = (27) ! [ e~®u(t, x) dx are the Fourier coef-
ficients of u, so that u(t,x) =3 ¢y Gig (t)e.
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Below t is seen as a parameter and we omit it in most expressions. Given a symbol
a = a(z,§) periodic in x, we denote by Op(a) the pseudo-differential operator defined
by

Op(a)u(x) = Z a(z, &)age'™.

ez

Assumption 5.3. Set

N = [Vleogom oy + lle = Uleoqormoy + HatCHCO([O,T};Hl) + 1 Rellcoo.11;2(22)) »

where sy s some fized large enough integer. In this section, we always assume that
N is small enough without recalling this assumption in all the statements.

Hereafter, sy always refers to an index large enough whose value may vary from
one statement to another.

Lemma 5.4 (Lemma 12.9 in [1]). There ezists a universal constant 6 > 0 with the
following properties.
i) Consider the case when the amplitude q is a perturbation of 1,

q(z,§) =1+ b(z,€).
Denote |bs := supgey |b(-, §) | gs(ry- If
1Bl g3 +[bls < 9,
then A and A* are invertible from L*(T) onto itself, with
1Aull 2 + A ull e + [|A" ull g2 + (A ull 2 < C flull g2

where C' > 0 is a universal constant.
i1) Consider the case when the amplitude q is small. That is, assume that

18] £rs + 1gls < 6,
then
|Aul[z2 < C6 [|ullgz2
where C > 0 is a universal constant.
Proposition 5.5 (from Lemma 12.10 in [1]). Assume that ||5|lw1~ < 1/4 and
1Bl gz < 1/2. Let
rymyso €ER, m>0, sp>1/2, MeN, M>2(m+r+1)+sp.

Then
M—1

1 ok
D A= Y- 00 (o (@161 22 (0t 050 ) Yt Ragu,

a=0

where, for every s > sy, the remainder satisfies
|Bar D™ wllire < C){Kamrssorn Nl + Kosarsmez o fo - (5.8)

where Ky := |q — 1, + |ql1[| Bl gusr and [q, := sup; supgez 1q(t, -, §) || mw -

We now deduce the following result (which is a variant of a result proved in [1],
more precisely in the proof of Lemma 9.3, with a slightly different estimate for the
remainder).

Corollary 5.6. There exists a universal constant d > 0 with the following property.
Assume that

lg — 1]1a + ||B]| gr2a <6,
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1
and let A be the operator A := Op (q(x,ﬁ)elmzﬁ(@). For any u in L?, there holds
3
i[|Dy|2, Alu

= 2@:5)0:(Aw) + 0p (2 S0~

38, N 1 ile[2p
37 =(0:8)%q) I Ju+ Rau (5.9)

where R4 satisfies
[Raull2 < C6lfull 2.

1
Proof. Denote by p the symbol p = ¢(z, )e’é1?#@) Set M = 8 and write

2 .
- é ? (6% 5 (6%
Z\Dx\zA:op(Zmagmiaxp) + Ro+ Ry, (5.10)
where
& ;
Ro:=0p ( Y == o¢lél o).
a=3

For any 3 < a < M — 1, the symbol 8?|£]% 0%p is a linear combination of terms of

1
the form m(z, £)b(z)e’é1?# where m is of order 0 (that is aém(az, €) < €171 and b(x)
is of the form (05°¢)(051B) - -- (09 B). It follows from statement 4i) in Lemma 5.4
that Ry is an operator or order 0, satisfying

[Roull 2 < C(0)d [[ul| 2 -

We now estimate the operator norm of Ry;. By applying (5.8) with s = sy = 1,
m = 1 and M = 8, then Koipyrysor1) < Kstmimr2 = Kiz and the inequality
simplifies to

Ve LAT),  [|Rar |Dslull g < C)Kas .
Now we estimate the L2-norm of Rysv for v in L2. We can assume without loss of
generality that v has zero mean (since Ry;C = 0 for any constant C') and then set
u = |D,| ™' v. The previous inequality yields
[Baolle < [Ryvllms = [|Ras [De| ullgr < C(6)0 [|v]| 2.
Therefore one has
I(Ro + Rar)ull 2 < C(6)6 [[ull 2 -

It remains to study the sum for 0 < |a| < 2 in the right-hand side of (5.10). One
can split this sum into two symbols such that the contribution of the first symbol is
the two terms in the right-hand side of (5.9) while the other symbol is of the form

1
Q(x, &)eé1?# with Q of order 0. Therefore the contribution of the second symbol
can be estimated by means of Lemma 5.4, so it can be added to Ry + Rjas to obtain
an operator R4 satisfying the estimate in the statement of the lemma. ]

Notation 5.7. Set

N = Willeo o,y o) + 1 Rsllco o ryecre) -

where sy is the large enough integer which appears in the definition of N (see As-
sumption 5.3) and d is an absolute number independent of sy (as in the statement
of Proposition 5.1).

We now chose § under the form Sy(t) 4 51 (¢, x) for some function coefficient Sy (t)
to be determined later and with 8; = %8; YW. Then B is such that

3 3
5 xﬂ - 583251 =W.
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Recall from (5.6) that
Rs = A‘l([at,A]+R4A+W8xA+z'[L,A]). (5.11)

Now we split the last term as i[L,A] = 14 [|Dm\% ,A] +1 [L— |Dz\% ,A]. Then

it follows from the previous corollary that the remainder Rs (as defined by (5.6))
satisfies

R = A7 ( [0, A] - Op ((Z |§| %(@cﬁ)%) |£I%6i‘5'%5>

(5.12)
+RiA+i [L— Dof? 4] - Ra)

where R4 is as given by Corollary 5.6. Recall that R4 is an operator of order 0. On
the other hand

[0:, A] = Op ((atq + i\gy%(atmq)ei\s&ﬁ)

So one can write Rs under the form Rs = Rél/ 24 Réo) where Rél/ 2 (resp. Réo)) is
of order 1/2 (resp. 0),

RED = 471 0p (e (008 + L 0:5))p — 5 o (el 2e°7),

21¢]
RY .= 41 (R4A —Ra+i [L D, |2 ,A} +Op ((atq)eﬂa%ﬁ))_
We claim that
HR5 HCO(OT] L(L2)) ~ SN (5.13)

Indeed, R4 has already been estimated and, directly from its definition (see (5.5)),
the Sobolev embedding || W || e < [[W{| g2 and (5.3), one has || Ral[co o 11.2(12)) S
N'. The last term is estimated by means of Lemma 5.4 and to estimate the com-

mutator [A, L — |D, |% | we notice that L — |D, \% is a smoothing operator.
N'Now in view of (5.2) and (5.3) one has N/ < N and hence HR5 HCO (0.T1(12)) S
It remains to prove that 5 and g can be so chosen that Rél/ 2 — 0. To do S0, we
first fix By(t) such that
27,y = — / (481 + 202807 (1) (5.14)
where recall that 8, = —28; 'W, so that
[ (08 + §0:57) () da =0,
Now define ¢ as ¢ = €7 where -y is such that
v = Siior (a8 + {0.07), (515)

(Notice that the previous cancellation for the mean implies that ~ is periodic in x.)

With this choice one has R(1/2) 0.
By combining the previous results, we end up with the following proposition.

Proposition 5.8. Assume that sy is large enough. Consider the operator
A:=0p(q(t,z,&)e iB(ta)lel2 )
with 5
B =Bot) + 30, W
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where [y determined by (5.14), and g = €7 where «y is given by (5.15). Then
(0r + WOy +iL + Ry)A = A(d; +iL + Rs)
with
1Rl oo,z SN
where N is as defined in Assumption 5.3.

6. INGHAM TYPE INEQUALITIES

As already mentioned, the controllability of the linearized equation around the
null solution is based on (a modification of) the following Ingham’s inequality: for
every T' > 0 there exist two positive constants C; = C1(T") and Cy = Co(T') such
that, for all (wy,)nez € £2(Z;C),

T
Ch E ‘wn|2 S/
0

nez

2
dt < CQZ|wn|2.

neL

1
3 2
§ :wneznm\ t

neL

Hereafter, (wy,)ncz always refers to an arbitrary complex-valued sequence in ¢2(Z).
For our purposes, we need to consider more general phases that do not depend
linearly on t. For some given real-valued function 8 € C3(R), set

fin(t) = sign(n) [((n)t + B(B)In%] ,  E(n) = (g+n?)}nf* tanh (bln),

with po = 0 and sign(n) = n/|n| for n # 0. We recall that ¢ is the symbol of the
linear operator L = (g — 8%)56’(0)% obtained by linearizing the water waves system
around the null solutions, see Section 2.2. We begin by proving a lower bound
which holds for any T" > 0 provided that the functions contain only large enough
frequencies.

Proposition 6.1 (High frequencies). Let T' > 0. There exists Nog > 0 such that, for
all N > Ny, the following result holds. If B satisfies the two conditions

1
10:8] < §tanh%(b) and |02B] <1 for all t € [0,T],

then
T T ol
5 2 < [ 3 e ) (6.1)
Z VA
niSN nSN

Remark 6.2. i) For T small, one can take Ny = CT 27 for some ¢ > 0. See
(6.8) for more details on this estimate. i) For ||0?3| L~ small enough and T large
enough, the result holds with Ny = 0.

Proof. Splitting the sum into n = m and n # m, we write

T 2 T
w0 O gt >T S w2 + 1%W¢/eMW%wwmt
> OETTENEDS 0

neZ nez n#m
We have to estimate

In|=N In>N [m|>N,[n|>N

T
K(n,m) ::/ e in (O =pm(®) gy
0

Integrating by parts,

i(pn () —pm (t)) 71=T T no__on
K(nv m) = |- 6, 7 :| + / el(u"(t)fum(t))% dt,
Z(IU’n (t) - M (t)) t=0 0 Z(:U’n - Hm)
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and therefore
2

Kn,m)| <k(n,m):=|——

T "
[,
L= ([0,T7]) o luh — pil
Since k(n,m) = k(m,n), we have

Z wnme(n,m)‘ < % Z ([wn|* + [wm]*) Z lwn|? K (n, m)

We have to prove that N can be so chosen that

T — Z k(n,m) >
meZ\{n}
[m|>N

Hence

Z wh gm®| =Y (T— 3 m(n,m))]wn\Q.

nez nez meZ\{n}
In|>N [n|>N |m|>N

|

(6.2)

To do so, we use the following lemma.

Lemma 6.3. Assume that |0,5(t)] < %tanh%(b) forallt. Lete € (0,3). Then
i) There erists a positive constant K. such that, for all integers N > 0 and all
n € Z with |n| > N,

1 K.
D < —. (6.3)
meZ\{n} Fn = Fan i o= (0,11 (1 + N) 2
|m|>N

i1) For all integers n,m in Z with n # m, and all t,

’MII /I
ﬁ < 2tanh~2(b) |07 | (6.4)
Mo — Hm

(n,—m), we can assume,

Proof. Let us prove statement ). Since k(—n,m) =
|

K
without loss of generality, that n > 0. Let ]é?t < 1ltan %(b), and note that
tanh(b) <1 <1+ g. Then for all n >0

3

1
tanhz (b)n2 < £(n) < (1 + g)2n2, 5 tanh? (b)n2 < . (t) < %(1 +g)2ne.
For m < 0, m # n, one has
1
[ = Hi| =ty + 1y > 5 b2 (B) (2 4 m|2) > - tanh (B) (1 + [m|?)

and therefore
C C’
< <
Le2([0,17]) m;N 1+ |m]3/2 vV 1+N

for some constant ¢’ > 0. We now consider the case m > 0 and split the sum into
two pieces. For m > An with A := (36(1 + g)/tanh(b))'/3 one has p!,, > 2!, and

1

2.

I
mSNHun Fin

1 1
[ty — | = 4|1~ ﬂ > 3ty > 1 tanh? (b) m?
which again leads to a convergent series
1 C
> o <
w0 = Mmooy VIHN

m>An, m>N
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It remains to consider the sum over all m > 0 such that N < m < An. Denote
— /(g £ n?)n. Then
o(m)—o(n) o(m)? —o(n) - mP+n’+nm+g
m-—n (m —n)(o(m) + o(n)) o(m)+o(n)
Using the elementary inequality ab < %(a2 + b%), one has
(a(n) +a(m))vn = /n2+gn+/m2+gy/nm <m?+n*+nm+g
for all m,n > 0. Therefore
lo(m) = o(n)| > v/max{n,m} |m — n| (6.5)
for all m,n > 0. Now suppose that m < n, with m >0, n > 1. Then
(. — il = (o(n) — o(m)) tanh2 (bn) + o(m)(tanhZ (bn) — tanh? (bm))
+(n% —m2)9,

2 2

> (0(n) — o(m)) tanh (bn) — (n? —m?)|9,f]
. . 10,81
nz2(n —m)tanh2 (b
R sV W o),

—_

- tanh? (b)v/n(n —m)
if 0¢8] < %\/tanh . We deduce that
|t = H| = C/max{n, m} [n —m| (6.6)

for all m,n >0, with C = l tanh? (b). Now, for n > 1, we obtain

[\)

1 1 clog(cn)
> o= < (6.7)
— > T S
m>0, m#n Hn = Hm Lee([0,T7) C\/> m>0, m#n |n m| \/ﬁ
N<m<An N<m<An

for some ¢ > 0. For n > 1 and n > N, one has n > l(1—1—]\7), and

clog(en)n™ <Ozt < 2’_5( + N)~2te
for £ € (0,1), for some C. > 0. On the other hand, for n = 0 the first sum in (6.7)

is zero because it has no terms. Thus the first sum in (6.7) is < C.(1 + N)_%‘*'6 for
any n > 0. This completes the proof of statement ). Statement i) is proved using
(6.6). O

The previous lemma and the definition of x(n,m) imply that
2K
> kn,m) < ——5— (1+T|0; Bl 1)-
N)z—¢

meZ\{n} (1+
|m|>N

Hence (6.2) is satisfied provided that

K 1_
ZE (U T0RBle) < (14 V)3, (6.8)
and Proposition 6.1 is proved. g

From (6.6), applied for 8 = 0, we deduce that

|(n) —£(m)| > Cy/max{n,m} [n —m| (6.9)

for all m,n >0, with C = %tanh% (D).
We now prove upper bounds. By contrast with the previous proposition, we shall
see that these estimates hold for any function (not only for high frequencies). Also,
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a key point for later purpose is that one can add some amplitudes (,, depending on
time (and whose derivatives in time of order k can grow with n as |n|*/2).

Proposition 6.4. There exists C > 0 with the following property. Let T > 0. Let
1
0,8] < Ltanh2(b), and |0fB] <1, k =2,3 on [0,T]. Then, for all (w,) € (*(Z;C),

/ > wnln(t)etn dt SCMEQPA+T)) Jwl? (6.10)
ne”L nez
where
a n o0 82 n [e'e)
M(C) —SUpHCnHLoo +supw+sup@. (6.11)

nez nez /1 + |TL| nez. 1+ |n|

Proof. Splitting the sum into n = m and n # m, we write

/ =2 (/ T [Ga®)P dt) [wal® + Y waiis B, m)

nez 0 n#Em
with

1un

E(n, m) / o (D)) tn O =1 (D) g

The first sum on the right-hand side is easily estimated. It remains to bound the
sum for n # m. Integrating by parts twice, one has

T
B(nm) = [ feldt = [eM(~ifp+ 5 - 5]}
0
T
+/ eh(f” 2 3f h//p3+3fh”2 4 fh”/pg) dt
0
with
f = Culms h:= pin — fim, ==
Thus |E(n,m)| < e(n,m), where
e(n,m) := 2|| fpl|poe + 2/| f'p?|| oe + 2| f1"D? || £ (6.12)
+T(L Pz + 31 R"DP[|1oo + 3] fR"p | oo + | fR"D% || £2c).

We have to estimate the sum Zmez\{n} e(n, m), uniformly in n. First, we note that

10F (GGl = 110F fllzoe < {(1 4 |n)Z + (1 + Im[)2}EM(C)%, &k =0,1,2.

We have already seen in (6.4) that |h"p| < 2|0?8|. Similarly, |h"'p| < 2|033|. Also,
applying (6.3) with N = 0, ¢ = 1, we deduce that > mez\fn} 1P|l < C for some
absolute constant C. Therefore the sum of the first, the third and the last two terms
n (6.12) (i.e. those with f) is bounded by CM(¢)?(1 + T). The remaining three
terms of (6.12) are also bounded by CM(¢)?(1 + T) provided that

Inltlml | (6.13)

mGZ\{ }H Mm) L
for all n € Z, for some C independent of n. The bound (6.13) is proved using the
same splitting and estimates as in the proof of Lemma 6.3. ]

By combining the two previous propositions with an induction argument (follow-
ing [10, 22, 40]), we now deduce the following result.
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Proposition 6.5 (Sharp Ingham type inequality). Let T' > 0. Then there exist two
positive constants C(T') and 6(T') such that, if

1Bl x := sup [(8:8,0;8,0;8)| < d(T), (6.14)

te[0,T

then, for all (wy,) € (*(Z;C),

)Y fwaf? < /

nel

g W, elhn ()

ne’l

Proof. This proposition will be deduced from Proposition 6.1, the following claim
and an immediate induction argument (with a finite number of steps).

Claim 6.6. Consider two subsets A, A" of Z with A’ = AU{N} for some N € Z,
and with |n| > |N| for all n in A. Assume that for every T > 0 there exist two
positive constants 06(T) and K(T) such that

181 <8(T) = K1)} Jwal? < /

neA

(6.15)

E wyetn®)

neA

Then for every T > 0 there exist two positive constants 6'(T) and K'(T) such that

2
18 <8(T) = K'(T) S wnf? < / S wpetn®

neA’ neA’

(6.16)

Let us prove the claim. Introduce
=S wae O, 1) = 3 wee O, fi(1) = Y wpetn O,
n€A neA’ neA’

so that f' = f +wyeN, fi = e N f/ = fe ™MN 4wy, and

[Finwra= [Ciropa= [ wemo|

neA’
We prove that there exist two constants Cy, Co (both depending on T') such that

T T
Gl < [ IF@FRd ClunP < [CIF@PR (617)
neA 0 0
Then (6.17) implies the second inequality of (6.16) with K'(T) := 3 min{Cy, Cs}.
Let us begin with the first inequality of (6.17). Let 7 := 3 min{1,7'}, and remark
that

dt.

/0 C(fult ) — Fu(8)) dy = e O > wnetn g, (1), (6.18)

neA
(notice that the sum is over A and not A”") with

0 () = /O (et =entesny @) _ 1Y gy

Assume that n, N are positive. We split 0, = ¢, + (,, where ¢, is a constant,
independent of time (such that ¢, = 6,, for § = 0), and (, is defined by difference,
namely

T iem—elr _
— ife(n)—6(N)]m _ _ ¢ —
Cp = e 1)dn = — T,
X )= iy —avy
¢ = / ’ =L (P4 =BONA—VR) 1) g
0

7.
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Now we use the following elementary inequality: there exists an absolute constant
co > 0 such that, for all ¥ € R,

le? —1 — 9|2 > ¢omin{v?, 0*}.
This inequality holds because "’ —1—i9|? = (1—cos¥)% 4 (9 —sind)? is positive for
all ¥ # 0 and it has asymptotic expansion 9?2 + o(9?) for [J| — oo, and $9* + o(9*)
for ¥ — 0. We apply this inequality with ¥ = [¢(n) — ¢(N)]7, and, using (6.9), we
get
|cn|2 > ert
for some ¢ > 0 (note that min{72, 74} = 74 because, by assumption, 7 < 1).
It remains to estimate (,, and its derivatives. From the definition,

(Gl <27, [8eCal < 2010BllLomvn,  107Ca] < 4(106BI[700 + 107 Bll oo )Tn.

However, we need a sharper bound on ¢, which shows that ¢, is small when j is
small. Such a bound could be easily obtained by estimating |e*/ —1| < |f|. However,
this would make appear an extra factor y/n. Instead, we integrate by parts to obtain

Gilb(m)—E(N)]r

= iBt+T) =AM (Vn—VN) _
alt) 7 (e 1)

ilt(n) — €(N)]
T ill(n)—¢
B / el (e -BOIAVR) _1) ay
o ) — vy |

and it is easily checked, using (6.9) and the bound |B(t+7)—5(t)| < 7||0,8|| L, that
|Cn] < C7||018|| oo By combining the previous estimates, we have M (¢) < C7||5||x
where M(() is given by (6.11), and C' is independent on T, 7.

Set F'(t) ==, ca wpe M, (t) and split F = F| + Fy with

Fi(t) = Z wpe e, Fy(t) := Z wne ¢ (1),
neA neA
Since |c,|? > e, the assumption (6.15) implies that, if ||3||x < 6(T — 7), then

T—1
HET =) S w2 < KT =) Y Jumeal? < / By dt.
neA neA 0

On the other hand, Proposition 6.4 applied with M ({) < C7||5||x implies that, if
I8]x < 4 tanh? (b), then

T—1
/0 B dt < Cor?|BZ (1 +T =) Y un?
neA

where Cy is independent of T, 7. Therefore, if

4CoT||IBI1% (1 + T — 7) < er* K (T — 1), (6.19)
then [| T|Ry2dt < 1 [T7T|F[?dt, whence [ T|F|?dt > 1 [T |F[?dt. By
(6.18), this implies that

T—1
4 2 2
ZCT K(T —) E |wp | §/0 |F(t)|* dt

’IIGA
T—7
S /

TVeK(T —7) (6.20)
2/Co(1+T) "’
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/O (At ) — Ai(0) dn| .

The condition (6.19) holds if

181 x <



and we set §'(T") as the minumum among %tanh% (b),0(T), and the constant on the
right in (6.20). Moreover,
T—1
J

2
dt

/0 (At — A(0) dy

T—7 T
< /0 r /0 (it + 1) — Fu(e)]? dndt
T—T T T—T T
2 2
<2 /0 /0 ot + ) dndt +2r /0 /0 A2 dndt

T T
< 2TT/O ]fl(t)|2dt:2TT/0 @) dt,

and we infer that the first inequality in (6.17) holds with Cy = 3K (T — 7)T 1.
Now we prove the second inequality in (6.17). We have [wy |2 = |f/(t) — f(t)|* for
any t, and so

1 T , 9 ) T , T
sl =7 [ 170 -0 ar< 2 [Cir@ras [1sopd).

It follows from Proposition 6.4 (applied with ¢, = 1) that

/T FOPdt < (1+T)C ) |wal*.
0

neA
Using the first inequality in (6.17), we deduce that

T T
[ iopa< 2D [P a

1
where C' is the constant of Proposition 6.4 and C7 has been found above. Conse-
quently the second inequality in (6.17) holds with Co = 1TCy[Cy + (1 + T)C] 7.
We set K'(T') = 2 min{C, C»} and obtain (6.16). This completes the proof of the
claim in the case of n, N positive. The other cases are analogous. O

7. OBSERVABILITY

We now use the previous inequalities for sums of oscillatory functions in order
to prove an observability property. In particular, we prove that it is sufficient to
control the real part of the solution to bound the initial data.

Proposition 7.1 (Observability). Let T' > 0. Consider an open subset w C T and a
constant 0 < ¢ < 1. Then there exist positive constants K,e1 such that the following
property holds. Consider a pseudo-differential Ay with symbol exp (zﬂ(t, a:)]@“\%) for
some function 5 satisfying
sup sup ’(at/ﬁ(ta x),@fﬂ(t,x),afﬁ(t,x)ﬂ < 5(T)7
t€[0,T] z€[0,27]

where 6(T) is the constant in Proposition 6.5. Then for every initial data vy € L*(T)
whose mean value (vg) = 5= [rvo(z) dx satisfies

[Re{vo)| = ¢ |(vo)| — 1 [voll 2, (7.1)
the solution v of
o +iLv =0, v(0)= vy, (7.2)
satisfies
T 2m
/ / Re(Aov)(t, 2)[? dadt > K / (o) da. (7.3)
0 w 0
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Remark 7.2. The condition (7.1) cannot be eliminated. To see it, consider the
simplest case f = 0, so Ag = I, and consider a constant solution v(t,z) = C of
(7.2). Then (7.3) holds for some K if and only if the real part of C'is non zero. This
suggests to assume that

[Re(vo)| > ¢f(vo)l - (7.4)
In fact, it is sufficient to consider the weaker assumption (7.1). The advantage of
assuming (7.1) instead of (7.4) is used below (see (7.14)).

Proof. Write

1 2w

v(t,x) = Zanemxew(")t, n = o e~ "y () da,
nez 0

where {(n) = (g+n2)%(|n| tanh(b\n\))% is the symbol of L. Then set w = Agv, given
by

w(t,z) = 0, ¢ UmHB(ED)In| %),

ne”L
For n € Z, set

An = L(n)t + ﬁ(t,:n)|n|%, tn = sign(n)\,, cp(z) = a, e,

Since p, = sign(n)\, and p_, = —p,, we write
2Rew = 2Reag + Z cnei)‘" + Z @e‘“” + Z cnei’\" + Z @e‘i)‘"
n>0 n>0 n<0 n<0
=2Recy + Z cpettn + Zmei“" + Z c_pettn 4 Z chettn
n>0 n<0 n>0 n<0
to obtain
Cp +c_p for n > 0,
2Rew = Z%Lei“" with v, =< 2Recy for n =0,
nez Cn+C_p for n < 0.

Consider an interval wy = [a,b] C w. By Proposition 6.5,

/OT/w | Re(w(t, z))|* dodt > /wo /()T\Re(w(t,x))\zdtdx

> S8 [ Y putoda, (7.5

0 nez

where C(T') is the constant given in Proposition 6.5. For n # 0 we write

’PYTZ(:C)P = ’an’2 + ’a_n‘Q + anmeQinw _i_@a_ne—?inx?
so that
[ @ de = eol{lan? + la-?)
wo
_ |an‘ |an|< / e2ine d.’l)“ + / e—QiTw dr )
wo wo
Now

sin(n(b — a)) .

/ean:L‘dw /e—anxdm
wo wo

Moreover there is a small universal constant g > 0 such that, for all 6 € (0, dy),
< sin(é).
)

sin(z)

V|z| >4,
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We can assume that 0 < b — a < Jg, so that
sin(n(b — a))

n

VnelZ, (b—a)—

‘ > (b—a) —sin(b— a).
As a consequence, for all n # 0,

(@) dz > ¢ (|an|* + |a—n]?),

wo

where ¢ := (b — a) — sin(b — a) > 0. Then, recalling that 79 = 2Reay, it follows
from (7.5) that

T c/
/ / | Re(uw(t, 2))[? drdt > C(T) (b~ )| Reao” + 5 3~ Janf?].
0 Jw nez\{0}

Now, using (z+y)? > 322 —y? and (7.1), one has IRe(vo)|* > 1c? (o) |* — 2 HUOH%Q,
namely

2
C
|Reapl? > 5 jaol® = 27 > Jan|?,

nez
and therefore .
/ /]Re(w(t,x))dedt > K anl?,
0 nez
with K = C(T) min{(b — a)(3¢* — 2me}), 3¢ — (b— a)2me?}. If £ is small enough,
then K > 0, which completes the proof. ]

Corollary 7.3. LetT > 0, letw C T be an open subset and let 0 < ¢ < 1. Then there
exist positive constants €g,e1,7, K such that the following property holds. Assume
that

(W(t) =0
for allt € [0,T] and
k
swp 3 (W], + s (W) < <o
te[0,7) I;kSS H'  yelo,1)
and consider the pseudo-differential operator A, given by Proposition 5.8, with sym-

bol q(t,x,&) exp(iﬁ(t x) |§]%) Then for every initial data vy € L?(T) whose mean
value (vo) = 5= [pvo(z) dz satisfies

[Re{vo)| = ¢ |(vo)| — 1 [voll 2, (7.6)
the solution v of
O+ iLv =0, v(0)= o, (7.7)
satisfies
T
/ / Re(Av)(t, 2 dadt > K / (o) da. (7.8)
0 w

(The constants €g,e1, K depend on T, c, while r is a universal constant.)

Proof. Split A as Ag + Ay with

Ao == Op (exp (iB(t,2)€]7)), A1 = Op ((g(t,,€) — ) exp (iB(t,2)|¢]7))

The contribution due to Ag is estimated by Proposition 7.1. Notice that, for &g
small enough, the smallness assumption on 3 of Proposition 7.1 is satisfied because

Sup  sup ‘(atﬁ(t7x)78t2/8(tvx)vagﬁ(t $ S Sup Z Hak HHl 550
t€[0,T] z€[0,27] 1<k<3
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On the other hand, it follows from the definition of ¢ and 8 and the estimate given
by statement 4i) in Lemma 5.4 that A; is bounded from L? onto itself, with an
operator norm of size O(||W{| ;) = O(ep). Then

T T T
/ / Re(Ayv)(t, 2)[? dudt < / | Avo(t)]|22 di < / &2 o ()12 dt.
0 w 0 0

Since ||v(t)||;2 = ||[v(0)]| 2, by taking ¢ small enough, the desired estimate follows
from the triangle inequality. U

We now want to deduce an observability result for equations of the form
Oyw + Wo,w + iLw 4+ Rw = 0,

where R is an operator of order 0. In the appendix we prove that the Cauchy
problem for this equation is well-posed (see Lemma B.3).

Corollary 7.4. LetT > 0, w C T be a non-empty open domain and let 0 < ¢ < 1.
Then there exist positive constants €9, €3, 1, K such that the following property holds.
Assume that

(W(t)=0
for allt € [0,T] and

sw S |lgEw )|+ s (WOl + swp RO pge S (79)
te[0,7] 1 Tpe3 HY  teo,1) te[0,7)

Then for every initial data wy € L*(T) whose mean value (wo) = 5= [rwo(z) dx
satisfies

[Re{wo)| = ¢ [{wo)| — €3 [lwollL2, (7.10)

the solution w of
Ow + Woyw~+iLw+Rw =0, w(0)=w (7.11)
satisfies
T 27
/ /|Rew[2 drdt > K/ lwo(z)|? d. (7.12)
0 w 0
Remark 7.5. Corollary 7.4 also holds for data at time 7', that is: If wy € L*(T)
satisfies (7.10), then the solution w of
ow + Wow+iLlw+ Rw =0, w(T)=wy (7.13)
also satisfies (7.12). Note that the datum in (7.13) is at time 7" instead of 0. To
prove it, notice that the function w(t, z) := w(T — t, x) satisfies
—Ohh + WO, + iLW + R = 0,

where WN/(t),fé(t) stands for W(T — t), R(T —t). Since W and R satisfy the same
assumptions as W, R, one can apply (7.12) with w replaced by w, noticing that

T T
/ /|Rewy2 dmdt:/ /|Reﬂ7]2 dxdt.
0 w 0 w

Proof of Corollary 7.4. It follows from Proposition 5.8 that there is a change of
unknown w = Av such that v satisfies an equation of the form

O +iLlv +Rv =0,

for some operator R of order 0, satisfying ||9R(t)v]|;2 < Ceg |jv|| 2 for all t € [0,T].
By a perturbative argument, we shall deduce observability for this equation from
38



observability for the equation without R. To do so, split v as v = v; + vy where vy
and v are given by the Cauchy problems

Ov1 +iLvy =0 Oyvg + 1 Lvg + Rvg = —Ru;
{vl(O) = {02(0) =0
and vy := v(0) = (A71w)(0). We begin by estimating v;, claiming that its initial
datum v satisfies the hypothesis (7.6) of Corollary 7.3, which is
[Re{vo)| = ¢[(vo)| — &1 [[voll 2 (7.14)

(where €7 is given in Corollary 7.3). To prove (7.14), we write v = w + (I — A)v to
obtain, at time ¢t = 0,

[Re(vo)| = [Re(wo) + Re((I — A)vo)| = [Re{wo)| — [((I — A)vo)|.
Thus, using the assumption (7.10),
[Re{vo)| = cl(wo)| — esllwoll L2 — [((I = A)vo)].
Since w = v + (A — I)v, we have (wg) = (vo) + ((A — I)vg), and
[Re{vo)| = ¢l(vo)| — (¢ + D[((A — Dvo)| — esllwol| 2.

By (7.9), [{(A—I)vg)| < Ceal|vo||12 (see Lemma 7.6 below). Also, ||wol|r2 < Cllvol| 2
because A is bounded on L? (see Lemma 5.4). Thus

[Re{vo)| > cl(vo)| — ((c + 1)Cea + Ces) |lvoll 2,

and the claim is satisfied if €5, 3 are small enough. As a consequence, from Corol-
lary 7.3 we deduce that

T 2T
/ / |Re(Avy)|? dzdt > K/ lvo(z)|? da. (7.15)
0 w 0

On the other hand, it follows from (B.11) (applied with V' =0, ¢ = 1 and R = R)
that

lo2llcopo,r3;22) < C IRl Lo, 1522 -
Since ||R(t)v||z2 < Ces||lv|r2, by using (7.9), we find that the last quantity is
bounded by CesT||vg||2. Since A is bounded on L2, we deduce that

T T
| [ IRe(aw)? dodt < [ Aua(e)| 2 dt < T sup | 4va(o)
0 Jw 0 [0,7]

2
< OT |lvzll¢ogo.ryizy < CT 5 w0l e

(7.16)

Using the elementary inequality (z + y)? > %m2 — 92, for 59 small enough we get

T K 27
/ / IRe(Av)|* dxdt > 4/ lvo(x)]? d.
0 w 0

Since Av = w and ||wgl|z2 = |[Avol|z2 < C|lvol| 12, we obtain

T K 21 27
/ / Rew|® dzdt > 4/ lvo(z)|? dx > K’/ lwo(x)|* de,
0 w 0 0

which completes the proof. O
Now we prove a technical result used in the proof above.

Lemma 7.6. Consider a pseudo-differential A with symbol q(x,§) exp(zﬂ(aﬁ)\{]%).
There exist universal positive constants 6, C' such that, if ||| s +|q — 1|3 < 0, then
(A — Du)| < C6||ul|z2 for all u € L*(T).
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Proof. Like in the proof of Corollary 7.3, we split A = Ay + Ay, with
. 1 . 1
Ag:=O0p (exp (zﬁ(m)]ﬂ?)), Ay :=0p ((q(a:,ﬁ) —1)exp (zﬂ(x)|§]2)).

Directly from statement i) in Lemma 5.4 we have || A1 || z(z2) < €6, whence [(A1u)| <
C6|lul 2. To estimate (Ag — I), let u(z) =Y, o5 une™®, and calculate

: 1
/(Ao —DNudx = Z UnCn, Cn = / einz+n|25(z)) gq
T T
n#0

Integrating by parts, one has

/ 0, {eilnz+n|2 5()y ] / — iDpa () P HInl 25(a)
Cp — €Tr =

Ti(n+ [n|20:6(x))  JT[n|2 (14 |n|2n10:5(x)?

so that, for |0,6| < 1/2,

leal < C|IBllg2ln] ™2 ¥n € Z\ {0}

Thus (3 |cn|2)% < C||B||g2, and by Hoélder’s inequality the lemma follows. O

8. CONTROLLABILITY

Consider an operator of the form
Q:=0+Wo,+iL+ R,

where W is a real-valued function and R is an operator of order 0. In this section
we study the following control problem: given a time T" > 0, a subset w C T and an
initial data w;, € L?(T), find a (possibly) complex-valued function f € C°([0, T); L?)
such that the unique solution w € C°([0,T]; L?) of

Quw = xu, Re f, w(0) = wipy (8.1)

satisfies w(T") = 0. We study this control problem by means of an adaptation of the
classical HUM method. We need to adapt the standard argument since we want to
prove the existence of a real-valued control, while the unknown is complex-valued.
In particular, for this reason, one cannot obtain w(7") = 0. We prove instead that,
for any real-valued function M such that the L°°-norm of M — 1 is small enough,
one can find a control such that w(7T,z) = ibM(x) for some constant b € R. We
remark that, given f and w;,, the existence of a unique solution w to (8.1) is proved
in the appendix, see Lemma B.3.

We prove not only a control result but also a contraction estimate, which is the
main technical result of this section. This means that we estimate the difference of
two controls f and f" associated with different functions W, W’ or remainders R, R'.
This contraction estimate is the key estimate to prove later that the nonlinear scheme
converges (using a Cauchy sequence argument). To prove this contraction estimate
we introduce an auxiliary control problem which, loosely speaking, interpolates the
two control problems. Since the original nonlinear problem is quasi-linear, a loss of
derivative appears. This means that to estimate the C°([0,T]; L?)-norm of f — f’
we need to have a bound for the C°([0, T]; H')-norms of f and f’. This is why we
prove and use a regularity property of the control, namely the fact that the control
is in C°([0, T); H*(T)) whenever the initial data w, is in H*(T). This regularity
result is proved by an adaptation of an argument used by Dehman-Lebeau ([20])
and Laurent ([32]). Before stating the result, we recall the definition of the adjoint
operator (Q*, namely

Q '=-Q, Q:=0+Wi +iL+R, R:=—-R"+ (0. W). (8.2)
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Proposition 8.1. Consider an open domain w C T. There exist r and siz increasing
functions Fj: Ry — R (0 < j < 5), satisfying limp_,o F;(T) = 0, such that, for
any T > 0, for any real-valued function M € H3/?(T) with |M — 1|| g2 < Fo(T),
the following results hold.

i) Existence. Consider R € C°([0,T]; L(L?)) and a function W satisfying

/Wtac

for any t € [0,T]. Assume that the norm
IW, B)llrr = D 105W llcoqo,ray + IW llcoqo,ry,mmy + 1Rl oo 2y
1<k<3
satisfies
(W, B),.p < Fa(T). (8.3)

Then there exists an operator © 1 L? — C%([0,T]; L?) such that for any wy, € L2,
setting f := Oprr(wip), the unique solution w € C°([0,T); L?) of

Qu = xu,Ref, w(0)=wy, (8.4)
satisfies
w(T, z) = ibM (x) (8.5)
for some constant b € R, and
[[win|| 2
< . .
1 llcogo, 2y < (1) (8.6)

ii) Uniqueness. For any wy, € L*(T) and any T > 0, Onr(win) is determined
as the unique function f € C°([0,T]; LQ(T)) satisfying the two following conditions:
(1) There holds Q*f =0 and Im [ M (z) f(T,z) dx = 0.
(2) The solution w of (8.4) satisfies (8 5) for some constant b € R.

iii) Regularity. Let u € [0,3/2] and consider w;, € H*(T). If
W, R) o2 + | Rl coo,1y;2.(m0y) < F1(T), (8.7)
then © pr.1(wip) is in C°([0,T]; H*(T)) and

[win |l g

H@M,T(’U)m)HCO([O,T];HH) =R (8.8)

iv) Stability. Consider two pairs (W, R) and (W', R), where (W, R) is defined

fort € [0,T] and satisfies (8.7) with u = 3/2, and (W', R') is defined for t € [0,T"]

and satisfies (8.7) (with p = 3/2 and T" instead of T'). Denote by O, and O’y 1

the operators associated to these two pairs. Consider the time-rescaling operator T
defined by

(TH(®) = h(M), A= (8.9)

and let W := TW, R := TR, namely R(t) = R(\t). Then, given any w;, € L*(T),
1€ 77 (Win) — TOM 1 (Win)llco(0.77);22)
[winl| gr3/2

f4(T> (’1 — >\| + ”W’ _ WHC’O([O,T/};H% + ||R/ _ R”CO([O,T’];K(L2)))' (810)

v) Dependence in M. Consider M, M’ in H3/?(T) with |M — 1|| pec+||M' — 1| ;00 <
Fo(T). If (W, R)||,.7 < Fi(T), then, for all wi, € HY(T),

1
(@11 = O 1) (win) || co 0,171y < 7o (1) [M = M| o Nlwinllgn - (8.11)
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In this section we often use the notation A < B to say that A < CB for some
constant C' depending only on 7. The key result is the following lemma.

Lemma 8.2. Introduce the space
L3 = {(p € L*(T;C); Im/ M(z)p(x)de = 0}.
T

For any wiy, € L*(T), there exists a unique f1 € L3, such that,

T
Vo € L3, Re/o (Xw Re f(t),gb(t))dt = — Re(win, ¢(0)),
where f and ¢ are the unique functions in C°([0,T); L*(T)) satisfying
Qf=0 Qp =0
8.12
{f(T) _ {¢<T> — 4, (8.12)

where Q is given by (8.2) (the existence of f and ¢ follows from Lemma B.3.) We
set

Onr(win) == f.
Moreover (8.6) holds.

Proof. The space L?M is an R-vector space. Introduce the R-bilinear symmetric map
a(-,-) defined by

T
a(f1,61) = Re /0 /T Yoo(@) Re(F (£, 2)) 3L, 7) dadt (8.13)

T
— [ [ () Re(s(t,2)) Re ot ) dadt.
0 T

This application is well defined and continuous. Indeed, it follows from the L2-energy
estimate (see (B.11)) that

T
!a(fl,czn)!g/ /\chzS| dxdt

< T\ flloqo,ry;22) 19l coo,ry;L2) < CT) Ifill g2 |01l 2 - (8.14)

Since x(x) =1 for x in an open subset w; C w, one has

T
a(fbfl)Z/O /(Ref)Qd:ndt.

If fy € L3, then Im [ M f dz = 0 and we have

'Im/fl(x) dzx| = ’Im/(l — M(x)) fi(x) dx
T T
from which (using |Rez| > |z| — | Im z|) we deduce that

Re(f1)] > [{(fi)l = 1M = 1| oo V2 || 1l 2

For ||[M — 1|/, small enough, one can apply the observability inequality proved in
the previous section (see Corollary 7.4 and Remark 7.5) to conclude that

<M =1l pee V2 [| fill 2

CL(T) |l fill72 < alfr, f)- (8.15)
On the other hand, (8.14) implies that a(fi, fi) < C(T)|fil32. Hence a(-,-) is
a real scalar product on L3, which induces the norm N(fi) = v/a(f1, f1), which

is equivalent to the norm |[-[| 2(p ¢y on L%,. Now, Lemma B.3 implies that the

mapping ¢; — ¢(0) is R-linear and bounded from L3, into L? and hence ¢1
A(¢1) := — Re(win, #(0)) is a bounded R-linear form on L3,. Therefore, the Riesz
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theorem implies that, for any R-linear form A on L3/, there is a unique f; € L%,
such that a(f1, 1) = A(¢1) for all ¢y € L%, together with

[A]

Ci(T)

Moreover (8.6) follows from (8.16) and the bound || fllco(o7y,02) < [I/1]/12 already
used. g

1fillp2 < (8.16)

Proof of Proposition 8.1. Proof of statement i). We begin by proving that if M €
H3/2(T) then H3/2(T)NL3, is dense in (L2, ||-||2). To see this, let TTy be the Fourier
truncation operator defined by Inh(z) = 3 ;< hje” where h(z) = > jer hje'®,
Given u € L?,, define un := ﬁHN(Mu). Since the operator Il preserves the
mean, one has that uy € L3,. Moreover, since u € L? one has Mu € L*(T),
Iy (Mu) € C®(T), and hence M~ Iy(Mu) € H3?(T) since M~ € H3?(T).
Since (uy) converges to u, this proves that H3/2(T) N L2, is dense in L3,.

Now let f be as given by the previous lemma. It is proved in the appendix
that there is a unique solution w in C°([0,T]; L3(T)) of (8.4). Our goal is to
prove that w(T') satisfies (8.5). To do so we first check that (8.5) will be proved
if Re(w(T), ¢1) = 0 for all ¢1 in L3,. Indeed, one has

Re(w(T), ¢1) = /(Rew(T,m))Re ¢1(x) dx + /(Imw(T,m))Im $1(x)dr =0

for all ¢1 € L%,. Therefore we obtain [(Rew(T,z))f(z)dx = 0 for any real-valued
function f and [(Im M (z)'w(T, x))g(z) dz = 0 for any real-valued function g with
[ g(z) dz = 0. This implies that (8.5) holds.

We now have to prove that Re(w(T),¢1) = 0 for any ¢1 in L2,. By the density
argument proved above, it is enough to assume that ¢ € L%\/l N H3/2(T). Given
¢1 € L3, N H32(T), let ¢ € CO([0,T]; H**(T)) be such that

Qp=0, o) =¢r. (8.17)

Since Q = —Q*, multiplying the equation (8.4) by ¢ and integrating by parts, we
find that
T

T
(w(T),¢1)—(w(0),<z>(0))+/ (waef,¢)dt+/ (w, Q@) dt. (8.18)
0 0

Notice that the integration by parts is justified since ¢ € C'([0,T]; L*(T)). By
definition of ¢ the last term in the right-hand side vanishes and, by definition of f,
the real part of the sum of the first and second terms vanishes. This proves that
Re (w(T ), <b1) = 0, which concludes the proof of statement ).

Proof of statement ii). Recall that Q = —Q* is given by (8.2). Consider ¢ € L3,
and denote by ¢ the unique function in C°([0,T]; L*(T)) satisfying (8.17). As in
(8.18), multiplying both sides of the equation Quw = x,, Re f by ¢, integrating by
parts one obtains (8.18). Since ¢; € L3, and w(T,x) = ibM (z) for some constant
b € R, one has Re (w(T), qbl) = 0. Therefore, since Q¢ = 0,

T
Re/0 (Xw Re f, (b) dt = —Re (wm, ¢(0)).

Since Qf = 0 and f(T) € L3, by assumption, and since the function f; whose
existence is given by Lemma 8.2 is unique, one deduces that f(T') = fi;. Hence
f = ©n7(wiy) by uniqueness of the solution to the Cauchy problem (8.12).
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Proof of statement iii). We prove (8.8). Recall that ©7(wi,) = f where f is

given by
Qf =0,
f(T) = fr,

for some function f; € L3,. Then the unique solution w € C°([0,77; L?) of
Qu = xwRe f, w(0) =wip,

satisfies w(T, xz) = ibM (x) for some constant b € R. In view of the energy estimate
(B.3), to prove the desired result it is sufficient to prove that || fi|| ;. is controlled by
|winl| ;. We prove only an a priori estimate, assuming that f; belongs to H#(T). To
estimate || f1|| ., we adapt to our setting an argument used by Dehman-Lebeau (see
[20, Theorem 4.1]) and Laurent (see [32, Lemma 3.1]).

First, given any function v € L?(T), consider the decomposition u = IT(u) 4+ i\(u)
where A(u) := (Im [ M (x)u(x)dz)/( [z M(x)dz), which is a real number (recall that
M —1 is small by assumption, so one can divide by the mean of M which is a positive
number). In this way u is the sum of the function IT(u) = u —i\(u), which is in L3
and iA(u) which is a purely imaginary constant.

Consider next the mapping

S: LA(T) — L*(T), S:y+~ f+ wr w(0) € L*(T)

where f and w are the unique functions in C°([0, T'); L?(T)) successively determined
by the backward Cauchy problems with data at time T'

Qf =0 Quw = XwRe f
f(T) = 11(y), w(T) = iA(y) M.

Notice that S is R-linear. It follows from statements i) and i) that S is an isomor-
phism of L?(T) onto L?(T) (it is onto because of statement i), to prove that it is
one-to-one, we use the uniqueness property). On the other hand, S is bounded (this
follows from the L2-estimate (B.13) and the fact that y +— (II(y), A(y)) is obviously
bounded). It follows from the open mapping theorem that S~! is bounded. As a
result, with A* = (I — 92)*/2, one can write

Hf1||Hu - HAMfIHH 5 ”SA“f1||L2 . (8'19)

Now we have to commute S and A*. To do so, we want to compare (A f, A¥w) with
(f',w") defined by

{Qf’ = {Qw’ = xwRe '
fI(T) = 1A fr), w'(T) = iA(A¥ fr) M.
We introduced this system because w’(0) = S(A* f1).
Claim 8.3. There holds
' = 80 o 112y S sl + Uil g +all fillges (820
where
a = [[Wllcoqomms) + 1Rl oo cmmyner2) -

Let us admit this claim and conclude the proof of statement #ii). We use the
following consequence of (8.20): at t = 0, we get

[0/ (0) = Aw(0)|| L < Nwinl g + L frll a0 + @ | fall e -
Now, by definition, w’(0) = SA*f; while A*w(0) = A*wj,. Therefore, by triangle
inequality,

ISA fill L2 S l[winll g + 11l grmaxtu-r0) + @[] fill g - (8.21)
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For pi € [0,1], one has || fil| gmaxtu-1.0) = [l f1l[L2 < [[winl| 2, and therefore

1SA fill 2 S Nlwinll g + @ Lf1] g - (8.22)
Plugging this bound into (8.19) yields ||fill gu S llwinllge + a || fill gu. Notice that
a < [[(W,B)[, 7 + IRl coqo,r),c(mny where [[(W, R)||, 1 is as defined above (8.3).

So the assumption (8.7) implies that, by taking Fi(T") small enough, we obtain the
wanted result

11l e S Nwin | g - (8.23)

For pn € (1,3] we go back to (8.21) and deduce from (8.23) that ||fi[lgu-1 <
||win||gu—1 because p — 1 € [0,1]. Hence (8.22) holds, and we reach the same
conclusion as above. This completes the proof of statement iii).

It remains to prove the Claim 8.3. To do so, we estimate first f/ — A¥f and then

deduce an estimate for w’ — AHw. Write
Q(ff = A*f) = [AMRIf + [A* W] f,  (f' = A f)j=p = TH(A f1) — A f1,
and use the energy estimate (B.13) to find that

1 = Al ogoizrae) S A" F1) = A ull o+ A, RIS + (A%, W0 £l 1 o oy -
(8.24)
Similarly,

' = Al oo ey S 10T = AT o + 1 F N oz, where  (8.25)
F = xwRe(f — A*f) + [A*, Rjw + [A*, W]0,w — [A*, x.] Re f.
By (8.24) and the obvious embedding C°([0, T|; L?) C L'([0, T]; L?), we deduce that
) S [ (T) = A (T)| o + [TI(A" f1) = A" fu| o
+ [[[A%, xw] Re fllcoo,m7:02)
+ 1A% R fll oo,y 2y + IIA*, Rlwllco o152
+ [I[A*, W10z f Nl co o, 13522y + 1A, W0zwl| coo,7y;2) -

To estimate the commutators [A¥, x,,] and [A¥, W], we use the classical estimate

o' — AMwHCO([O,T};Lz

3
s>5, 0sp<s = [[[A, Wz < KW as|lull s
On the other hand, to estimate the commutator [A¥#, R]| (or [A*, R]) we estimate
separately AR and RA¥. Recalling that R = —R* 4 (0, W), we conclude that

" = Al o g2y S [ (T) = Aao(T) | o+ LA 1) — A full

[0,T);L?
+ I flleoqoy -1y + all(f, W)l co o,y ey »

where recall that, by definition,

a = [[Wllcoqo,r.ms) + 1Rl coqo,r.c0mm)ncr2)) -

To complete the proof of (8.20), it remains only to prove the following five estimates

ITA* f1) = A fall 2 S llwinll g (8.26)
[ (T) = Aw(T)| 2 S lwinll o » (8:27)
I fllcoqo.ry a1y S I f1ll grmaxtu-1.0) 5 (8.28)
1l oo,y ey S Wil grw s (8.29)
lwllogormmy S Nwinll g + 1L f1ll o - (8.30)
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Let us prove (8.26). By definition of II, one has II(A¥ f1) — A* fi = —iA(A* f1) with

AmwgzhéwﬁmQAMMﬁmj:hjmmm(AMM@ﬁw)

since A" is self-adjoint. This implies that
-1
AW < ([ Man) T INMI AL <204 (63D

provided by |[M — 1| gu < ||M — 1| g3/ is small enough. Since || fill;2 S [|winll 12,
this proves (8.26). With regards to (8.27), we will estimate the two terms w'(T)
and A*w(T) separately. Firstly, since w'(T) = tA(A*fi)M and since ||M||;» < 1,
it follows from (8.31) that ||w'(T)||;2 < [|winl 2. So to prove (8.27), it is enough
to prove that ||[A#w(T)||, . satisfies the same bound. Since w(T") = ibM and since
M| g < | M| 32 S 1, we have [[AHw(T) || 2 < |b]. So, we need only estimate |b].
In doing so, we use the fact that w solves

Quw=xwRef, w(0)=win, (8.32)
to deduce from the L2-energy estimate (B.10) that

lwllcoqo,mr2y S Nlwinllp2 + 111 L2 o, 02) -
Using the bound (8.6) for f, this yields [|w(T)[;2 < [wllcoqoryrz) < lwinllLe-

Now, since w(T") = ibM and since one can assume that ||M]|;. > 1/2, this gives
that |b] < ||win|l;2. Remembering that ||[A*w(T)|;2 < |b], we have proved that
|A*w(T)| ;2 S ||winl| 72, which completes the proof of (8.27). The estimates (8.28)
and (8.29) follow from (B.12) (in fact we use an estimate analogous to (B.13) with
a data at time T'). Eventually, the estimate (8.30) follows from (B.12) applied to

(8.32), using the bound (8.29) to estimate the source term.

Proof of statement iv). Given wy, let f; and f] in L?\/[ be as given by Lemma 8.2,
so that f := Oy 7(win) and f/ = ®/M,T'(win) are determined by the Cauchy prob-
lems

Qf =0 on [0,T] Q'f'=0 on [0,T]
f(T)=h f'(T) = A
where
Q =0 +iL+Wo +R, R :=—(R)+(0.W).
Similarly, we denote Q' = —(Q")* = 0, + iL + W9, + R'. By definition of f, f’,
the unique solutions w € C°([0,T]; L*(T)) and w’ € C°([0,T']; L?*(T)) of the two
Cauchy problems
Qw = xwRe f on [0,T] Qw' = xwRe f' on [0,T] (8.33)
w(0) = win w'(0) = wip '
satisfy w(T) = ibM, w'(T") = it/ M for some b,b’ € R. The idea now is to introduce
an auxiliary control problem. Let f” € C°([0,7]; L?(T)) be the unique solution of

Qf" =0 on [0,T], (1) = f1, (8.34)

so that f” solves the same equation as f and it has the same Cauchy data as f’.
Then introduce w” as the unique solution to

Qu" = xoRe f" on [0,T],  w"(T)=i/M (8.35)

and set w] := w”(0). By uniqueness (see statement ii)) we deduce that f” is the

control for the operator @ associated to w , that is

"= O (wi,)-
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Then, by continuity (see statement 7)) one has
Hf - f”HCO([O,T];L2) = HGM»T(“JW - wgln)HcO([o,T];m) S me - w;/nHLQ :
Let f:= T f and f” := T f”. Then
I1f = Fllcoqornrey = IIf — fllcoqor.c2) (8.36)

because
vh e C°([0,T]; L?), | Thllcoqorc2y = IRllcoqo.r1:22)- (8.37)

It remains to estimate ||f’—f”HCO([07T,];L2) and [|wi, — w || ;2. We begin with f/— f”.
Since f” solves (8.34), f" satisfies

Qf" =0 on[0,T'),  J(T")=/i
where R R 5

Q =0 +iA\L + AW, + AR,

and W :=TW, R := TR (namely R(t) := R(At)). By difference, one has

Af =" =k, (f = )NT) =0,
where

Foi=(A=1)(GL+Wo +R)f' + (W —=Wa.f + (R-R)f.

In order to apply the L2-energy bound (B.13), we estimate Fy. Using the regularity
property of the control operator Oy 7 (see statement iii)) we have

12 ooz S 1 N gogozmsarty S Iwinll 3

(W = W0 'l ooz S IW = W lleoqo,zmmm 1 leo oy (8.39)
SIw - W/HCO([O,T’];Hl)Hwin”Hl-

(8.38)

Similarly
(R = R) £l coqo,r:r2)
SR = Rl coqorpe2y I lcoqormre
S (1R = Rl coqor.cirzy) + W = Wl coqo a2y ) lwinll 2
where R := TR (namely R(t) = R(At)). Using (B.13) we conclude that

I1f = " llcoqorrey
S lwinll g (A =+ IW = W llooqorymz) + 1R = B llcoorerzy) - (8.40)
It remains to estimate |win, — wl || 72. Let @ := Tw”. At t = 0 one has w'(0) —

w"(0) = wip, — hence we study the difference w’ — @w"”. Since w” solves (8.35),
w" satisfies

ZTL’

Q" = AxwRef” on 0,7,  &"(T") =ib'M, (8.41)
where
Q =0, +i\L + AW, + \R.
By difference,
Q(w/ _ ’lI)//) — F, (UJI ~//)(T/) 0
where
F = xuRe(f' = Af")+ (A= 1)L+ W, + R)w' + (W — W)dw' + (R — R)uw'

In order to apply the L?-energy bound (B.13), we estimate F'. First, =M = \(f'—
I+ (1=X)f’, and we have already estimated both f'— f” (see (8.40)) and f’. For
the other terms in F' we proceed as above, recalling that [|w'||co(o,77.02) S [[winllz2-

Also, since w’ solves the Cauchy problem (8.33), we deduce from (B.12) and the
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second inequality in (8.38) that Hw,HCO([O,T’];Hi”/Q) S ||win|| gs/2- As a consequence,
also || F'[|co(jo,r;22) is bounded by the term on the right-hand side of (8.40). Then,
applying the energy inequality (B.13), we deduce that [[w’ —@"||co(o,7);12) satisfies
the same bound. In particular, at time ¢ = 0, this yields the desired bound for
Wip, — wh, = (w' —@")(0).

Proof of statement v). We begin by introducing some notations. As already
mentioned, it follows from Lemma B.3 that there exists an operator Ep: L?(T) —
CY([0,T); L*(T)) such that v = Er(v;) is the unique solution to the Cauchy problem
Qu = 0 with data v(T) = v;. Moreover

BT (o)l goqo,ry;L2(myy S lvallpz - (8.42)
Now recall that by definition

T
ar(fi, ¢1) = Re/o /TXW(%’) Re(E7(f1)) Er(¢1) dadt. (8.43)

Also introduce the mapping A: L?(T) — R defined by A(vy) = — Re(win, E7(v1)(0))
where Er(v1)(0) = Ep(v1)|i=o0. It follows from Lemma 8.2 that there exist two
functions fi € L3, and f] € L3,, such that

Vo1 € L, ar(fi,é1) = A¢r),
Vo1 € Liy, ar(fi,¢1) = A(on).

Then Oy 7(win) — Onr r(win) = Er(fi — f1). In view of (8.42), to prove statement
v) it is sufficient to estimate f; — f{. To do so, we need to compare elements in
L%, and elements in L3,. Observe that; by definition of L3,, if ¢ € L%, then
(M'/M)y € L3,. Therefore ¢y := f1 — %f{ belongs to L3, and we can use (8.15)
to deduce that
M/ , Ml M/ M/

o < _ = ) = S . 8.44
Wk L sar <f1 ELEL Mf1> ar (fl Mfu@l) (8.44)

Now write the last term as the sum (I) 4+ (1) + (I11), where

(I) = ar(f1,1) —ar <f{a ]\]\j,%) ,

(II) =ar <f{7]]\\j/901> - aT(f{?‘)Ol)?

2

fi—

M/
(110 = ar(fion) — ar (3 o).
(Notice that both M /M’ and M’/M appear.) Since (M/M')p; belongs to L%, we
can write ap (f{, (M/M")p1) = A((M/M')p1) to deduce that
M M — M
(=)~ 4 (301 ) =2 (Fp ).

so that |(I)| < [|M' — M| l|winll 2 @1l ;2. On the other hand, it follows from the
easy estimates (8.14) and (8.42) that

((ID]+[IID] S || M = M| o ([ £l 2 Nl 2
SIM = M| o lwinll 2 el 2

By combining (8.44) with the previous estimates we conclude that

SAM = M| e Nlwinll - -

M,
fi=anh)
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Now write

M
1= fille S 1M = M| |l o + | 11 = 3 1
L2
and || f1ll;2 < ||winl| 12 to complete the proof of statement v). O

9. CONTROLLABILITY FOR THE PARADIFFERENTIAL EQUATION

We now deduce from the results proved in the previous sections that the original
equation introduced in Section 3 is controllable, together with Sobolev estimates for
the control.

Consider a paradifferential operator of the form

P =0 +Tyd, +iL?(T.L? -) + R (9.1)

where R is an operator of order 0. Assume that P satisfies Assumption 3.1, so that
as above V and c are real-valued, ¢ — 1 is small enough and P satisfies the following
structural property:

d
Pu real-valued = o7 / Imu(t,x)dx = 0. (9.2)
T

Introduce the norm
I(c = LV, B)|lx0s(r) = ll(c = 1,8, V)l coqoyoy + D, 107l coqory )
k=2,3,4

+ Z ”atVHCO (oY) + 1 Rlleoo s aey) + IR
k=1,2,3

ooolL(H )’ (9.3)

We recall that p is the symbol given by p := ¢~ 34 181%07%8@0 (see (2.12)).

Proposition 9.1. Consider an open domain w C T. There exists sg large enough
and for any s > so there exist three increasing functions Fj: R% — R (1 <5 <3),
with limp_,0 F;(T) = 0, such that, for any T € (0,1], the following properties hold.

i) If
(e =1, V, R)l xs05(y < F1(T), (9.4)

then there exists a bounded operator
Osrl(Vie, R)]: HF2(T) — C°([0,T); H*2(T))

such that, for any v, € HS’L%(T) satisfying

Im/ Vin(z) dx = 0,
T

setting f := Os[(V, ¢, R)|(vin) one has

||UinHHs+% (9.5)
Co([0,TH 3 ) = Fo(T) ’

/1]
and the unique solution v to Pv = Tyxy, Re f, v—g = vin satisfies
v(T) =0.
i1) Assume that the triple (c,V, R) satisfies (9.4) and

107 ¢llcojo.1;m70) + 1106V | co o100y + |10: Rl oo 77 275)) < 1- (9.6)
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Let (¢, V', R') be another triple also satisfying the same (corresponding) bounds (9.4)
and (9.6). Then

18s2[(V, ¢, R))(vin) = O [(V', &, R)(vin)llco o, 7y 1r9) (9.7)

[vinl  cv8
< _____HT2 _ ) e . o . "y
S0 {H(C d,0u(c =),V = V) coqor:m%) + 1R — R || coo,m;a ))}

Proof. Let P be given by (9.1), with V, ¢, R satisfying (9.4). We begin by recalling
how the various linear operators have been defined in the previous sections starting
from P:

P = Ay sPA;Y = 0y + Ty 0y +iL3(T,L3) + Ry = 8 + VO, +iL3(cLZ-) + Ry,
Py:=®m 'Pd ' =08, + W, +iL + Rs,
Pi=—(P3)* =, + Wd, +iL + Ry,
where ®, m, W are given in Proposition 5.1,
Ry = ApsRALE + [Mns, AL + (Mo, Ty Oa] Ay L+ i[Ans, L2 (T.LZ )AL,
Rou = Ryu + Ty dpu — VOyu + i(L2T.L3u — L2 (cL2u)),
Ryw := —Rjw + (0, W)w, (9.8)
and R3 has a more involved expression, obtained in Appendix C. Moreover P =

mCIfl]Bg}I). As a first step in the proof of Proposition 9.1, we study the control
problem for P.

Lemma 9.2. There exist sy large enough and increasing functions Fj: R — R%
(G = 1,2,3), satisfying limp_,o F;(T) = 0, such that for any T > 0 the following
result holds.
i) If
(¢ = 1,00, V)l coqoryiroy + Y, I10Fellcogorysm)
k=2,3,4

+ > 0FVIicoqorysmny + | Rellcoqomiczy < Fi(T), (9.9)
k=1,2,3

then there exists an operator ©p: L2 — C°([0,T); L?) such that for any g, € L2
setting f := Op(ui,) one has

Uin
1 lleooryeey < ”B ('TL; (9.10)

and the unique solution u of
Pu = XwRe f,  u(0) = up
satisfies u(T,z) = ib for some b € R and all x € T. If, in addition,

12l oo 19,008y < F1(T)s (9.11)
then
I£1 < Jeinll 3 (9.12)
co(o1im3) = Fy(T) '

i1) Assume that (V,c, Ra) satisfies (9.9), (9.11) and

10:V || oo, m;12) + 1 B2l oo,y + 10eR2llcoo,);c2)) < 1 (9.13)
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and consider another triple (V',¢,R,) also satisfying the same (corresponding)

bounds (9.9), (9.11) and (9.13). Then
1(©1 — O (win) | oo(jo.13:2)

[winll, 5
= TIEI)Q{”C = lleogoyariy + 10ec = 0o qo,ryamy (9.14)

IV = Villowgorriam) + B2 = Bhlleoo e |-

Proof. Recall that the cut-off function x,(x) is supported on w and x,, = 1 on the
open interval w; C w. Consider another open interval wy and a cut-off function
x2(z) such that

(1) supp(x2) € wa;
{(“) supp(h) C wo = supp(®~'h) Cwy Vt € [0,7T], Vh € L*(T). (9.15)

We want to apply Proposition 8.1 for () = P;. The hypothesis (8.3) of Proposition
8.1, namely the inequality [|(W, R3)||, 1 < F1(T), follows from the assumption (9.9),
by using (5.3) and (C.43) with ¢ = 3/2. Hence, by the statement i) of Proposition
8.1 (applied with T} instead of T and y2 instead of x.), given w;y, € L?(T), the
unique solution w of the Cauchy problem

Psw = xaRe(fa) Vte[0,T1],  w(0) = wp (9.16)

satisfies w(T1) = ibM for some real constant b if we choose fo = Oy 1, (wip), where
O, is the operator given by Proposition 8.1, and the function M will be fixed
below in this proof (with M —1 small enough so that the assumption ||[M — 1| g3/2 <
Fo(T) in Proposition 8.1 will be satisfied). Also, by (8.6), f2 satisfies

[win|| 2
I f2llcoqo,sz2) < Fo(Ty) (9.17)

Moreover, if (9.11) also holds, then, using (C.42) with o = 3/2, we deduce the bound
(8.7) for W, R3 with u = 3/2. Therefore, by the statement ii) of Proposition 8.1,

[winll 3

H?
— 9.18
Now let u;, € L?(T) be given and define w;, € L?(T) by w;, := ®|;=oui,. We apply
the previous argument and obtain a function w satisfying (9.16) and w(T1) = ibM.
Set u := & lw. Since Pu=m® 1 P3®u, it follows from (9.16) that

IN

Co((0,Tu);H?)

Pu=m® '(xaRe(f2)) Vte[0,T],  u(0)=up, (9.19)
and u(T) = @‘;LT(ibM). Then we set f := m®~(x2f2), namely we define
f =07 (uim) == m®  (x20n.1, (Puin)), (9.20)

where ®u;p, = P|;—ouin. By the assumption (74) in (9.15), f is supported in wy, and
therefore f = x.f. Then, since m®~!(x2 Re(f2)) = Re(m® ! (xaf2)) = Re(f),

Pu=x,Ref, u(0)= tp,

and we have to choose M so that u(7") = ib. By definition of ®, recall that w = ®u
means that

w(t,x) = {1 + axBl (Tp_l(t)aiv - p(t))}% U(¢_1(t)>x - p(t) + Bl (111_1(75)#3 —p(t)))

for t € [0,71], € T. Since ¥~ 1(T1) = T, we see that u(T) = ib provided that
w(Ty, z) = ibM (z) with

M(x) = {1+8x6~1(T,:r—p(T1))} , (9.21)
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and p(77) is given in (C.41). Now the estimates (9.10) and (9.12) follow from (9.17),
(9.18) and Proposition 5.1. This completes the proof of statement ).

i1) In what follows, we add the exponent ' to denote the objects associated to
(V',¢,RY). Let f = Orp(uin) be defined by (9.20), and let f' = ©f.(us,) be the
corresponding function obtained by taking (V’, ¢/, R)) instead of (V, ¢, R2). We have
to estimate the difference f — f’. If the constant F(7) in (9.9) is sufficiently small,
then ws, x2 can be chosen so that (9.15) holds both for ® and for ®'. Hence

f= " =me ™ (x2Ourr (Puin)) — m' "™ (x2O) 1 1y (2'uin)).-

We split this difference into the sum f — f' = Ay + ... + Ag, where

Ay = (m— m')<I>_1(X2@M7T1 (Puip))

Ay = m,@_l[X2@M7T1 (Puip — Duin)]

Az =m'® 2 (Omr — Onr ) (P usy)]

Ay = m/(qjl_l - \Illl_l)w*()o* [X2@M’,Tl(q)/uin)]

As = m/\Ijllil(mk‘P* - @Z);SO;T) X291y (q)/uin)]

A6 = m,q)/_l[XZ{TGM’,Tl(q),Uin) — @3\4/7T1/ (q)’um)}]

and 7 is the time-rescaling operator defined above, namely (Th)(t,z) := h(At, x),
with A := T1/T]. Let us estimate each A;.

Estimate for Ay. Apply (C.47). Estimate for As. By construction (see Appendix
C), »=1(0) = 0, p(0) = 0, and therefore Puz = Ppy_guin = (\Ifl_l)|t:0(um). Hence
the estimate for Ay follows by (C.44) and (8.6). Estimate for As. Apply (C.48).
Estimate for Ay. Apply (C.44) and (8.8) with u = 1. Estimate for As. Apply (C.45).
To estimate Oy fa, use that fo solves ﬁg‘ fo = 0 (statement i) of Proposition 8.1),
and similarly for f. Estimate for Ag. The assumptions (9.9) and (9.11) imply that
W, Rs and W', Rj satisfy (8.7) with p = 3/2, which is the hypothesis of statement
iv) of Proposition 8.1. Then (8.10) holds, namely

ITOnr 1y (' ttin) — Oy o (P'win) | 0o p0,77):2)
SN winll grar (11 =X+ W' = (TW) | coo,rrm2) + 1R — (T R3)llcogo,r11:c22))) -

Now [|®"win|| g3z S ||winl| gr3/2, and the bounds for the last three differences are given

~

in (C.47), (C.50) (with 0 = 2) and (C.52). Note that assumptions (9.9), (9.11) and
(9.13) imply (C.49), (C.51), which imply (C.50) and (C.52). O

Remark 9.3. The function W contains the terms d;c and V: see Appendix C (see
also the bound (5.2)). For this reason we assume djc and 97V to be bounded in
(9.9) in order to get a bound for 9} W, as required by Proposition 8.1.

Lemma 9.4. If the W2 norms of c—1 and ¢ — 1 are small enough, then

-1

1Ans = Mg ol o e r2y + 1(Ans) ™ = (Ao ez e S lle— ¢l

Proof. By definition (4.1) of Aj, s one has
Anys = Ny = W T 00 /5 o205 L3,

So the bound for Aj s — Aj, ¢ follows from the paradifferential rule (A.10) and the

Sobolev embedding H'(T) c L>(T). To prove the other bound, we use the identity
(4.3) to obtain that

At = (M) = T+ LS T+ B) T - (T + B)7Y.
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Recall that || B[z < 3 and 1Bl £(z2) < % so the identity
I+B)'—I+B)'=(I+B)"YB -B){I+B)"
implies that
I(1+B)™ = (I +B) Yz < 4B = B'll g2, (9.22)

and the bound follows from the definition of B, B’ and the paradifferential rule
(A.10) as above. O

End of the proof of Proposition 9.1. We recall that Or is the control operator
as given by Lemma 9.2, and the operator K is introduced in (4.15), with ||(I +
K) ey < 2if (¢,V, Ry) satisfy (9.9), (9.11) and [l — 1f|co(o,7),m2) is small
enough. Set

Os7[(Vie, R)] := A, 100 (I + K) " Aps, (9.23)

and let f := ©7[(V,c, R)|(vin). Then it follows from the previous construction (see
Section 4, in particular the Proof of Proposition 3.2 given Proposition 4.6) that the
unique solution v to Pv = Tpxwf, vji—o = vin satisfies v(1) = ib for some constant
b € R. Since Im [} vy (2) dz = 0 by assumption, by (9.2) we deduce that

Im/v(T,x) dx =
T

Therefore b = 0 and v(T') = 0. Thus it remains to prove (9.5). Following the
same argument used in Section 4 to prove (4.16), one proves that ||| z(gs/2) < 1/2,

whence |[(1 + IC)_1||£(H3/2) < 2. By combining this estimate with (9.12), we have

171l

which is (9.5). Finally, we observe that

=S H@T(I+K) lAh svm” s S ||Ah,svinHH% S vinl|

oo, ) CO([0,T];H?) -

1Rall ooz + B2l oo )

S lle = 1,0ee, V| cogo,m); 50y + [ Rllcoqo, )y + 1 (9.24)

loogoryecmyy
This bound for Ry follows easily from the arguments used in the proof of Lemma 4.5
and Lemma 9.4. Hence, if (¢, V, R) satisfy (9.4), then (¢, V, Ra) satisfy (9.9), (9.11).
This completes the proof of statement 7).
ii) Given y € H%?(T), we have to estimate the difference O47[(V; ¢, R)](vin) —
Osr[(V', ¢, R")](vin), which is, by definition,
A iOr(I + K) 7 Ap svin — (A}, ) 71O + K') 1A, vin-
We write it as the sum B; + ...+ By, with
By = {A;é — ( i’ ) 1}@T(I+IC) 1Ah sVin,
By := ( / )_1(@T — @/ )(I+IC)_ Ah,s'Um’
By = (A ) 'OM{(I + )7 — (I + K') ™ }Ap s0in,
By = (A}, )~ YoL(I+K')~ YAps — A, §)Vin-
If (¢, V, R) satisfy (9.4), then (c, V, Rp) satisfy (9.9) and (9.11), and ||K|[(z2) < 1,
see (4.16). Then, using Lemma 9.4 and (9.10), we bound the C°([0, T]; H®)-norm

of By and By by |lc — || g1||vin||zs. To estimate Ba, we want to use (9.14), which
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holds provided that (c,V, R2) and (¢/, V', R}) satisfy (9.13). One proves that, if
lc = Lllco(o,7); %) is small enough, then

1R2 — Rollcoqo,ryscczy S (e — ¢, 0(c =), V = V')l goor)m%0)

+ IR = R'||coqjo,r1:20m9)) (9.25)
18: Ral o o,13:2(22)) S II(e = 1, 8ie, e, V,8iV) || o o,13:m%)
+ [|(R, 0:R) || co(jo,7);2(F)) - (9.26)

These bounds follow from the arguments used in the proof of Lemma 4.5 and
Lemma 9.4. Hence assumptions (9.3) and (9.6) imply (9.13), which implies (9.14).
We have H(I + K:)flAhjs’UmHHg/z < QHAhﬁvaHs/z § H'UinHHS-&-?s/?- Using (9.25) to
estimate the last term in (9.14), we deduce that

1 Ballcoqo,rymsy S vinll g (e = ¢, 0i(c = ), V= V)l cogo,ry; 1)
+ IR — Rl cogo,rycm)) }-

It remains to estimate Bs. The difference K — K’ satisfies
1K =Kyl S Nyl 5 8l = ¢V =V)llcoqorpmy + [1R2 = Rollcogo,rycez2)) }-

To prove this bound, recall that K is defined by solving an evolution equation,
and then, as above, use the energy estimates proved in the appendix to bound the
difference of two solutions satisfying evolutions equations. Since ||(I+K) 7| (z2) <

2, ||(I + IC’)*1||£(H3/2) <2, and
I+K) =T+ =T+ K -K)(I+K)7,

we deduce that Bj satisfies the same bound as By. The proof of Proposition 9.1 is
complete. O

10. ITERATIVE SCHEME

In this section we conclude the proof of Theorem 1.1. It is sufficient to prove this
result with (9finat, ¥ finat) = (0,0). Indeed, since the equation is reversible in time,
one can exchange initial and final states and hence it is sufficient to consider the
case where the final state vanishes. Also, as explained in the introduction, we seek
P..: as the real part of the limit of solutions to approximate control problems with
variable coefficients.

Consider the unknown u = Tpw — iTyn as introduced by Proposition 2.5. As
proved in §2.3 (see also Section 3), this new unknown u solves an equation of the
form

Oy + Ty ()t + L7 (T L2u)u + R(u)u = Ty Peas (10.1)

where, with a little abuse of notation, we write V' (u), c¢(u), ... as shorthand notations

for V(n)y (see (2.3)), c= (1+ (6177)2)_%, ... where (n,) is expressed in terms of u
by means of Lemma 2.8.

Fix T > 0. We claim that there is € > 0 such that, for all initial data whose
H?(T)-norm (with s large enough) is smaller than e, and all source term P.;; whose
LY([0,T]; H3(T))-norm is smaller than ¢, the Cauchy problem for (10.1) has a unique
solution in C°([0,7T7]; H%(T)). The existence of a solution follows from the analysis
given below. The uniqueness is obtained by estimating the difference of two solutions
(as in [2]) and we omit its proof.

Recall that H H(T;C) denotes the space of H¥-functions whose imaginary part
have zero mean (see Notation 2.7).
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Proposition 10.1. Let T > 0. For all u;, € H(T;C) for some o large enough
such that ||win|| o is small enough, there exists a real-valued function

Pyt € CO([0,T); H(T)) with supp Pey(t,-) C w for all t € [0,T],

such that the unique solution u € C°([0,T]; H°(T)) to (10.1) with initial data wp
satisfies u(T) = 0.

Before proving this proposition, let us explain how to deduce Theorem 1.1 from it.
Recall that it is sufficient to consider the case where (9 finat, ¥ finat) = (0,0). Once
P.;t is defined by means of Proposition 10.1 applied with w;, = T}, win —iTy;, Nin, We
solve the water waves system (2.1) for (n,) with data (9, wm) “with this pressure
seen as a source term. Then u = T,w — iTyn solves (10.1), so u(T") = 0 which in
turn implies that (n,v)(T) = 0 in view of Lemma 2.8.

Proof of Proposition 10.1. Set s = o — 3/2. Given u;, € ﬁs+%(']l‘; C) and T >
0, introduce the following scheme: define (ug, fo) := (0,0), and then, for n > 0,
(Un+1, fn+1) are defined by induction in this way: f,11 is determined by asking that
the unique solution wu,+1 to the Cauchy problem

L 1
atun_H + Tv(un)é)xunH + ZLZTC(UH)LQZL”_H + R(un)un_H = Tp(un)Xw Re fn+1

Un+1t=0 = Uin, (10.2)

satisfies u,+1(T") = 0.

Our goal is to prove that this scheme converges. Then we define P,,; as the limit
of (Re f,,) when n goes to +00. Using the operator O 7 defined by Proposition 9.1,
the scheme corresponds to define (uy,) and (f,,) as follows:

fr1 = O 1[X5] (um) where X, := (V(uy), c(uy), R(uy)) (10.3)

and w41 is defined as the unique solution to the Cauchy problem (10.2); by definition
of fn4+1 we then have wu,41(T) = 0. Our goal is to prove that, for any T' > 0, if u;, is
small enough, then this scheme is well-defined and (uy, f,) converges to a solution
(u, f) of the desired nonlinear control problem. This will be a consequence of the
following result.

Lemma 10.2. Consider T’ > 0. There exists sy large enough and for any s > so+6

there exist g > 0 and positive constants K, ..., Ky such that, for any ¢ € (0, 0], if
||u’lnHHs+%(T) S €

then, for any n > 0, there holds

lunll oo 7o+ < K165 (10.4)
|0Funl| coo.rqioy < K2e for 1<k <4, (10.5)
Moreover, for any n > 0,
[tnt1 = unllcoo .y msy < K3e27", (10.6)
106 (uns1 — un)|| 3, < Kqe2™ (10.7)

COj0,T);H"2) —
and for anyn > 1,

1Foll o o psprevdy < B (10.8)
ok < <k< )
H f ) CO OT] H“‘O) K6€ fOT 1 — k = 3) (].0 9)
| frt1 = falloogo ry.amey < Kre?27™, (10.10)
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Proof. For this proof we denote by C' various constants depending only on T, s, sp
or w. Also we denote by F various increasing functions F: Ry — R, depending on
parameters that are considered fixed.

Step 1: proof of (10.4), (10.5), (10.8) and (10.9).

We prove these estimates by induction. They hold for n = 0 since (uo, fo) = (0, 0).
We now assume that they hold at rank n and prove that they hold at rank n + 1.

We begin by checking that the fact that the properties (10.4)—(10.5) hold at rank
n implies that one can apply Proposition 9.1 to prove that the scheme is well-defined.
This means that we have to prove that the smallness assumption (9.4) is satisfied. To
do so, we first recall that (see (2.4)) |V (un)|l g0 < F(mnllgsotr ) 1¥onll gso+1. Then
the estimate (2.22) (applied with s replaced by sp + 1) implies that ||V (un)||gs0 S
|unl| grso+1. Similarly, the estimates (2.14) and (2.22) yield

IR vy < F Il g ) Wl ey < F (lnll e ) g
and, directly from the definition ¢ = (1 4 (9,1)%)~%/%, one has

lle(un) = Ul gso < F(lnnllgsoe ) Il oot S Nunll iy -
Gathering these estimates and recalling that sy + 1 < s, we conclude that

IV (un)ll o + lle(un) = Ul gso + [[R(un)| S llual (10.11)

L(H*3) Jraas

Consequently, the property (10.4) at rank n implies that the part of the smallness
condition (9.4) concerning V, ¢, R is satisfied. Concerning the estimates of the time
derivatives 9FV and dfc, we use the equations (2.1) and the rule (see [30])

G(n)p = G {0 — (B(n)v)dim} — 9. ((V(n)¢)n)

(where B(n)y and V(n)y are given by (2.3)) to express time derivatives 0FV and
OFc in terms of spatial derivatives and in terms of the operators B(n),V(n) (see
Appendix A.3 in [4] or [31, 38]). Then, as above, the desired estimates then follow
from (2.4) and the usual nonlinear estimates in Sobolev spaces.

We now prove (10.4) and (10.8) at rank n + 1. By (B.2) we obtain that

O(Iluinll g + 1 Tp, X Re frsl (10.12)

|11l

co(0,T); 5+ ) = ol [0T]Hb+2))

where the constant C' depends on s,T" (by (10.11) and (10.4) at rank n, the constant
M in Proposition B.1 is bounded by 1 if K is large enough and & is small enough).
Now observe that, since 7}, acts on any Sobolev space with operator norm bounded
by M§(pn) < F(|Junll zs) < F(1), one has

HTan Refn-i-lH Can-i-lH

CO([0,T;;H*3) = CO([0,T:H* 3

Moreover, by (9. K HumHHs 13 for some Ky depending

). et oo s, <
only on T. We conclude that, choosing K7 large enough and ¢( small enough, (10.4)
holds at rank n + 1. Also (10.8) at rank n + 1 follows by the same argument.

It remains to prove (10.5) and (10.9). Directly from the equation (10.2), expressing
Optp+1 in terms of uy, u,y1 and f,,11 and using the operator norm estimate (A.10)
for paradifferential operators, one deduces (10.5) for kK = 1 from the bounds (10.4)
and (10.8). We next prove (10.9) for £ = 1. To do so, the key point is to make
explicit the equation satisfied by f,4+1. We recall from (10.3), (9.23) and (9.20) that

farr = (A7 )7 (m™(@") ' (x2fus1))s  Fat1 = Onryrp (B"(1 + ) TAT uin).
56



where A} o, ", m", My, Ky, 7" are given by replacing (V,¢) with (V(un), c(uy,)) in
the definition of Ap s, ®,m, M, IC,T1. By definition of ©y;7 (Lemma 8.2) one has

{ O foi1 + W(Un)axﬁzﬂ 0L for1 + R4(Un)fn+1 =0,

- N (10.13)
frstl=rp = fat1s

where R4(uy,) is given by (9.8) and the initial data E 41 is given by Lemma 8.2. It
follows from (8.8) that

Hﬁl"'IHCO([O,T};H%) < K||@™(I + Kn) T AR guin| g < K winll g -

Using the equation (10.13) we thus estimate the C°([0, T]; L?)-norm of Oy fnia from
which we estimate d; f, 11 in CY([0, T]; H®). This gives (10.9) for k = 1 since s > sp.
Now we obtain (10.5) for k = 2,3,4 as well as (10.9) for k = 2,3 by differentiating
in time the equations satisfied by u,4+1 and fpy1.

Step 2: proof of (10.6), (10.7), (10.10).

The estimate (10.10) will be deduced from (10.6) and (10.7). To prove (10.6) and
(10.7) we proceed by induction. We assume that they hold at rank n — 1 and prove
that they hold at rank n.

The key point is to estimate d,, := up41 — un. Write

i85 + Ty (1) D0 + i L7 Top) L2 6 + R(u)b, = Gy (10.14)
with

Gn = (TV(un,l) - TV(un))axun + Z'L%(Tc(un,l) - Tc(un))Léun (10'15)

+ (R(un—1> - R(“n))un —+ Tp(un)Xw<fn+1 - fn) =+ (Tp(un) - Tp(un_l))wan-

As in the previous step, it follows from Proposition B.1 (noticing that d,+1(0) = 0)
that ||6n||CO([O,T];HS) < COHGHHCO([O,T];HS) for some Co depending on S,T.

Estimate for G,. We claim that

1Gnll oo, 1) < €K(T) 0n-1ll oo,y T K (T) Hat(Sn—lHCO([O’T};Hsfg)- (10.16)

Let us prove this claim. At each ¢ € [0, 7], using (A.10) one has

Hs SV (un—1) = V(un) | oo 10tn | gs -

(v (1) = TV (1)) Dt

It follows from (10.4) that ||Oyun|| s < Kie. To estimate V(uy,—1) — V(uy,) we use
the following consequence of Lemma 5.3 in [3]: Assume s > 3/2 and consider (1, 72)
such that |91l s + |72l s < 1. Then

1G(m)f1 = Gm) fall o3 < K [lm — 2|

1
7 = 52

1f1ll s + K NI f1 = fall
Then, directly from the definition of V(1)1 one deduces that

IV (m)r = V(n2)ellgr < K llm = n2ll gz 101l gsrz + K [l = 2l -
Since H(T) C L>(T), we then conclude that

1.
H 3

IV (un—1) = V(un)llpoo S 0 = a1l s + 10 = Yn1llgs S llun = wn-llgs -

The estimate of the H® norm of L%(Tc(un,l) — Tc(un))L%un is similar. To estimate
(R(un—1) — R(un))un recall that R(u)u is as given by Proposition 2.5. This operator
is defined by means of the remainder F'(n)v in (2.7) and also in terms of explicit ex-
pressions involving symbolic calculus or the paralinearization of products. The only
delicate point is to estimate F'(n,)¢n — F(n—1)¢¥n—1. To do so one uses Lemma 6.8
in [2].
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It remains to estimate the last two terms in the right-hand side of (10.15). Directly
from (A.4) we find that

H(Tp(un) - Tp(un71)>XanHHs = M(())(p(un) — p(un—1)) ||wanHHS .

Now |[Xe fullgs S Xl s 1 fnll s < € by (10.8), and Mg (p(un) —p(un-1)) is bounded
by K |lun — up—1||ys- Eventually, to estimate the H*-norm of T, )\ Xw(fn+1 — fn)
we use again (A.4) to bound this expression in terms of || fr41 — fnllys. We use (9.7)
to obtain

[t = fullcoqory;ae)
< ||Um||Hs+% {H(cn — n—1,01(cn — en—1), Vi — Vn—l)HCU([O,T];HSO)
+ 1R = Ra-allcoqo e }
st+3 { [un = tn—1llgso + 10¢(tn — un—1) g0 }v (10.17)

and then we use (10.6) and (10.7) at rank n — 1.

Estimate for up41 — uyp. For eoK(T)Cy < 1/2, it follows from (10.6) and (10.7) at
rank n — 1 and (10.16) that the desired result (10.6) at rank n holds.

Estimate for fn+1 — fn. The estimate (10.10) follows from (10.17) and the assump-
tions (10.6)—(10.7) at rank n — 1.

Estimate for Op(unt+1 — uy). By (10.14),

S luin]|

06n = Ty (u,)0u6n — L2 Ty ) L7 60 — R(un)8n + G (10.18)
As above, one has
1 1
1Ty lecars o=y + L2 Do) L2 gy a3y + IR () lleas sy < Cllun -

Therefore one can use (10.6) and (10.4) to estimate the first three terms in the right-
hand side of (10.18). The last term G,, is estimated by means of (10.16) and the

induction assumptions. Consequently, we get |00y, ]| oo 115 ) < Ce227", and

for e < g9, with gy small enough, we deduce (10.7). O

We can now conclude the proof of Proposition 10.1.

Recall that s = o — 3/2 by notation. By (10.6) and (10.10), we deduce that
(tn)nen and (fn)nen are Cauchy sequences in C°([0, T; H®) and therefore converge
to some limits u and f in C°([0,T]; H®). Using the uniform bounds (10.4) and (10.8)
and the interpolation inequality in Sobolev spaces, we infer that (u,)nen and (fr)nen
converge in C°([0,T]; H s/+%) for all s < s. Furthermore, we get that v and f belong
to C9([0, T); Hsl+%) N L>([0,T7; Hs+%) for all s’ < s. Passing to the limit in (10.2),
we conclude that u and f satisfy (10.1) and u(7") = 0. Eventually, using Lemma B.1
(seeing (10.1) as a linear equation of the type (B.1) with unknown u and coefficients
in L>([0,T]; H%)), we deduce u € CO([O,T];HS“%).

It remains to prove that f € C°([0,T]; Hs+%). We know that u, — wu in
CO([0,T); H%) c C°([0,T); H®*6). As a consequence, V(u,) — V(u), c(u,) —
c(u), Oc(un) — Oc(u), plun) — p(u) in CO([0,T]; H*), and R(u,) — R(u) in
CO([0,T); L(H®)). Now consider foo := Os7[V (u), c(u), R(u)](uin), and recall the
definition (10.3). By (9.7), [|fn — foollco(jo,r;rs) — 0 as m — oo. On the other hand,
f =1lim f, in C°([0, T]; H®), and therefore f = f. By statement (i) of Proposition
9.1, foo € CO([0,T]; H**3), with estimate (9.5).

This concludes the proof of Proposition 10.1 and hence the proof of Theorem 1.1.

O
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APPENDIX A. PARADIFFERENTIAL OPERATORS

Notation A.1. For p € N, we denote by W#>°(T) the Sobolev spaces of L* func-
tions whose derivatives of order p are in L*°. For p €]0,+oo[\N, we denote by
WP>°(T) the space functions in W>(T) whose derivatives of order [p] are uni-
formly Holder continuous with exponent p — [p].

Definition A.2. Given real numbers p > 0 and m € R, I'/" denotes the space of
functions a(z,§) on T x R which are C*° with respect to &, and such that, for all
a € N and all , the function x — O¢'a(z,§) belongs to W*(T) and

108a(-, &)y < Call + lED™ 1.

Definition A.3. Form e R, p € [0,1] and a € FZ"‘(Rd), we set

M™(a) = sup sup|[(1+|¢)e=m62a(-, . Al
F@= sw s i) oo, (A1)

Now consider a C*° function y homogeneous of degree 0 and satisfying, for 0 <
€1 < €2 small enough,

x(@,n) =1 if |0 <eilnl,  x(0,n)=0 if [0]>ealn].
Given a symbol a, we define the paradifferential operator T, by
Tou(€) = (2m)~1 Y X(€ = n.m)a(& —n,m)a(n), (A.2)
neZ

where @(0,&) = [ e @Y%(z,¢) dr is the Fourier transform of a with respect to the
first variable.
In addition, we assume that y satisfies the following symmetry conditions:

x(€1,82) = x(—&1, —&2) = x(—&1,&2). (A.3)

It follows from (A.3) that, if @ and u are real-valued functions, so is T,u.

The main features of symbolic calculus for paradifferential operators are given
by the following theorem (see the original article by Bony [13] and the books by
Taylor [46] and Métivier [39]).

Definition A.4. Let m in R. An operator T is said of order m if, for any u € R,
it is bounded from H*(T) to H*—™(T).

Theorem A.5. Let m € R.
(i) If a € T, then Ty, is of order m. Moreover, for any p € R there exists K > 0
such that

ITall £ (e, pn-—my < KMg*(a). (A.4)

(i) Let (m,m') € R? and p € (0,+00). Ifa € T, b € T then T,Ty — Tuy, is of
order m +m' — p where

ath=Y" %agaagb. (A5)

Furthermore, for any p € R there exists K > 0 such that
IZaZh = Tol gy < KM (@) M (B). (A.6)

In particular, if p € (0,1], a € T}, b € F?I then

/

ITTy — Totl g gty < KM (@) M (). (A7)
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(791) Let me R, p>0 anda € F?(Rd). Denote by (T,)* the adjoint operator of T,
and by a the complez-conjugated of a. Then (T,)* — Ty is of order m — p where

1
* I A (e A Te 22y
lov|<p

Moreover, for all i there exists a constant K such that

1(Ta)" — To | gruy gm0 < KM;”(Q). (A.8)

Remark A.6. These properties are well-known when Sobolev spaces of periodic
functions are replaced by Sobolev spaces on the real line. To prove these results for
periodic functions, one can use the results proved in [3] about the general case of
uniformly local Sobolev spaces H;;(R). Namely, in [3], the above results are proved
to hold when H*(T) is replaced by H?,(R). In particular it is proved that

I(TaTh — Tap)ull o < KM (@) Mp" (D) [l s,
Since ”uHHiz S llull gsry, it follows that
I(TaTh — Tap)ull um—mrso gy < KM (@) Mp" (0) [l oy -
Now, if u is a periodic function and a and b are periodic in z, so is (T,Ty — Tap)u
and we deduce that
(T = Tl ey S WTTh = Tan)ul gy

By combining the previous estimates we obtain (A.7). The other estimates are
proved in a similar way.

It follows from (A.7) applied with p = 1 that, if a € T*,b € I'}"’ then
[T, Tolll g g pru—m—mr41y < KM7*(a) Mi™ (D). (A.9)

If a = a(z) is a function of = only, then T, is called a paraproduct. We often
use that the following consequence of (A.4): if a € L*°(T) then T, is an operator of
order 0, together with the estimate

Vo e R, |Toullgo S llallpoo [[w]| go - (A.10)

If @ = a(x) and b = b(z) then (A.5) simplifies to afb = ab and hence (A.6) implies
that, for any p > 0,

HTaTb - TabHﬁ(Hu,mefm’er) <K HGHWMO Hb”wpﬂoo ) (A~11)
provided that a and b are in to W#»*°(T).

Theorem A.7. i) Given two functions a,b defined on R we define the remainder

R(a,u) = au — Tou — Tya. (A.12)
Let a € Ry and § € R be such that a« + 8 > 0. Then
IRAa, Wl jass-y < K llall ga [l o - (A.13)
i1) Let a > 1/2. For all C* function F with F(0) =0, if a € H*(T) then
[F(a) = Trr@yal| y2a-y < C (lall o) llall o - (A.14)

Proposition A.8. Let r,u € R be such that r +p > 0. If v € R satisfies

1
vy<r and 7<7‘+,uf§,

then there exists a constant K such that, for all a € H"(T) and all w € H*(T),
law = Toull g < K lall g (0] g - (A.15)
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We also recall two well-known nonlinear properties. Firstly, if uj,us € H5(T) N
L>°(T) and s > 0 then

uruzll s < K [Jua|lpoo luzll s + K [Juall oo lutl] gs (A.16)

and hence, for s > 1/2,
sl g < K gl (A17)

Similarly, for s > 0 and F € C°°(C"V) such that F(0) = 0, there exists a non-
decreasing function C': Ry — R, such that

IE@)lgs < CIUN oo ) 1015 (A.18)
for any U € (H*(T) N L>(T))V.

APPENDIX B. ENERGY ESTIMATES AND WELL-POSEDNESS OF SOME LINEAR
EQUATIONS

Recall the linearized equation dyu + iLu = 0, where L := ((g — 02)|D,|) ,

We gather in this section Sobolev energy estimates for linear equations of the
form

1o+ Vup +iL7 (cL7p) + Rp = F,

where V = V (¢, ) is a real-valued coefficient, ¢ = ¢(t, x) is a real-valued coefficient
bounded from below by 1/2, F = F(t,x) is a given complex-valued source term
and R is a time dependent operator of order 0 which means that Ry is defined by
(Rp)(t) = R(t)p(t) and R belongs to CO(R; L(HH)) (for some 1) where L(H*) de-
notes the set of bounded operator on H#(T). Below we consider various equations of
this form where, for instance, R is either a multiplication operator by some function
or the commutator between V9, and a Fourier multiplier.

We also consider paradifferential equations of the form

Orp+TyOrp+iLyp+ Rp =F,
where £ = L3 (TCL% . ) and V,c, R are as above.
Proposition B.1. Let T > 0 and pu € [0,+00). Consider R € C°([0,T]; L(HM))

and real-valued coefficients V, ¢ satisfying
Ve CO([0, T WhS(T)), e e CO(0,T]; W2 ™(T)),

with the L{S-norm of ¢ — 1 small enough.
For any iy, € HHM(T) and any F € LY([0,T]; H*(T)), there exists a unique ¢ €
CY([0,T); H*(T)) such that

oo +Tyorp+ Ro+ilo=F, =0 = Qin- (B.1)
Moreover, for anyt >0,
b s < € (leillzmn + 1PN s o500y ) (B.2)

for some constant C = C(u, M) depending only on p and

M= sup 2|0V ()|l + lle@)l, 3 o0 + IR '
0 {10V Ol + 1603+ 1RO

Remark B.2. We often use energy estimates for backward Cauchy problems, that
is for Cauchy problems on time intervals [0, 7] with a data prescribed at time T.
Then the energy estimates read

@l < €T (Il llgu + 1P 11 oy ) - (B.3)
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Proof. As already seen in (2.21), £ = L2T,L2 = T, + R’ where R’ is of order 0 and
1
v=cl+ ;(85\/2) Vid,c.

Up to replacing in (B.1) the remainder R by R+ iR/, we prove the existence of the
solution as limits of approximate problems of the form

Opp + Ty 0z Jep + i1 Jep + Rp = F, Pli—0 = J=Pin, (B.4)

where J. are smoothing operators. Then (B.4) is an ODE in Banach spaces and
admits a global in time solution denoted by ..

Set vB/2)(t,x,€) = c(t,z)(€), which is the principal symbol of 7. As in [2],
consider the paradifferential operator A, with symbol 1+ (c(t, z)£(€))?*/ and, given
e € [0, 1], define J. as the paradifferential operator with symbol j. = j.(¢, z,§) given
by

. i
ge = 30+ = exp (= ey — S (80) exp (- e9¥/?).

Recall that the Poisson bracket of two symbols is {a,b} = (9,a)(0¢b) — (0:a)(0:b).
Then

GO Ay =0, {10, (@023} = 0, {4, (et} 0, (B)
and

3

) =~ 2(0,06),.

Of course, for any ¢ > 0, 5. € C°([0,T7; 3)/2( 4)) for all m < 0, so that T).u €

C%([0,T); H*(T)) for any u € C°([0,T]; H~>°(T)). Also 7. is uniformly bounded in
Co(lo, T7; Fg/2(Rd)) for all € € [0, 1]. Hence, using (A.6) with p = 3/2 or (A.7) with
p = 1, we have the following estimates (uniformly in ¢):

e Tl g < €l 102w = Jeul ey < €l
|[Aw 23 @ty ||, < Cllullge, 1A I ull gy < C llul g
1A Ty Dol o < C IVl Nl s 11 T Dl g < C IV g il

(B.6)
for some constant C' depending only on ||c||ys/2.c and uniform in € € [0, 1].
Recall that, by notation, ¢. is the unique solution to (B.4) and introduce ¢, :=
A, .. Using the fact that A, is invertible (for ¢ —1 small enough) and the preceding
estimates, we deduce that

atSbs + TVaxJaQba + AMRA;1¢6 + Z'T'yJESbe = Faa (;be’t:() = AMJESDina (B7)
where

el L1 o,rp2) < C(M){ el L o,rgs ey + I o,y } (B.8)

Write 4 @cll32 = 2Re (Bype, pe), where (-,-) denotes the scalar product in L(T),
and hence

d .. R :
dt HQ%H%? = —((P+ P")¢e, pz) with
P =Ty0pJ: + A RA +iT ..

To estimate the operator norm of P + P*, there are two ingredients. Firstly, we

replace J} by J. + (JF — J.) and commute J. with Ty0, and T,. This produces

remainder terms that are estimated by means of (B.6). The proof is then reduced

to the case without J. and it suffices to estimate the operator norm of P+ P* where

P =Ty, + A,RA! +iT,. Since A, RA;;! is bounded from L>°([0, T]; L*(T)) into

itself with an operator norm estimated by M, it remains only to estimate Ty 0, +
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Ty + (Tvﬁx + ¢T)*, which can be done directly by means of the paradifferential
rule (A.8). We conclude that

d . . )
T =72 < C(M) [I@ellze + [(2Fe, ¢e)- (B.9)

We thus obtain a uniform estimate for the L>°([0, T]; L?)-norm of ¢. (from Gron-
wall’s inequality and (B.8)) which gives a uniform estimate for the L>°([0,T]; H)-
norm of .. From this uniform estimate and classical arguments (see [39]), one
deduce the existence of a solution in L*>([0,T]; H*(T)). The uniqueness is obtained
by considering the equation satisfied by the difference of two solutions and perform-
ing an L%-energy inequality (using similar arguments to those used above). The
continuity in time of the solution is proved as in [2, §6.4]. O

Lemma B.3. Consider real-valued coefficients V, ¢ satisfying
Ve CO0, T WHS(T), ¢ e CO([0,T); W>>(T)),
with the LgS,-norm of ¢ — 1 small enough. Consider also R € CV([0,T]; L(L?)).

i) For any @i, € L*(T) and any F € L'([0,T); L*(T)), there ewists a unique
@ € C°([0,T); L*(T)) such that

Orp+VOrp+ Ry + iL? (CL%QD) =F, Pli=0 = Pin- (B.10)
Moreover, for anyt >0,
t
le(®)ll2 < exp < /0 M(t) dt’) (el + 1F 2o gzo)) - (B.11)

with M(t") = |0V ()| oo + [1R(E)]] £(12)-

i) Let p € [0,3/2]. Assume that V € C°([0,T); H*(T)), ¢ € C°([0,T]; H3(T))
and R € C°([0,T); L(HH")). If ¢in, € HH(T) and F € L'([0,T); H*(T)), then, for
anyt >0,

¢
o)l g < exp </0 M(t) dt/) (H‘PmHHu + HFHLl([O,t];Hu)> ) (B.12)

with M (') = [V ()] g2 + () gs + 1 RE) £y -

Remark B.4. Consider a backward Cauchy problem, that is a Cauchy problem
with a data prescribed at time 7. Then (B.11) implies that

T

ol < exo ([ M) at ) (lDle + 1oy (B3
with M (t) = |02V ()| oo + I1R(E)]] £(22)-
Proof. i) The existence of the solution can be deduced from the previous proposition,
writing

Ohp + VOpp + Rp+iL2 (cL%cp)
under the form
Oup + Tydup + R'o +iL3 (T.L2 )
where
R'o = Rp+ (Voup — Tydup) +iL2 ((c — T.) L7 ). (B.14)

Indeed, R’ belongs to C°([0,T]; £L(L?)) in view of (A.13) and (A.15).
In order to see that the energy estimate does not depend on the norm of ¢, start
1 1
from 4 ]2, = 2Re (s, ). Since Re (iLz(cL2p),p) = 0, we obtain that

d
p el = 2Re (—Vapp — Rp — F, ).
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Hence, integrating by parts,
d
o7 )72 = Re (((8:V) — 2R)p — 2F, ¢), (B.15)

and the result easily follows from Gronwall’s inequality.
i1) This follows from (B.2) and the fact that the remainder R in (B.14) belongs
to CY([0,T); L(HH)) in view of (A.13) and (A.15). O
APPENDIX C. CHANGES OF VARIABLES

Recall the operator
Pi= 0+ VO, +iL7(cL? -) + Ra, (C.1)

where L := (g — 8$$)%G(O)%, the operator Ry is of order zero, and c(t,z), V(t,z)
are real-valued functions. Consider a time-depending change of the space variable
(namely a diffeomorphism of T) and its inverse,

z,y €T, t € R, with Hay,élHLoo, |06 ]| < 1/2. Introduce a self-adjoint variant of
the pull-back operators, defined by

(\Ill_lh)(t, x):= (14 0,51(t,x))2h(t,x + Bi(t, z)), (C.4)
and note that Wy, 7! are self-adjoint with respect to the standard L?(T) scalar
product in space, for any t. We want to compute \Ileo\I/fl when Qg is a Fourier

multiplier (the analysis below applies more generally assuming only that Qg is a
pseudo-differential operator), using Egorov theorem (see also [9]).

N

N

C.1. Change of variable as a flow map. Introduce a parameter 7 € [0,1] and
consider a diffeomorphism of T (depending on (7,t)) and its inverse,
r=y+B(rty) & y=z+p(rt)

z,y € T, 7 € [0,1], t € R, where 8 and § are such that H(‘)yBHLoo, 1028 < 1/2
and

Blrmo =10, Blrm0=0, Blr=1 =701, Blr=1 =51
We denote
(U(r)h)(t,y) = (1 + 8,B(r,t,y)) 2hlt,y + B(r,t,y)); (C.5)
(U(r) T h) () == (1 + 0uB(7,t, @) 2h(t, x + B(T,t,z)). (C.6)

Then ¥; = ¥(1). The reason to introduce the parameter 7 is that ¥(7) satisfies an
equation of the form

0;V(r)=F(m)¥(r), ¥(0)=1I, (C.7)
namely 0, (¥(7)h) = F(7)(¥(7)h), ¥(0)h = h for all h, where

0 B(,t,y)
1+ 9,8(r,t,y)

Assume that Qg is a Fourier multiplier with symbol ¢o(§) of order m < 3/2. We
seek a pseudo-differential operator Q(7) of order m such that the difference

R(7) := Q(1)¥(r) — ¥(1)Qo (C.9)
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is an operator of order 0. Commuting Q(7) with the equation 0,V (1) = F(7)¥(7)
one obtains

I (Q(1)¥(7))

I
O

(T)F(T)¥(7) + (9:Q(7))¥ (7 )
= F(1)Q(1)¥() + ([Q(7), F(7)]¥(7) + (9,;Q(7))¥(7)).
)

On the other hand 0. (¥(7)Qo) = F(7)¥(7)Qo. By combining both equations we
obtain that R satisfies

OrR(1) = F(T)R(7) + Ra(m)¥(7), Ra(7) :=[Q(7), F(7)] +0-Q(7).  (C.10)

The analysis is then in two steps. The main step consists in proving that Q(7) can
be so chosen that Q(7 = 0) = Qo (then R(0) = 0) and Ry(7) is of order 0. Then,
by using an L?-energy estimate for the hyperbolic equation d;u = bydyu + f, one
deduces an estimate for the operator norm of R(7) uniform in 7 (and hence the
desired estimate for 7 = 1). Here we describe in details only the main step, as the
L?-energy estimate is a standard argument.

+
_l’_

C.2. Expansion of the symbol. Let p(7,t,z,&) be the symbol of Q(7). To obtain
R1 of order zero amounts to seek p such that d;p — o[ ) has order zero (where
or,q] is the symbol of [F,Q]), and p|,—o = qo. The asymptotic expansion of o(p g
is

IIFQ] ™ Z {(0e 1) 5p) — (O¢p) (02 1)}, (C.11)

where f(7,t,x,€) := ibo(7,1, x)§ + 1(02b0)(7, t, ) is the symbol of F(r) (we rename
x the space variable). Since m < 3/2 < 2 by assumption, it is enough to determine
the principal and the sub-principal symbols of p. Thus we write p = pg + p1, where
po has order m and p; has order m — 1. The equations for pg, p; are

07po = bodxpo — £(0::b0)Oepo, Polr=0 = qo, (C.12)
9rp1 = boOzp1 — §(02b0)dep1 + 2, pilr=0 = 0, (C.13)

where .
2= %(&mbo)(agpo + EDeepo)- (C.14)

If po,p1 satisfy (C.12),(C.13), then it follows from standard symbolic calculus for
pseudo-differential operators (similar to (A.6)) that R;(7), defined in (C.10), is an
operator of order 0 satisfying

IR g2y + IR 3 S < (M7 (po) + M7 H(p1)) 1b0(7)llyrree (C-15)

2

with r large enough (here the semi-norms M" are as defined by (A.1); one has to
consider r large enough because we are here considering pseudo-differential operators
instead of paradifferential ones).

Equation (C.12) can be solved by the characteristics method: if (7),£(7) solve

Lalr) = —bolr,ta(r), Le(r) = €O @bo)(r Lalr)),  (C.16)
then

p0(77t7$(7)7£(7—)) :p0(07t7m(0)>§(0)) vT. (017)
Now, by (C.8), the first equation in (C.16) is

0= {1+ (9:8)(r,t,2(r))} 2’ (7) + (0:B) (7, t,2(7)) = %{x(ﬂ +B(r ta(7)},

whence

o(T) + B(r, t, (7)) = z(0) + B(O,t,:r(())) = z(0). (C.18)
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Applying the inverse diffeomorphism, we get z(7) = x(0) + 5(7,¢,2(0)). This is
the solution z(7) of the first equation in (C.16) with initial datum z(0). Also, one
verifies that

&(1) = £(0) (1 + (0uB) (7, t, (7)) (C.19)
satisfies the second equation in (C.16), because z(7) satisfies the first equation in
(C.16), bg is given by (C.8), and

Bubo(r.t,z) = OrePT @) 0rB(r 1, 3)0usB(r 1,2)
vIOA 1+ 9.8(r, t, ) 1+ 8 B8(rt2)2

Hence we deduce a formula for the backward flow of (C.16): fixed any 71 € [0, 1], and
given any (x1, &), the solution (z(7),£(7)) of (C.16) with initial datum (x(0),£(0)) =
(x0,&0) satisfies (z(71),£(m1)) = (z1,&1) if the initial datum is
&

1 + axﬁ(Tlv ta :L‘l)

As a consequence, using (C.17) and the initial datum in (C.12), we get

zo =21 + B(r1,t,21), & (C.20)

pO(T17t7 xlagl) = pO(OJtv‘TOafO) = QO(t7f1307§0)

5 &1
= t7 + 7ta ) ~ .
qo( o ﬁ(Tl 1‘1) 1+axﬁ(7-17t7$1)>

We have a formula for the solution po(7,t,z,§) of (C.12):
3 §
Tt x, &)= t,x+ B(r,t,x), ———=—— ). C.21
(it 8) = a4 Blrta) s ) (C.21)
Now we study equation (C.13). By the definition of (z(7),{(7)),

pmm“mamzﬁlwm@M@Ma (C.22)

where z is given in (C.14). We examine z in detail. By (C.21), for k = 1, 2,

¢ 1
14 9. B(r,, a:)) [1+ 0.B(7, t,z)]F
for all 7,t,x,£. Hence along the curves (x(s),£(s)), by (C.18),(C.19), one has

ko Vst 2(s). £(s)) — (€ q0)(t, o, o)
(ang)( it ( )75( )) - [1 +8x5(s,t,x(s))]’f )
where (x9,&p) := (2(0),£(0)), and therefore, using (C.19) again,

_ 85(]0(757 Zo, 60) + foagg%(t, xo, 50)
14 8.8(s, t, x(s)) '

6§p0<7—7t7 -’L',g) = (aqu) (t,$ + B(Tvta I’),

(Oepo + E0gepo) (s, t, 2(s), £(s))

Now we note that
@memwwwzd{(%@@m@)}
L+ (0:8)(s,t,2(s))  ds L[1+ (0,8)(s,t,2(s))]2 )

as it can be verified by a straightforward calculation, using also (C.16) and the
definition (C.8) of bg. Hence, recalling the definition (C.14) of z,

2(s,t,2(5),£(5)) = %{aqu(t, 20, &0) + E0deqo(t, 0, &)} % { ; iazgﬂﬁggi,st,t 9,12;)]2 }

and, by (C.22),

(9ra) (7,1, 2(7))
(14 (8:5)(7, 8, 2(7))]?

pi(7,t,2(7),&(7)) = %{35610@7 0, &0) + §00¢¢qo(t, o, &0) }
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because ﬁ lr—0 = 0. We use the backward flow as above: given 71,x1,&1, the
solution (z(7),&(7)) of (C.16) with initial datum (z(0),£(0)) = (x0,&o) satisfies
(x(71),&(m1)) = (a1, &) if the initial datum is (C.20). Therefore, replacing (xo, &o)
by (C.20) in the last equality, we get a formula for p;, which, writing 7, z, { instead
of 7'1,1'1,51, is

i 5 3
p(r,t,2,6) = £{ (Geao) (1w + Bl t,2), Ww) (C.23)

; 2 § 8:E$B(T7t7 x)
oA ) (bar Bt OpB(r,t, a:)>} (14 0.B(r,t,2))2

C.3. Conjugation of L. We fix go(£) to be the symbol of L (see (2.11)) with a
cut-off around £ = 0, namely

q0() == (g + E)TNE)2x(€) = (9+ £2)7 [¢]2 tanh (b [¢])x(£),

where x(§) is the cut-off function of Proposition 2.5. Note that Op(gy) = L on
the periodic functions, as their symbols coincide at any £ € Z, and therefore no
remainder is produced replacing L by Op(qp). In the previous section we have
constructed pg, p1, and we have defined p := pg + p1, Q(7) := Op(p). Then R4(7)
defined in (C.10) is an operator of order zero and it satisfies estimate (C.15). Now
observe, in view of (C.10), that for any function ug € L?(T), R(7)ug solves an
hyperbolic evolution equation. Using the energy estimate (B.11), we deduce that
the difference R(7) := Q(7)¥(7) — ¥(7)L (see (C.9)) is also of order zero, and it
satisfies the same estimate (C.15) as R1(7). As a consequence, the conjugate of L is

U(r)LU(1) ™ = Q(1) + Ra(7),  Ra(r) := —R(r)¥(r)™ (C.24)
and Ra(7) satisfies the same estimate (C.15) as R(7). By formula (C.21), po =
q0(€(1 + 0,8)71). We expand

po=(1+8,8) 2q0 +, (C.25)

where the remainder r satisfies || Op(r)||z(gu gut1/2) < 1823|| gri+ for all > 0, for
some absolute constant p large enough, because
g(1—h?
h?(g + &)
and then use Taylor expansion for the square root of the last factor. The second
component p; is given by formula (C.23). By Taylor expansion,

lgh(€) — 31172¢) S L+ 1€)72,  |ah(©) — 3¢z | S (1 +1¢)) 3,

so that we calculate

pr = i2(BuaB) (1 + 0 B) 2 |E[72E X(€) + 1, (C.26)

where the remainder r satisfies || Op(r)||z(gu guts/2) < 1823|| g+ for all > 0, for

g+ €2h2 = h3(g + 52)(1 n ) hi=(1+8,8)"

some p large enough. Assume that [|0;5]/ge < ||8]/gn (this bound holds for the
choice of 5 we make below). By (C.24), (C.25), (C.26), we have

U(r)LU(r) ™" = (14 0,8) 2L + 2(00B)(1 + 0,8) 3| D] 20, + Ro1,  (C.27)

where Ro,1 is defined by difference and it satisfies || Ro,1/|z(zn, 5y S |02 B| it for
all p > 0, for some p large enough. With similar calculations, one proves that for
any r € R

\P(T)‘DI‘T\II(T)_l = (1 + am/B>_T’Dx’T + R0,2 (0'28)

where Ry 2 is defined by difference and it satisfies || Ro 2l z(gu, me-—r+1) < 102 B| fruto-
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C.4. Conjugation of P. We conjugate the operator in (C.1) by ¥y := ¥(1) =
U(7)|r=1. From symbolic calculus it follows that

LheLs = ol - z(axc)az\pm\—% + Ros, (C.29)

where R 3 is defined by difference and it satisfies | Rg 3]

ﬁ(Hu7H#+%) 5 Haxc||Hu+p for

all u > 0, for some p large enough. We recall that ¢ — 1 is small, and therefore 0,c
is small. By definition (see (C.5),(C.6)), and recalling that 8|,=1 = b1, Blr=1 = 1,
we directly calculate

\I’lat\l’fl =0 +a10; + 11, \111&,3\1'1’1 = a0, + 1o,
where

ar(t,z) == (9,61)(t,x + Br(t, ), as(t,z) := (1 + 0B (t, )7L, (C.30)

and
ro(tz) = %(amﬂl)(t, 2+ Bt ) (1+ ufi (. 7)),

ralt0) = 51+ 0, (0,2) (Buw) (1, + B (1,2).

The conjugate of any multiplication operator i — ah is the multiplication operator
h +— (Ba)h,

U1a¥7" = (Ba), (Ba)(t,z) :=a(t,x + Bi(t,2)).

Thus
U PUT! = 0y + a3y + iasL + ia58m\D$\*% + Rs
where
as == a; + (BV)CLQ’ ag = (Bc)(l + axg)—%’
3( 3 - e .
as = _Z{ = 5 (BO(L+0,8)"2 (9:0B) + (B(9)) (1 + 0.8) }

- - - 3 - -
Rz =11+ (BV)rz + i(Bc)Ro, + —iz(BaxC)W(l +0:8)2|D, 72 + Roz (C:31)
+iU1 R + U RV,

Ro, is defined in (C.27) with 7 =1, Rg 2 is defined in (C.28) with 7 =1, r = —1/2,
and R 3 is defined in (C.29). The remainder Ry is of order zero and it is estimated
in Lemma C.1. Moreover, as it is immediate to verify, as = —%890@4. We choose
1, B1 such that the highest order coefficient a4 is independent of z. This means

as(t,z) = c(t,z + Bi(t,x)) (1 + 0,Br(t, )72 = m(t) VzeT, (C.32)

for some function m(t¢) independent of x. Applying the inverse diffeomorphism, this

is equivalent to
3
3

c(t,z) (14 0x51(t, z))
This implies 1+ 0,51 (t, z) = m(t)%c(t, x)fg, which, after an integration in dz, gives

=m(t) VzeT.

1 _2 -3
m(t) = (5- /T eft.x) S d) 7. (C.33)
Hence m in (C.32) is determined. We fix (; as
Bi(t,x) = 05 [m(t)3e(t,x) =5 — 1], (C.34)

and then we fix B(7,t,x) := 761(t,z). As a consequence, B(T,t,y), By are also
determined. Since a4(t, z) = m(t) is independent of z, it follows that a5 = —20,a4 =
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0 (as it was natural to expect, because the vector field in P is anti-selfadjoint and
the transformation W preserves this structure). We have conjugated P to

P = U PUT = 0 + im(t)L + azd, + Rs. (C.35)
We underline that the coefficient m(t) is a function of time, independent of space.
Lemma C.1. There exists a universal constant 6o € (0,1) such that if
le(t) = 1|z < do
then ||0481(t)|| Lo + [|0281(t) || < 1/2 and
10281 (t) [lwnce + [|0:51 () lwnee < Culle(t) — wuee  Yu >0

for some positive constant C,, depending only on p. As a consequence, W1 (t), Uy ()~}
are bounded transformations of H*(T), with

103 () ey + 190 gz < Cod + le(t) — 1) Vi > 0.
Moreover |m(t) — 1| < C|c(t) — 1| g1,
las(®)[an < Cullle(t) = Ulmn + 18] gu-r) Vi = 1.
The remainder Rs(t) maps L2(T) into itself, with
1IR3l 222y < C(lle() = Lz + V()2 + 18tz + [ R2(t)l] 2(22))
and, for all p > 1/2, R3(t) also maps H*(T) into itself, with
1R3 ()l cgrmy < Crulle() = Ll gusr + IV ()l zz + 18ec(®)l e + | B2 () £rrn))

where r > 0 is a universal constant.

Proof. The estimates follow from the explicit formulas above, the usual estimates for
the composition of functions (see, e.g., Appendix B in [7]) and Sobolev estimates for
pseudo-differential operators (see (C.15)). The estimate of the pseudo-differential
remainder term is the reason for which r further space-derivatives are required on c.
The term Oic appears only in a1 and 1. The term V" appears only in a3 and 33 where
it is explicitly written, and nowhere else. The operator Rs only appears in R3 in the
term \IilRQ\IJfl. All the other terms depend only on ¢ and its space-derivatives. [

C.5. Reparametrization of time. Now we want to replace the coefficient m(t) in
(C.35) with a constant coefficient. We consider a diffeomorphism of the time interval
P[0, T] = [0,T1], (0)=0, »(T)=T1, ¢'(t)>0,

where 77 > 0 has to be determined. We consider the pull-back . defined as
(Yuh)(t,z) == h((t),z), and similar for its inverse 1»~!. Then we calculate the
conjugate
& (O + im () LY. = @' (¥~ ()0, + im (™ () L.
The two time-dependent coefficients are equal if m(t) = ¢/(t) for all ¢t € [0, 7.
We define

t T
Ot = /0 m(s)ds, Ty /0 mt)dt,  p(t) = m(-1 (1), (C.36)

Since |m — 1| is small, then the ratio 77 /T is close to 1, and also 9’(t) is close to 1
for all t. We have conjugate

@Z)Ilﬁlw* = p(t)ﬁg, ﬁg =0 + 1L + ag0y + R4, (037)
where W1(0).)
_70’31#_ t?‘r " 7L —1p
ag(t, l’) = —p(t) s R4 = p(t) ¢* Rg’(b* (0.38)



(and, more explicitly, (/7' Rstb,)(t) = R3(v~1(t))). Now the coefficient of the high-
est order term L is constant.

C.6. Translation of the space variable. The goal of this section is to eliminate
the space-average of the coefficient ag (¢, x) in front of 9,. Consider a time-dependent
change of the space variable which is simply a translation,

y=gte)=c+pt) & w=¢ (ty)=y-n),

and its pull-back (p.h)(t,z) = h(t,p(t,z)) = h(t,x + p(t)), and similarly for ¢!
Thus p; 10y« = O + p'(t)0, and . commutes with every Fourier multiplier like
Oz, |Dz|", L. We calculate the conjugate

]53 = go;ll?’ggo* =0 +iL + a70, + R5,

where
ar = p'(t) + (¢ a6),  Rs:= p; ' Raps. (C.39)

Since ¢, ;! preserve the space average, we fix

p(t) = —% /0 t /T a6(s, 7) dz ds. (C.40)

It follows that [ a7(t,2)dx = 0 for all ¢ € [0,T1]. Note that ¢, commutes with the
multiplication operator h — p(t)h, because p(t) is independent of x. Moreover, by
the change of time variable s = ¥(t), ds = m(t)dt in the integral, we get

1 [ I
p(Th) = o /. /Taﬁ(s,a:) da;ds——%/o /Tag(t,x) dxdt. (C.41)

Proof of Proposition 5.1 concluded. The composition ® := ;)71 U of the previ-

ous three transformations conjugates P = ® !pP3®. Also note that ®!(pu) =
m® Ly for all u. The transformation ¥y is estimated in Lemma C.l.~ The estimates
for 9., p, are straightforward. Finally, rename W := a7 and R3 := R5. g

Notation. In the following Proposition we use the shorter notation |lu||7 x to denote
the C°([0,T]; X) norm of any u, with X = L?(T), L>°(T), H*(T), L(L?*(T)), etc.

Proposition C.2. Assume the hypotheses of Proposition 5.1.
(i) (Regularity). In addition, let p > 1/2, let |[c — 1||rpr < K < 00, and let

N = lle = Urguer + [VIizmn + [|Oec]

r.me + | B2l cimmy < oo
Then R3 maps C°([0, T1]; H*(T)) into itself, with
IRzl cermy < Cux Ny (C.42)
for some constant C\, ¢ depending on p, K. For p > 1,
W7y, e < Cu(lle = Lllz,me + (|9l

rae-1+ ||V

T,H#) (C.43)

and

1Pullzy e < Cullelrmullulras, N7 ullrme < Cullellr.an|lullzy e

for all w = u(t,z), for some constant C,, depending only on p.

(i7) (Stability). Consider another triple (¢, V', RS) such that ¢ also satisfies (5.1),
and Ny < oo also for (¢, V', RS). Let ®', W, ., ¢, T{,W', R be the corresponding
objects obtained for the triple (', V', Rb). Then for all u € L*(T), all t € [0, 7],

191 () u— 5 (ull g2 + 01 ()" u = W5 () ull g2 < Clle(t) = ¢/ (O g2 llull - (C.44)
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Let A := Ty /Ty, and let T be the time-rescaling operator (Tv)(t,x) := v(At,x). Then
for all p >0, all v =v(t,x),

lspsv = Wl (TO)lz e < OT ([10plly e + [0l prutr) Do (C.45)

i i o = T (e o o)y e < CT (000l a0 + v )Ao (C.46)
where
Ao = e = dllpm + 10 = 0, V = V|1 2.
Also,
11 =X+ [lm —mllcoqo.ry < Clle = lIr,1=, (C.47)
and, if
M(x) = {1+ 0BT x —p(T)}2,  M'(2) == {1+ 8,5 (T.x — p/(T7))}2,
then
M — M'||poo(ry < C([le = llz,m2 + |10ic — 0, V = V|1 12). (C.48)
For yu>1, if

| vl mn—1 + IVl goer + 10V loge <1, (C.49)
and (C.49) also holds for ¢, V', then
W' = TWllzy e < Cullle =€l e +10ee = 8¢/l grns + IV = V|l 1). (C.50)
Moreover, if

le = Uig,grer + 10z e + 107cllr,p2 + IV 7m0 + 10V 17,2
+ I R2ll7ccayner2) + 10 Rl o2y <1 (C.51)
and (C.51) also holds for ¢/, V', RS, then

| Ry — (TR 2 < C(lle = & llp grer + |0r¢ — 0|11 110
+ IV =V'llp i 4+ 1Ry — Rbll7,2r2))- (C.52)

Proof. To prove statement (i7) we make repeatedly use of triangular inequality and
explicit formulas. In particular, to estimate p(¥(At)) — p'(¥'(t)), we use explicit
formulas similar to (C.41). To estimate R — (T Rs) we note that the rescaled
operator (T Rs) is the composition T R57 ~ 1, and then we also use (C.45)-(C.46).
Remember that we have renamed W := a7 and R3 := R5 ]
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